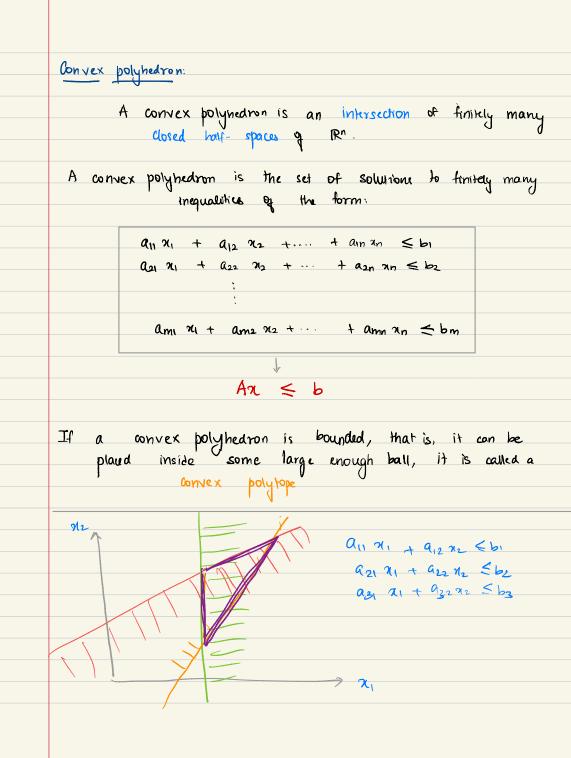
LINEAR OPTIMIZATION

LECTURE 8

18/05/2021 Bfs as vertices/extreme points of convex polyhedra convex combination: A convex combination of two points x, y E R" is another point in Rⁿ given by. $\lambda x + (1-\lambda) y$ where $0 \le \lambda \le 1$ Convex Set: A set S C IR is convex if for every pair of points x, y & s all its convex combinations $\lambda x + (1-\lambda)y$, $0 \le \lambda \le 1$, lie in S Convex non- convex Lemma: If S1 and S2 are convex then S1 1 S2 is convex. Closed half-space. A closed half space of IR" is the set of solutions to an inequality of the form: $a_1 x_1 + a_2 x_2 + \dots + a_n x_n \leq b_1$ Remark: A closed half-space is convex.



<u>Gioa(</u> -	for to	day's le	chure :			
	VERTIC	es —			EXTREME	POINTS
		×		FEASIBLE		
	•				_	
Notions	of	vertices,	extreme	points ar	nd bfs ar	e same
Nohions	of	vertices,	extreme	points ar	nd bfs ar	e same
Nohions	of	vertices,	extreme	points ar	nd bis ar	e same
Nohions	of	vertices,	extreme	points ar	nd bis an	e same
Nohions	of	ver lices,	extreme	points ar	nd bfs an	e same
Nohions	of	vertices,	extreme	points ar	nd bfs an	e same
Nohions	of	ver fices,	extreme	points ar	nd bfs an	e same
Nohions	of	ver fices,	extreme	points ar	nd bfs an	e same
Noh'ons	of	ver fices,	extreme	points ar	nd bfs ar	e same
Nohions	of	ver fices,	extreme	points ar	nd bis an	e 30m e
Noh'ons	of	ver fices ,	extreme	points ar	nd bis an	e ,80m c
Noh'ons	of	ver fices ,	extreme	points ar	nd bis an	e ,80m c

Lemma: Each vertex is an extreme point.
Proof: Suppose v is a vertex.
There exists a
$$c \in \mathbb{R}^n$$
 s.t. $c^Tv > c^Tx$ for all $z \neq v$
In the polyhedron.
Suppose there exists $y, z \neq v$ in the polyhedron st.
 $v = \lambda y + (1-\lambda)z$ for some $0 \leq \lambda \leq 1$
 $c^Tv = \lambda c^Ty + (1-\lambda)c^Tz \longrightarrow 0$
Now, we know that $c^Ty < c^Tv$
 $c^Tz < c^Tv$
 $\lambda c^Ty + (1-\lambda)c^Tz < \lambda c^Tv + (1-\lambda)c^Tv$
 $< c^Tv \longrightarrow 2$
(2)
(1) and (2) are inconsident. This is a contradiction.
... There is no pair y, z in the polyhedron s.t.
 v is a combination of y, z .
Hence v is an extreme point.

Lemma: Each extreme point is a vertex. To prove this lemma, we will make use of an alternate characterization of extreme points. Proviso: We are given An <b A: mxn 7(^{, 11} × 1 b: mx1 - Each Ain = bi is said to be the hyperplane defining the closed half- space Ain < bi - We will assume that not more than n hyperplanes from A12=b,,---- Am2 = bm pass through a point of IR" is not allowed since 3 TTTI is not allowed since 3 hyperplanus pass through the red point. (degeneracy) For example: Theorem: A point in An <b is an extreme point iff It can be expressed as an intersection of n linearly independent hyperplanes out of the hyperplanes defining Az ≤ b. satisfies: an x1 + a12 22 = b1 Q11 71 + Q12 M2 561 Q21 11 + Q22 71 € 32 $a_{21} x_1 + a_{22} x_2 = b_2$ \rightarrow Q31 21 + Q32 712 < b3 **مج ۲۱ + ۲۲۲ ۲۲ ≤ ۲۵** agini + auene < by an x + asz x < by

Theorem:A point in
$$Ax \leq b$$
 is an extreme pointiffit can be expressed as an intrsection of n linearly
independent hyperplaned out of the hyperplaned defining $Ax \leq b$.Proof:((=): Suppose V is a point which is obtained as the
intersection of n linearly independent hyperplane
out of $Ax \leq b$.Separating out these hyperplane, we can write:
 $A'V = b'$ where A' has n linearly
 $A''V \leq b'''$ independent rows.Øue to our assumption about non-degeneracy we have a strict
intergravity for the second of constraints.Notice that: $A': n \times n$ motrix- and has rank n.
 $\therefore V$ is the unique solution to $2 \longrightarrow 0$
 $A'x = b'$ $To show: V$ is an extreme point. $\therefore Y = \lambda U + (1-\lambda) W$ for U_1 w scalesfying $Ax \leq b$.

To show: V is an extreme point.
Suppose v is not an extreme point.

$$\therefore v = \lambda u + (i-\lambda) W$$
 for $u_1 W$ satisfying $Ax \leq b$.
 $u_{rW} \neq V$.
Consider $A':$
 $A'u \leq b'$ and $A'w \leq b'$
 $b' = \begin{bmatrix} b' \\ \vdots \\ \vdots \\ b' \end{bmatrix}$
Suppose there is an $i \leq i - A'_i \leq b'_i$
 $\lambda A'_i \leq i + (i-\lambda) A'_i \leq \lambda b'_i + (i-\lambda) A'_i \leq \lambda b'_i$
 $A'_i \leq i + (i-\lambda) A'_i \leq \lambda b'_i + (i-\lambda) b'_i$
 $\leq b'_i$
This is a contradiction to $V = \lambda u + (i-\lambda) W$
 $A'_i \leq b'_i$
Therefore: $A'u = b'$ Hence $u = V$.
 $-$ This contradicts $V = \lambda u + (i-\lambda) W$ for $u = V$.
 $-$ This contradicts $V = \lambda u + (i-\lambda) W$ for $u = V$.

(ii) Now consider
$$A' x \leq b''$$

we have $A'' v \leq b''$
 $a'''_{1} + \dots + a''_{n}, v_{1} \leq b''_{1}$
 $a'''_{1} + \dots + a''_{n}, v_{1} \leq b''_{1}$
 $A''_{1} (v + \epsilon_{70}) = A''_{1} (v_{1}) + \epsilon_{1} A''_{20}$
We can find an $\epsilon_{70} st$.
 $A''_{1} (v + \epsilon_{70}) \leq b''$
and $A''_{1} (v + \epsilon_{70}) \leq b''$
 $A''_{2} (v - \epsilon_{70})$
 $= v is not an extreme point.$

Grai by boday's lecture:
VERTICES

Read

BASIC FEASIBLE

SOLUTIONAS

Since we now move to basic feasible solutions, let us

consider constraints in equational form.

$$Ax = b$$
, $x \ge 0$

Fach $a_{i_1}x_i + a_{i_2}x_2 + \dots + a_{i_n}x_n = bi$ is the intersection

of two closed half space

 $a_{i_1}x_i + a_{i_2}x_2 + \dots + a_{i_n}x_n \le bi$

 $a_{i_1}x_i + a_{i_2}x_2 + \dots + a_{i_n}x_n \le bi$

 $a_{i_1}x_i + a_{i_2}x_2 + \dots + a_{i_n}x_n \ge b_i$

Therefore $Ax = b$, $x \ge 0$

Gives a convex polyhedron.

Theorem: Let P be the convex polyhedron described by
$$An=0, 220$$
.
Let V be a point in P.
The following two conditions are equivalent:
(i) V is a vertex of P
(ii) V is a vertex of P
(ii) V is a basic travible solution of the UP.
Proof: (i) => (ii), V is a vertex.
 $\therefore \exists c s:t, c^T V > c^T x$ for other $x \in P$.
We have seen that: to every $x \in P$, there exists a bfs $y \in P$
 $x: - c^T y \ge c^T x$
This is true for V to.
 $ic_{7} c^T y \ge c^T y$
But this is possible only is $V=y$,
 $\therefore V$ is a bfs.

Theorem: Let P be the convex polyhedron described by
$$Ax=0, 2>0$$

Let V be a point in P.
The following two conditions are equivalent:
(i) V is a vertex of P
(ii) V is a vertex of P
(ii) V is a basic travible solution of the LP.
Proof of: (ii) \Rightarrow (1):
Suppose Y is a bis.
There is a basis B for V.
Define C as follows: $C_j = 0$ if $j \in B$
 $C_j = -1$ if $j \notin B$
(i) $C^T Y = 0$, as Y is a bis with basis B
 $T_j = 0$ for all $j \notin B$.
(ii) $C^T X = 0$, as some $n \neq V$.
We have sen that $Z_j > 0$ for some $j \notin B$.
 $\therefore C^T Z < 0$. $\therefore C^T X = C^T$

Summary	:				
V	ERTICES -		> E1	KTREME POINT	rs
				1	
			Y		
	•	BASIC F		Pollows from the other	
		itanding and u ušek & Gäi 7,8,9 0			