LINEAR OPTIMIZATION

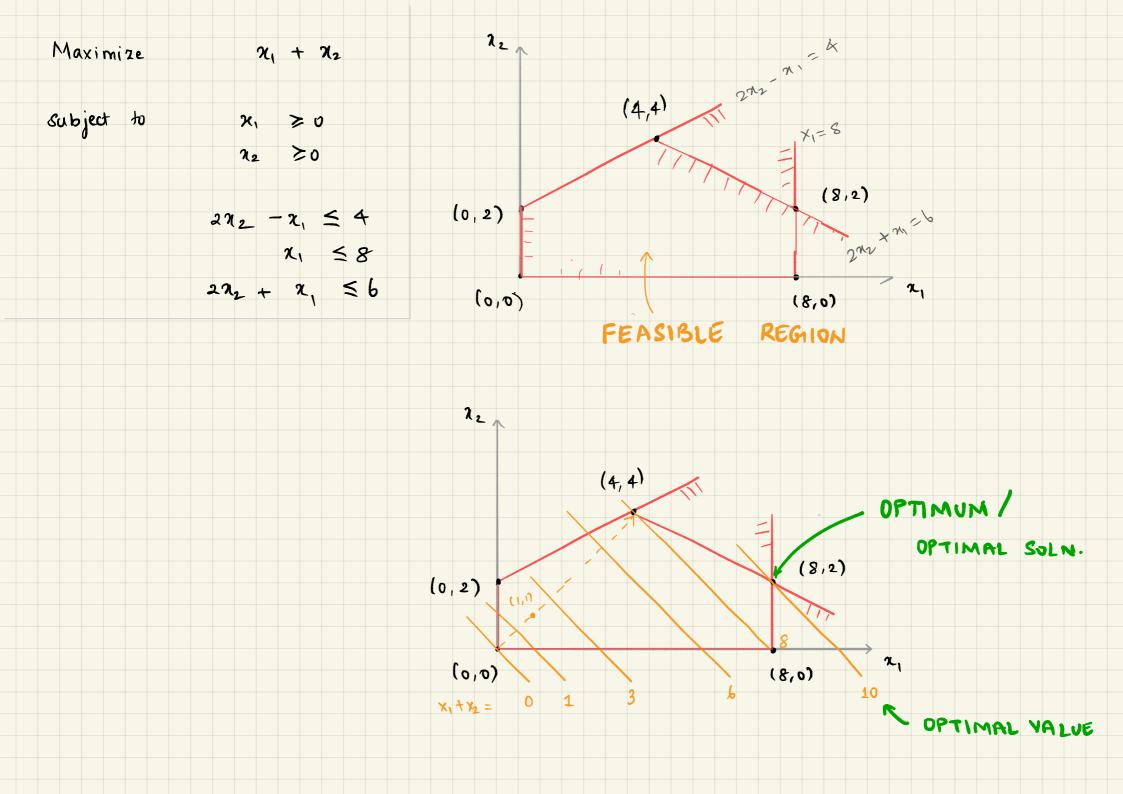
LECTURE 2

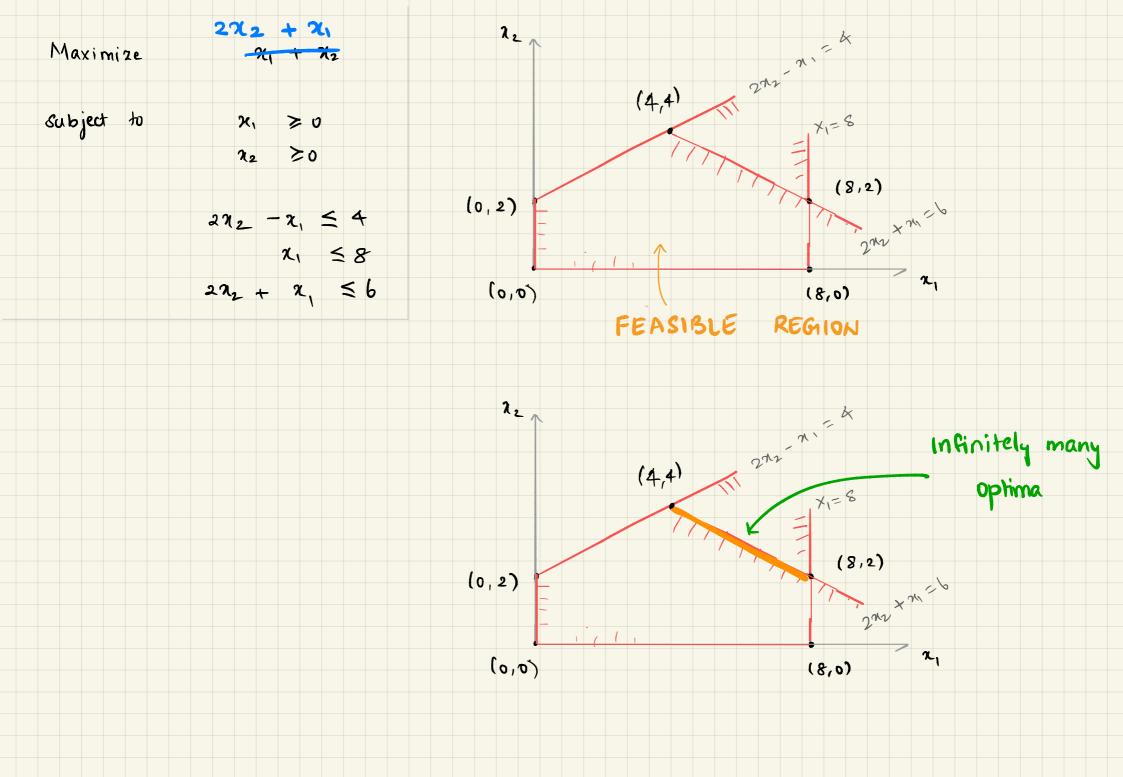
- -1. Solving an LP: intuition in 2D
- -2. Integer linear programs (ILP3)
- -3. LP relaxations of ILPs
- -4. Maximum weight matching

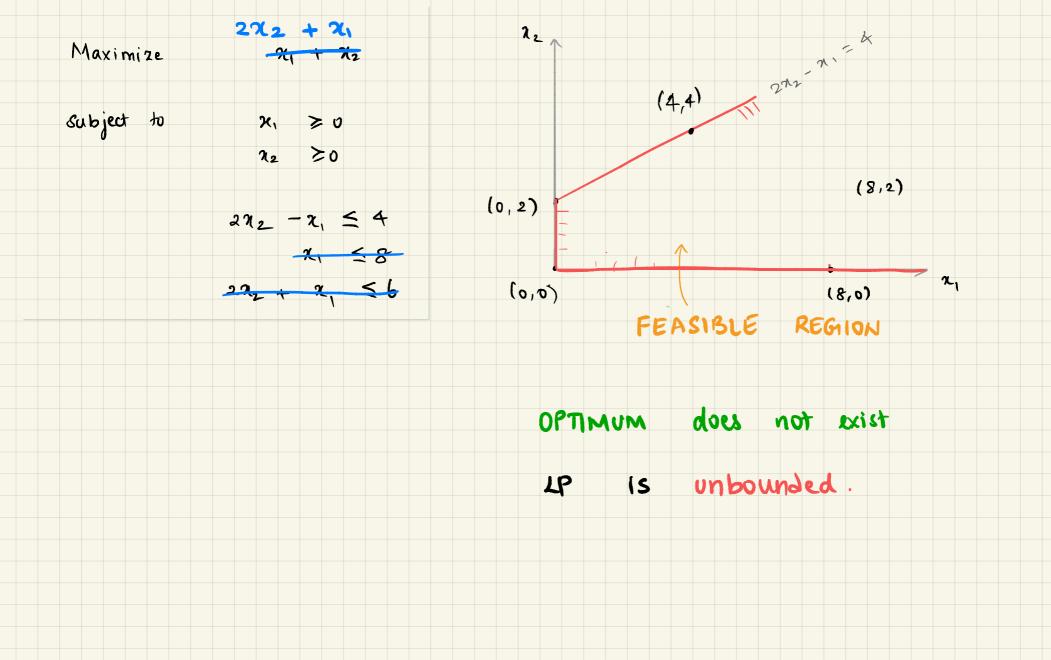
References: Chapters 1 & 3 Of

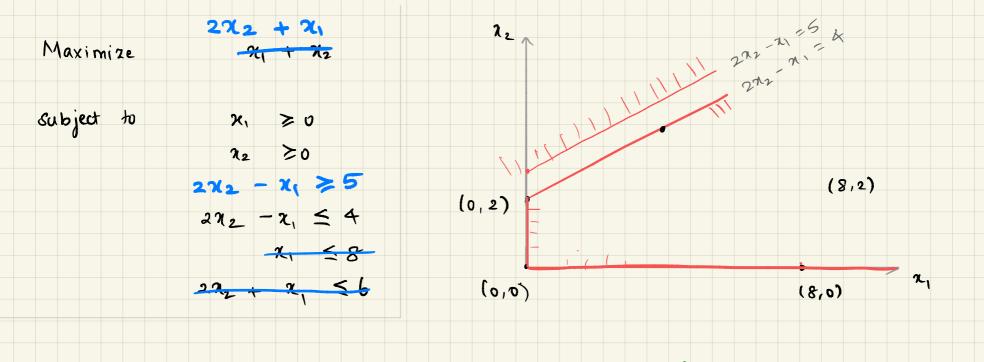
Understanding and Using Linear Programming Jiři Matoušek, Bernd Gärtner

Solving an LP: intuition in 2D









OPTIMUM doer nog exist

LP is infeasible

Four possible situations.

- -1. Unique ophimum
- -2. Infinitely many optima
- -3. Unbounded LP ? optimum does not exist -4. Infrasible LP

These are the only possible situations (proof later in the

(ourse)

Later in the course:

- Extending these intuitions to higher dimensions
- Algorithms for finding the optimum

- -1. Solving an LP: intuition in 2D
- -2. Integer linear programs (ILP3)
- -3. LP relaxations of ILPs
- -4. Maximum weight matching

References: Chapters 1 & 3 Of

Understanding and Using Linear Programming Jiři Matoušek, Bernd Gärtner

INTEGER LINEAR PROGRAMS (ILP.)

Part 2:

Maximize C^TX

subject to: An < b

$$\chi \in \mathbb{Z}^n$$

6

additional constraint

Optimize the cost over all integral points in the feasible region.

Maximize

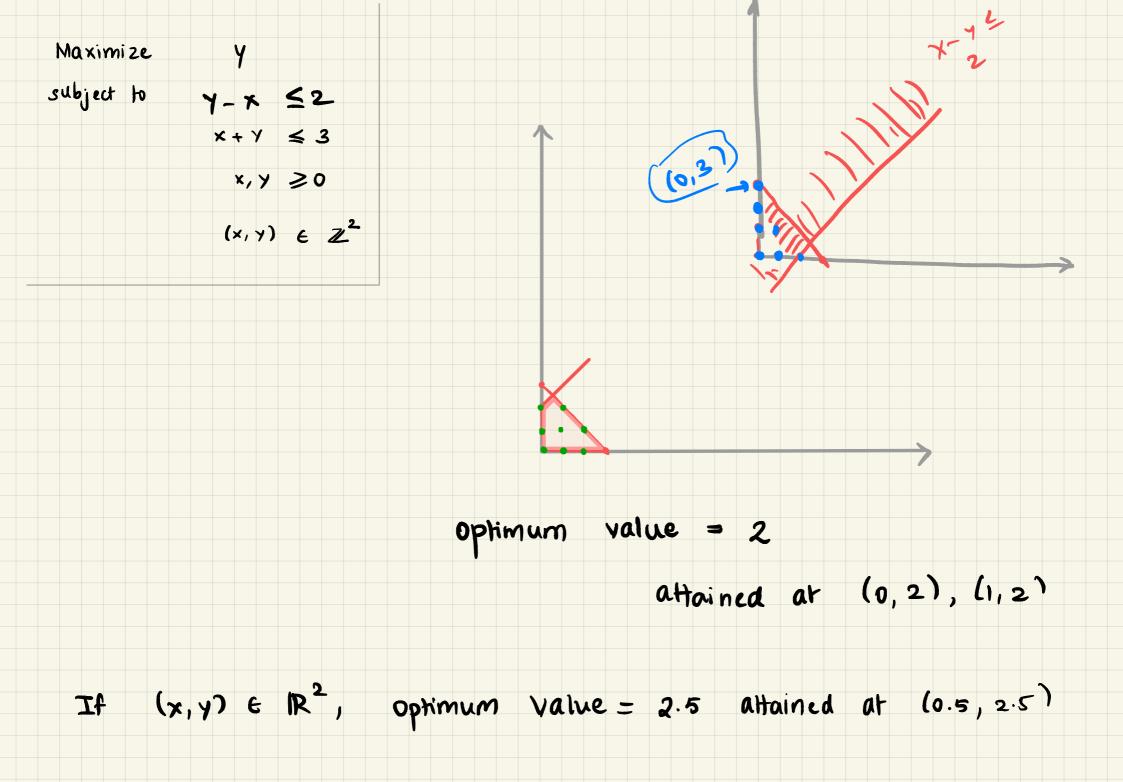
subject to $x - y \leq 2$

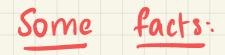
Y

×+Y ≤ 3

x, y ≥0

 $(x, y) \in \mathbb{Z}^2 \leftarrow integrality$

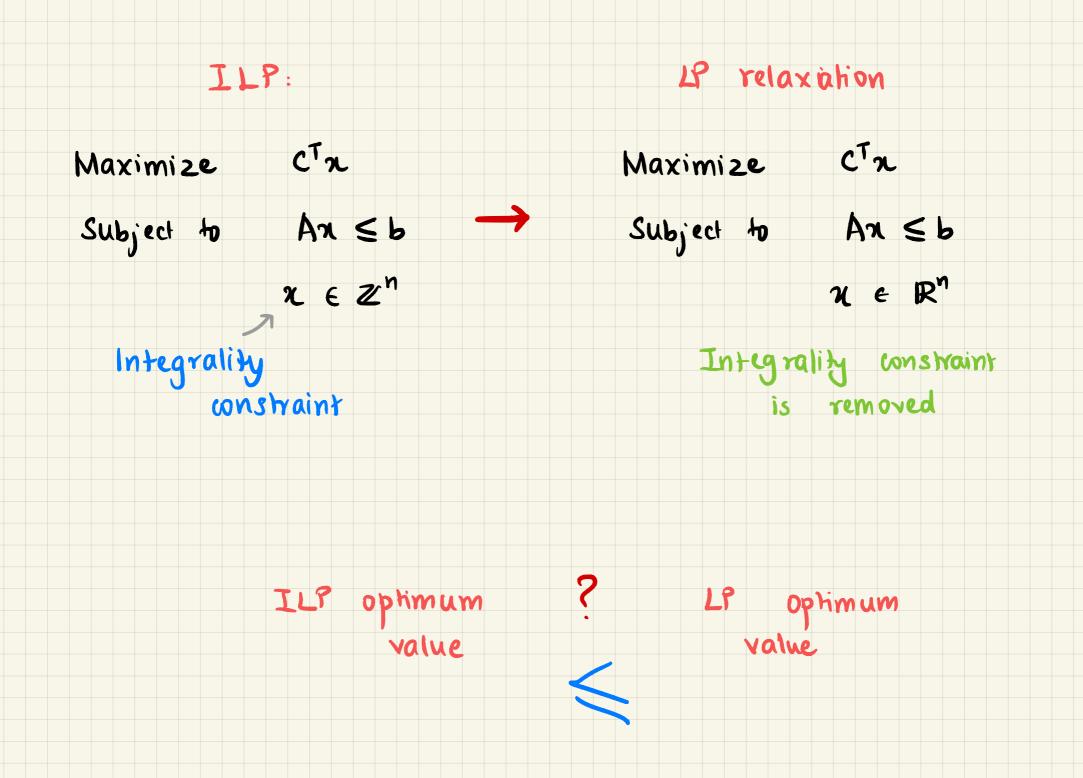




- LPs can be efficiently solved.
 - PTIME algorithms
 - several heuristics studied
- ILP, are significantly harder to solve - NP- complete

Sometimes ILPs can be approximated using LPs.

LP relaxations of ILPA.

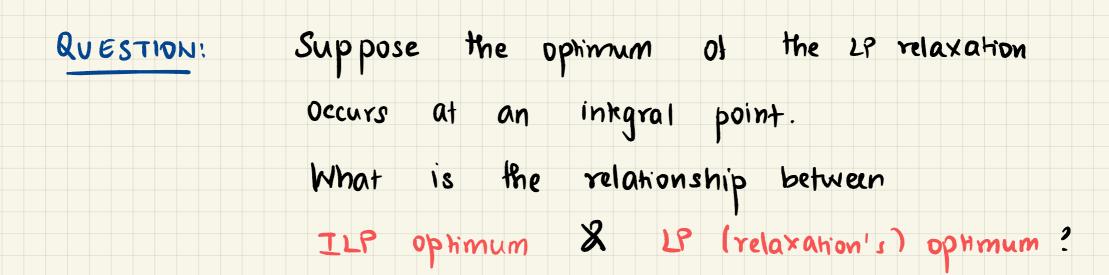




QUESTION: Suppose the ophinnum of the 2P relaxation Occurs at an integral point.

What is the relationship between

ILP ophimum & LP (relaxation's) optimum?



Answer: ILP Oprimum = LP optimum.

- ILP optimum < LP optimum

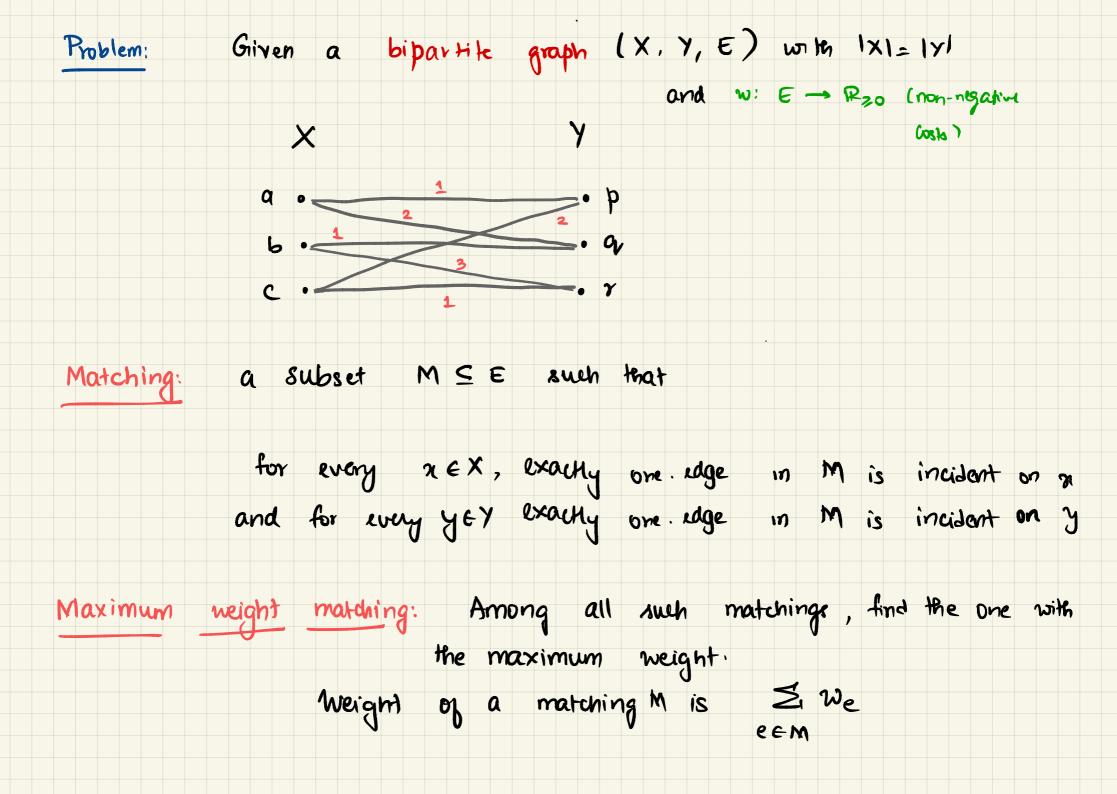
Le optimum occurs at an integral point n*

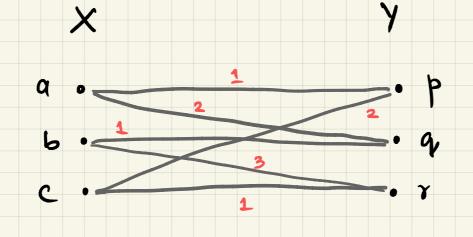
=) ILP optimum $\geq C(x^*)$ [cost at x^*]

=> ILP optimum = LP optimum

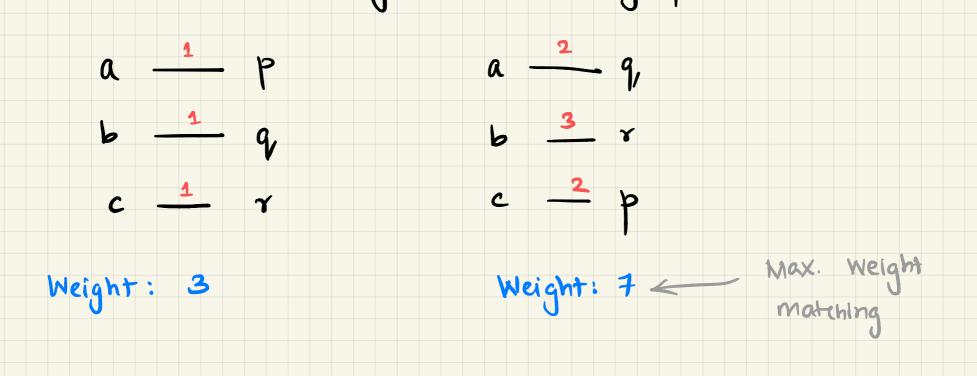
Maximum Weight Matching in

Bipartite graphs





There are 2 matchings in this graph.



EXERCISE: Write an ILP for the maximum

weight matching problem.

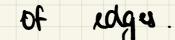
Given: a bipartite graph (X, Y, E) with 1x1=(y)

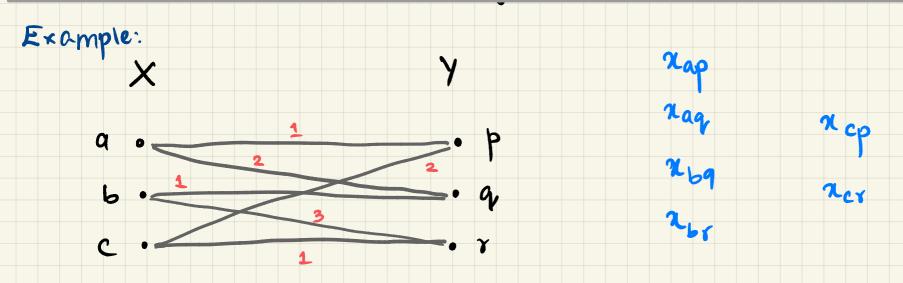
and weight function w: E I Rzo

ILP for Maximum Weight matching

Step 1: Variables

Since we need to choose a subset



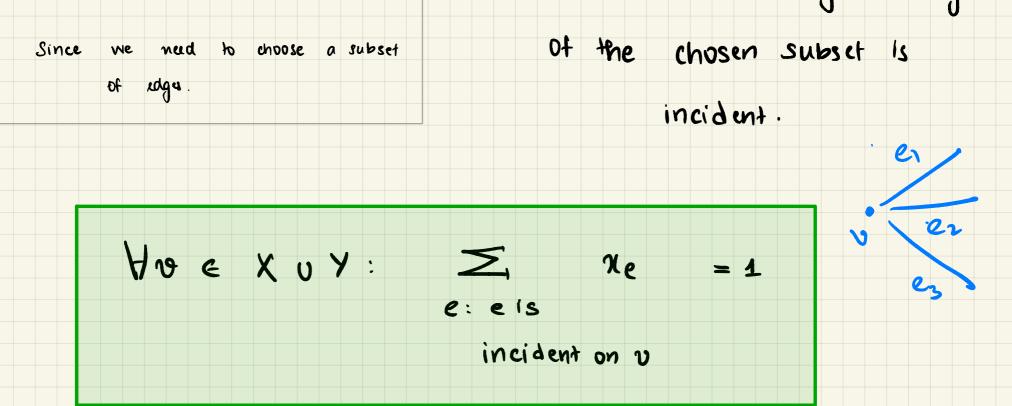


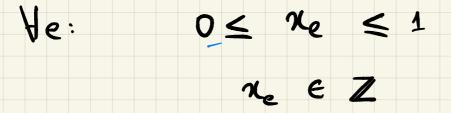
ILP for Maximum Weight matching

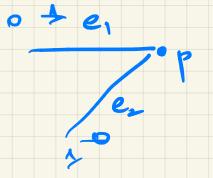
Step 2: Constraints

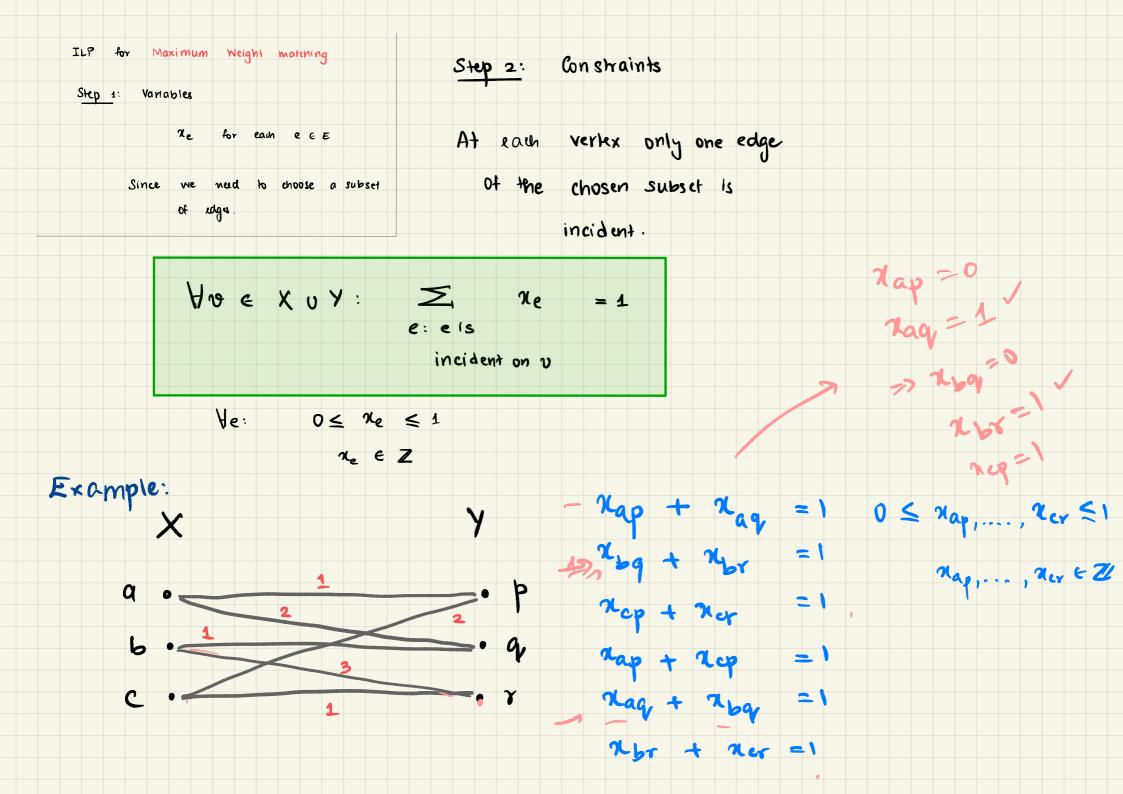
Step 1: Variables

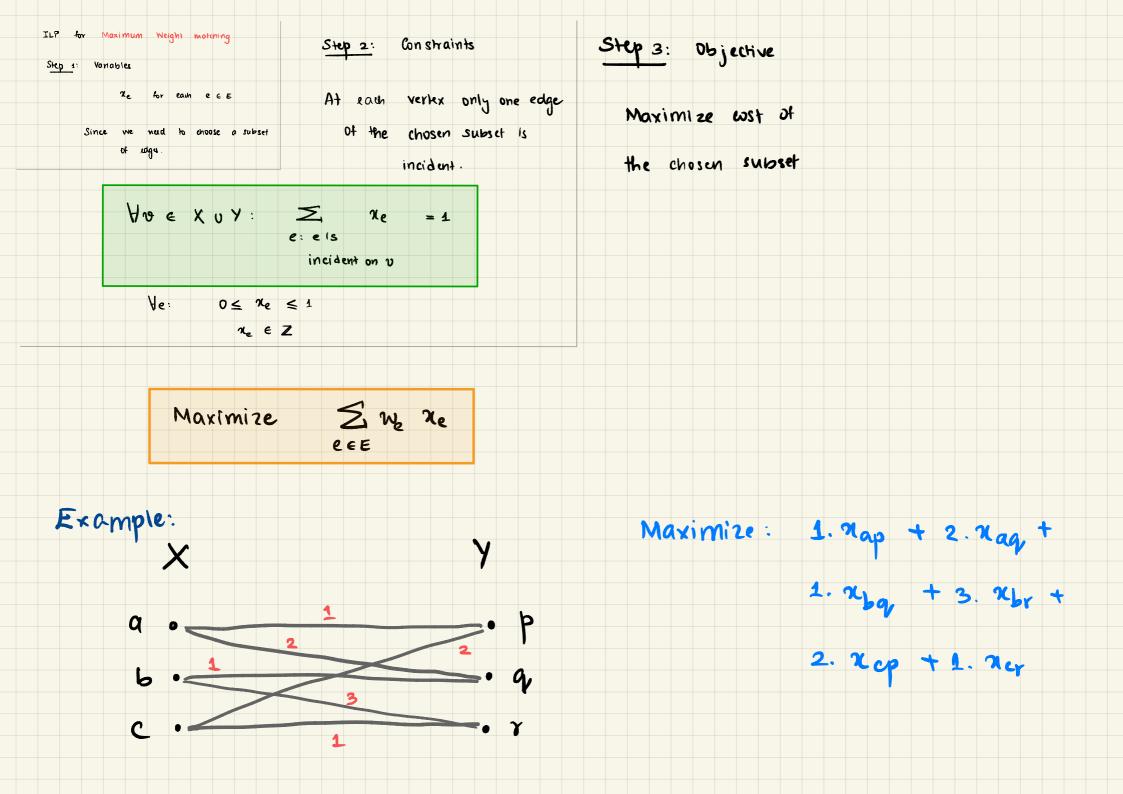
re for each e E At each vertex only one edge



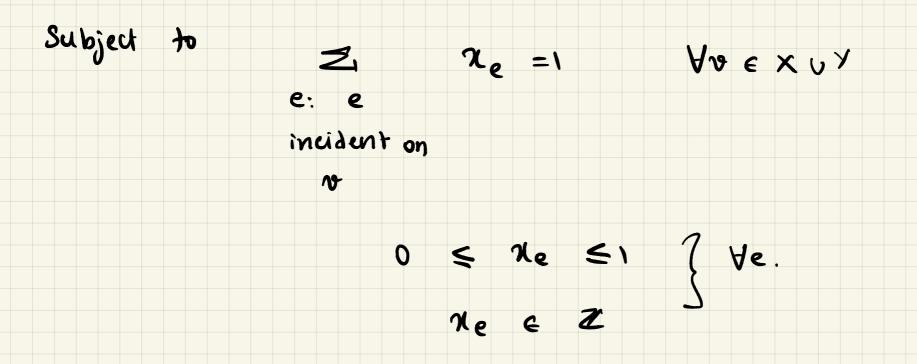








ILP for maximum weight matching:



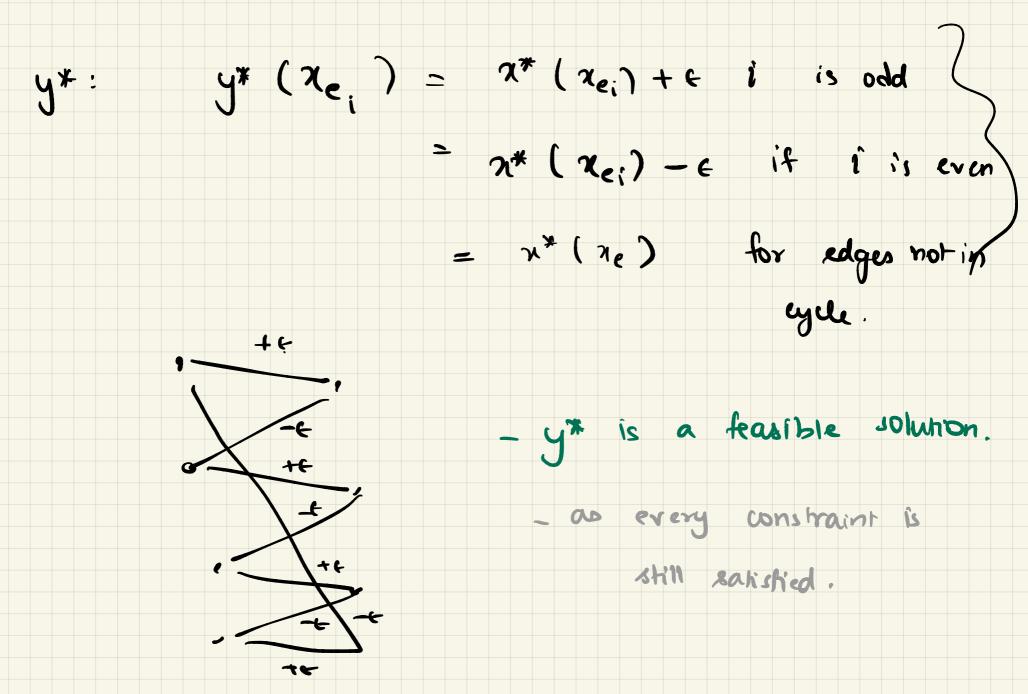
Claim: ILP optimum = LP optimum for above LP.

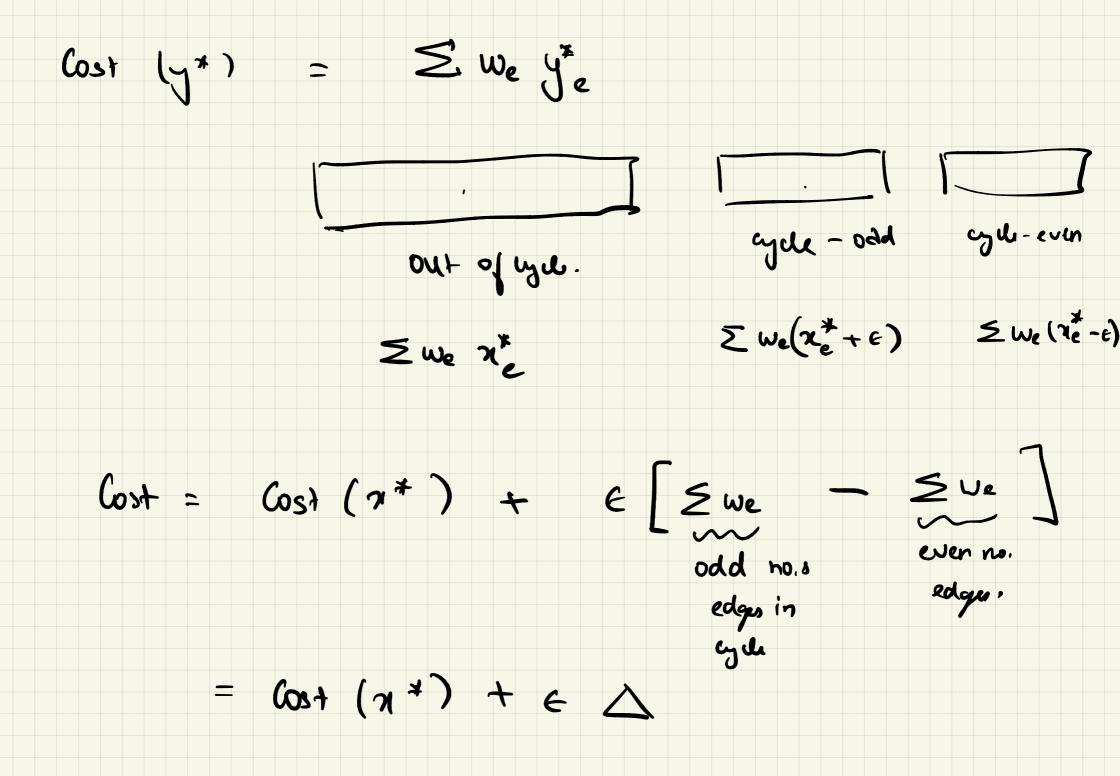


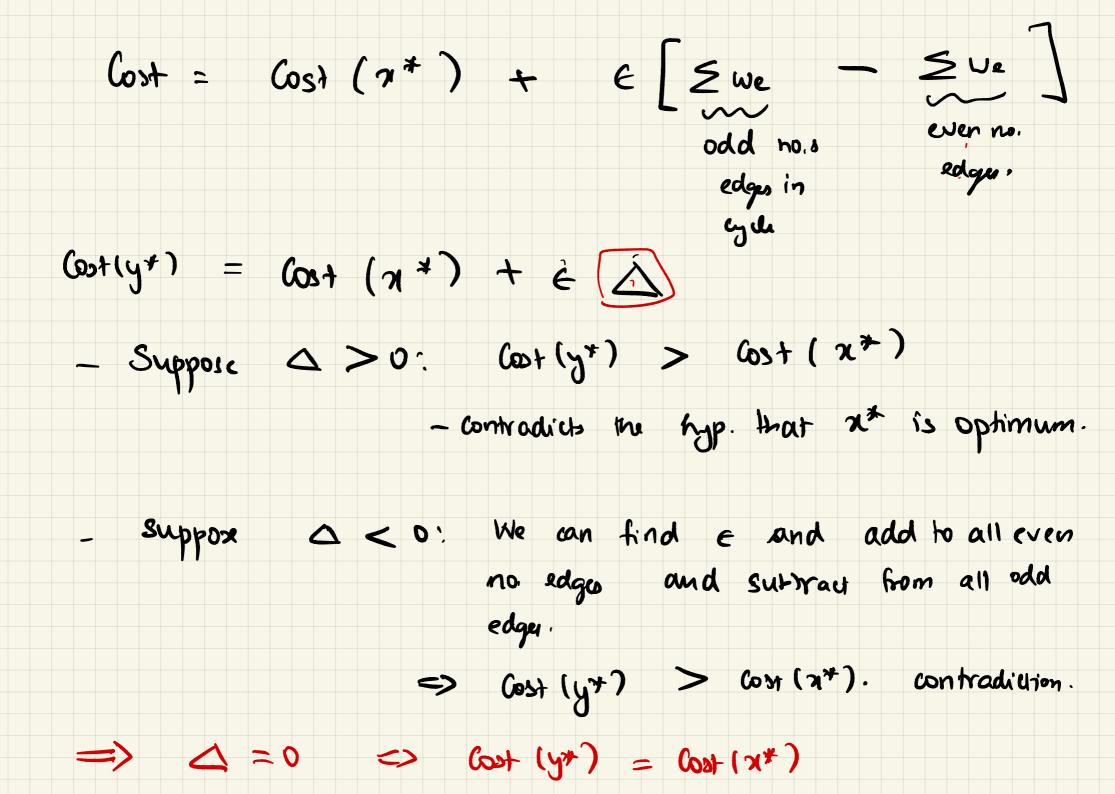
Idea of proof: Suppose x* is optimum of LP, and has non-integral values.

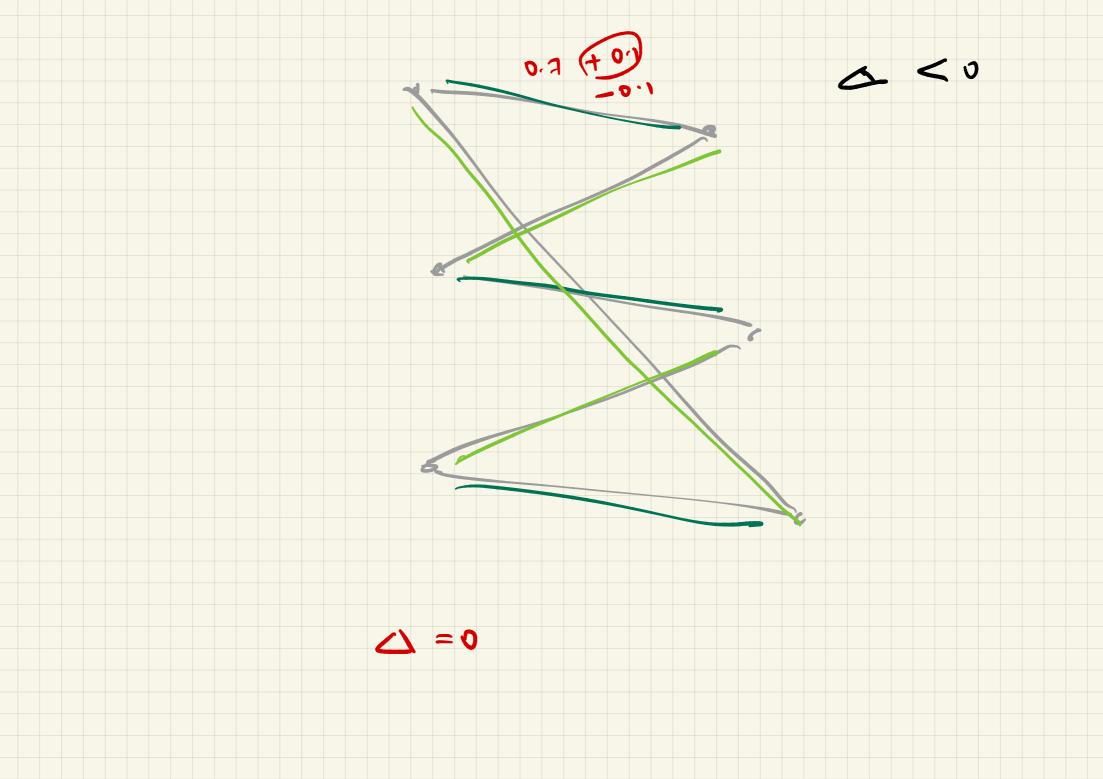
We can find y^* s.t. $cost(y^*) = wst(x^*)$

and y* has smictly fewer non-integral coordinates.









(0)+(y+)= Cos+1x+)

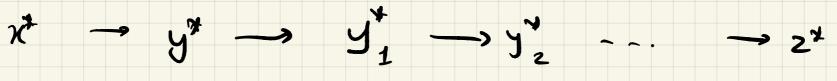
- If we choose the E with the maximum modulus,

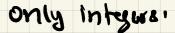
atleast one of the coordinates becomes integrel

Y*

X*

=> y* will have smictly ferrer non-integral coordinate.





- In each of the transformations, the cost does not change,

=> From the LP optimum, we can get an integral

valuation with the same cost.

=> ILP optimum = L9 optimum.

- -1. Solving an LP: intuition in 2D
- -2. Integer linear programs (ILPs)
- -3. LP relaxations of ILP:
- -4. Maximum weight matching

References: Chapters 1 & 3 Of

Understanding and Using Linear Programming Jiři Matoušek, Bernd Gärtner