LINEAR OPTIMIZATION

LECTURE 9

20/05/2021	The Simplex Method An algorithm for solving LPA in equational form. Idea: - Start with a bfs - Deduce whether this bfs is Optimum or if LP is unbounded. - If not, move to a bfs with bigger cost.			
	First bring it to equational form by adding clauk vosciables res, re, r			
	$-\chi_1 + \chi_2 + \chi_3 = 1$			
	$x_1 + x_4 = 3$			
	$\chi_2 + \chi_5 = 2$			
	$\chi_1, \chi_2, \chi_3, \chi_4, \chi_5 \geq 0$			
	$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$			
	Notice that B: $\{3, 4, 5\}$ give a bfs: $x_3 = 1, x_4 = 3, x_5 = 2, x_1 = x_2$			
	We will start with this bls. First we will rearrange eque conveniently.			

Maximize	X1 + 712		
subj. to	$-\chi_1 + \chi_2 +$	$\chi_3 = 1$	
	~~. ∧2	$+ \chi_{4} = 3$ $+ \chi_{6} = 2$	
	_	-,	
	×.,	N21- N3, N41, N5 ≥ 0	
Initial bf	s has no, no, no	as basic variables and m	1, nz as hon-basic.
			Pour la la servicia de
	$\chi_3 = 1$	$+\chi_1 - \chi_2$	in terms of non-basic
	24 = 3	$\gamma - \eta_1$	Variables.
	્રીક ≂ જે	2 · · · · · · · · · · · · · · · · · · ·	
	7 -	~ + 3.	Writing the objective.
			<u>d</u>
This re	preventation is calle	a a Tableau	
The a	bove tableau corner	ponde to a ble. <0, o	1, 1, 3, 2>
		will Cost: 0	
		-	
	up: Pivoting		
Next st			
Next st			
Next st If x	4 or ne is in	ccreated, the cost i	ncreases. Suppose
Next st If 7 We	4 or re is in consider r.	creased, the cost i	ncreases. Suppose
Next st If x We	4 or re is in consider r.	ucreated, the cost i	nercales. Suppose
Next st If n We How	4 or re is in consider r.	increased, the cost i	nercale. Suppose

 $\chi_3 = 1 + \chi_1 - \chi_2$ $\begin{array}{rrrrr} \chi_{4} & = & 3 & - & \chi_{1} \\ \chi_{5} & = & \mathcal{L} & & & - & \chi_{2} \end{array}$ $\chi = \chi_1 + \chi_2$ Initial tableau To Next step: Pivoting If my or ne is increased, the cost increases. Suppose we consider x1. How far can r, be increased? - The equation $x_3 = 1 + x_1 - x_2$ give no restriction. $- \chi_{4} = 3 - \chi_{1} \quad \text{saye} \quad \chi_{1} \leq 3. \quad \text{Otherwise},$ ng <0 and we don't get a fearible soln. Let us therefore increase x, to 3. - By doing this, ng becomes 0. - We now move x4 to RHs and 21 to LHS.

Today's goals: - Exercises on simplex method to understand the algorithm. - In later lectures, we will see a proof of correctness, and why each tableau corresponds to a bB Example 2: Maximize X, Subject to x1 - x2 < 1 $-\chi_1 + \chi_2 \leq 2$ λι, λ₂ ≥0 $\chi_1 - \chi_2 + \chi_3 = 1$ -x1 + x2 + xq = 2 $x_1 = 1 - x_3 \rightarrow x_2$ n1, n2, n3, n4 20 24 = 2 + (1- x3+ x2) - x2 $\chi_3 = 1 - \chi_1 + \chi_2$ $x_1 = 1 - x_3 + x_2$ 2, enters 24 = 3 - 23 $\chi_{f} = 2 + \chi_{1} - \chi_{2}$ 23 kaves $\chi = \chi_1$ $\chi = 1 - \chi_3 + \chi_2$ bh: <1,0,0,3> bfs: <0,0,1,2> Cost: 0 Cost: 1

Example 3: Maximize - n1 - n2 Subject to: $x_1 + 2x_2 \leq 4$ A2 \le 1 X1, X2 ≥0 $x_1 + 2x_2 + x_3 = 4$ xa → x4 ≈ | N1, ne, ns, xy 20 13 = 4 - 24 - 272 $\chi_4 = 1 - \chi_2$ $\chi = -\chi_1 - \chi_2$ 64: < 0, 0, 4, 17 Cost : 0

Example 4: Maximize -2x, + 2 Subj. to: $-n_1 + n_2 \leq 2$ $a_{1} \rightarrow \alpha_{2} \leq b$ n, ne ≥0 $-\chi_1 + \chi_2 + \chi_3 = 2$ $2x_1 + x_2 + x_4 = 6$ 21, R2, 715, 24 70 $x_3 = 2 + x_1 - x_2$ No entre x4 = 6 - 2x, -xe 23 leaves Z = -21; +7_ E $\chi_2 = 2 + \chi_1 - \chi_3$ 74 = 4 - 374 + 72 $\chi = 2 - 2 - 2 - 2_3$ $- \text{Optimum} = 2 \quad \text{bfr:} \quad \langle 0, 2, 0, 4 \rangle$

Example 5: Maximize $\chi_1 + \chi_2$ Subject to $-\chi_1 + \chi_2 \leq 2$ $n_2 \leq 4$ $\chi_1 + \chi_2 \leq 9$ γ₄ ≤ 6 $n_1 - n_2 \leq 5$ $x_1, x_2 \geq 0$ $\chi_3 = 2 + \chi_1 - \chi_2$ 7,1 $\chi_{4} = 4 - \chi_{2}$ 2,4 $x_5 = 9 - x_1 - x_2$ $\chi_{b} = 1 + \chi_{7} - \chi_{2}$ $\chi_{\mu} = b - \chi_{\mu}$ $y_7 = 5 - y_1 + y_2$ $\chi_1 = 5 - \chi_2 + \chi_2$ $\chi = 5 - n_{3} + 2n_{2}$ $\chi = + \lambda_1 + \lambda_2$ **π**2↑ | **π**₆ ↓ $\chi_3 = 7 - \chi_9$ $x_3 = 5 + \gamma_5 + 27_b$ $\chi_1 = 1 + \chi_5 + 3\chi_6$ $\chi_4 = 3 - \chi_7 + \chi_6$ $\chi_{\zeta} = 2^{2} - \chi_{3} - 2\chi_{b}$ x7 = 2 - x5 - 221 274 $\chi_2 = 1 + \chi_7 - \chi_1$ n2 = 3 - 76 - 326 2,1 $x_1 = 6$ $x_1 = 6 - \lambda_1$ $-\chi_{b}$ x=9-75-374 $\chi = 7 + \eta_{7} - 2\eta_{6}$ ophimum cost = g

bfs: < 6, 8, 5, 1, 0, 0, 2>

Example 6:
Migrituite
$$x_{k}$$

Subject is:
 $-x_{1} + x_{k} \le 0$
 $x_{1} \le 2$
 $x_{1}, x_{k} \ge 0$
 $A = \begin{bmatrix} -1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$
 $x_{3} = 0 + x_{1} - x_{2}$
 $x_{4} = 2 - x_{1}$
 $x = -x_{2}$
 $x_{2} = -x_{1}$
 $x_{3} = -x_{1}$
 $x_{4} = 2 - x_{1}$
 $x_{5} = -x_{1}$
 $x_{4} = 2 - x_{1}$
 $x_{5} = -x_{1} - x_{2}$
 $x_{5} = -x_{1} - x_{2}$
 $x_{4} = 2 - x_{1}$
 $x_{4} = 2 - x_{1}$
 $x_{5} = -x_{1} - x_{2}$
 $x_{1} = -x_{2}$
 $x_{2} = -x_{1} - x_{3}$
 $y_{1} = -x_{2} - x_{1}$
 $x_{1} = -x_{2} - x_{1}$
 $x_{1} = -x_{2} - x_{1}$
 $x_{1} = -x_{2} - x_{1}$
 $x_{2} = -x_{1} - x_{3}$
 $x_{1} = -x_{2} - x_{1}$
 $x_{2} = -x_{1} - x_{3}$
 $x_{1} = -x_{2} - x_{1}$
 $x_{2} = -x_{1} - x_{3}$
 $x_{1} = -x_{2} - x_{1}$
 $x_{2} = -x_{1} - x_{3}$
 $x_{1} = -x_{2} - x_{1}$
 $x_{2} = -x_{1} - x_{3}$
 $x_{1} = -x_{2} - x_{1}$
 $x_{2} = -x_{1} - x_{3}$
 $x_{1} = -x_{2} - x_{1}$
 $x_{2} = -x_{1} - x_{3}$
 $x_{1} = -x_{2} - x_{2}$
 $x_{2} = -x_{1} - x_{3}$
 $x_{1} = -x_{2} - x_{2}$

Degeneracy in equational form: An LP in equational form is said to be degenerate if several feasible base correspond to a single bls. - In such a case, at least one of the basic variables in • B1 the bfs than to be 0. - We have seen an instance of this in Example 6. Degenerate pivot step: - A pivot step in which basis change, but the cost does not change. Cycling: - a sequence of degenerate pivot steps that brings back to a previous tableau. dater, we will see some pivoting rules that will prevent cycling.

Summary Simplex method - Octecting optimum, Unboundedness (Oxampics - Degeneracy