
LINEAR OPTIMIZATION

LECTURE 19

Recall : PRIMAL - DIAL nLGMIMS : I oe template

optimization problem

1
Frame it as an ILP

t
.

Generate an LP from the ILP
,
and write its dual

we now have a primal - dual pair . Let us say they
are in the following form (this is not necessary , we

choose this for illustration)

Primal Dual

min Ctx max b'y

subj . to An Sb subj. to A' y £
C

n Zo y
30

↳

How do inte find

the optimum combinationally?

PRIMAL - DIAL nLGMIMS : I Rent template (contd .)

Initialization : Find a feasible soln .
yo of the dual . Typically

for the problems under consideration
,
c 30 and

hence
g=o

will be feasible .

Iterative Iep : After the ith step , say we have a feasible soln.fi .

Let (AT)
'

denote the rows of dual that are tight at yi :

(At) 'yi = c
'

c
'
is c restricted to rows of [A- 7

'

.

- If possible, find a g- S.t.

y
cosy aty

> °

adding
MY- to ⇒ → (A)

'

g- So and big > 0

multiple ¥Hy+tñ
y
wept

- and find an C- so that :

+ # 1) lyi
-1 'T)

Alyi + c-g-) SC jy.ee#I5
=

d
+

£0

(we find
the

maximum
"" Set : Yi -1 , =

Yi + c-g-G)

Termination:
-

When the iterative step cannot be performed anymore .

Optimality: From the final y that is obtained at the end of

the algorithm, generate a primal solution N and

use either complementary slackness or strong duality
to show that X and y are Optima of primal ☒ dual

resp .

PRIMAL - ALGORITHM 1=0-12 MINIMUM SPANGTREES_

Minimum spanning tree problem (MST):

Given an undirected graph G = IX. E) with

positive costs on edges c : E → IN
>o

-

Assume that: - G is connected

- different edges have different costs

Find a spanning tree of G with minimum cost .

spanning tree : - a subset of edges which forms a tree and which

covers every
vertex lie

, every vertex has one of the

edges incident on it in the subset)

weights not illustrated)

Tody's . -goal : Design a primal - dual algorithm for NIST .

Reference:
-

Lectures 20 and 21 from Prof. Sundar 's notes .

Part: Some graph theoretic observations

We want to pick a subset of edges s from the graph that

satisfies two conditions :

- Ii) S forms a tree

- cii) s covers every vertex

Our strategy would be to pick a subset s that forms one

connected component .
• ①

⑨

.

⑧

But then , this connected component may contain cycle .
This is rather we will use the objective function . Since we

have assumed ce > 0 for all edges e
, the minimum

among
all such subsets would contain no cycles .

Find a subset of edges which forms one connected component
and has the minimum cost .

We will now look at a criterion for ensuring connectedness .

Theorem: A graph is connected
-

iff

for every partition IT of its vertices
,
there are

3 IN -1 edges that cross the partition

An edge crosses a partition if its endpoints are in different parts .

a

Partition; IT : { 1,23 { 33 {4,5 }

Edges that cross Te : { b
,
c
, e , d , f }

The proof of the above theorem is left as an exercise .

we will illustrate the theorem on some examples .

4
•

,

disconnected

IT = { 1 , 2,3 } { 4,53

.

!
No. of cross edges = 0

5

z•# • 4

- connected .

Here are some partitions :

IN -1

7

⑨÷Y •④ # cross edges : 433

1171 - l

→

F
* cross edges

:S .z ,

A- cross edges : 1>-1

Party. An ILP for NIST

We use the criterion that we described in Part 1
.

Variables : Re for each e c- E

constraints : ensure that the subset picked satisfies the

partition condition .

IIP: min Ice Ne

EEE

subj . to :

E. Me 7 1171 -1 for every partition t
e crosses T

Ne 30

ne El } He c- E

ne integral

Notice that each partition gives rise to a constraint . too
eg.

z

.

•
4 gives

: Nb + Nc + na 3 100
There are exponentially many constraints . the will not solve this

LP directly . .

Getting an Lp from the ILP:

IIP: min Ice Ne

EEE

subj . to :

E. Me 7 1171 -1 for every partition t
e crosses T

Ne 30

Me £1 } He c- E

ne integral

- Remove integrality constraint

L min Ice Ne

EEE

subj . to :

E. Me 7 1171 -1 for every partition t
e crosses T

Ne 30

ne I 1

Further
, we can remove the Re fi constraint

.

a
Ee: Shane that for every solution ñ of above LP

, changing
any Re larger than 1 to I will give a feasible som.

with smaller cost .

Party : Primal and Dual

PRIMAL : DUAL :
- -

Min Ece ne Max I 11th -17 ytCEE TI

E ne 3 IN -1 kt £ yr, I ce te
e crosses te

e crosses t

me 30
yp, 30 Ht

f.
a variable

y,
for

every partition
t .

Part : Primal : dual algorithm : the iterative step .

0

As an initialization . we will set ya
-0 for all partitions IT .

For the iterative step , we work with a given feasible soln . Yi
Let Ei be the set of edges for which the dual constraints are

'

tight for y
'

.

We first need to find a. g- S.t.

E Jr £0 He c- Ei and £11M - 1) Jr > o
e crosses Ts Ts

-

For the iterative step , we work with a given feasible soln . Yi
Let Ei be the set of edges for which the dual constraints are

•

tight for y
'

.

We first need to find a. g- at .

£ Jr £0 He c- Ei and £11M - 1) Jr > o
e crosses Ts Ts

-

For simplicity ,
we will choose a Jr in which exactly

one partition t will have 1 and others will have 0 .

Consider the graph 9=-111 , Ei)

•
•

•

\
• ÷
1.-•

.

✓ • •

•

\
.

The edges Ei divide the vertices into connected components .

•

⑧

⑨ ⑨

The edges Ei divide the vertices into connected components .

•

⑧° ⑨ ⑨

- Let Ri be the partition given by the connected components
in Gi

.

Define g- to be the vector with Jai =L and

- Jig = 0 HR =/ Ii

- When there are at least two components in Gi
,
Kie have

(Hit - 1) Jai > 0 - satisfying the cost criterion .

- No edge e c- Ei crosses ti . Therefore :

EJ, =D He c- Ei -

satisfying the feasibility criterion .
e crosses to

We now have g- .
The next step is to find C- sit .

I fyi + c-g-) ⇐ ce te .

e. crosses R M M

We now have g- .
The next step is to find C- sit .

I fyi + c-g-) ⇐ ce te .

e. crosses to

↳ Esses
,

Yni + c- Esses;Jn
He

- Let Ci be the set of edges that cross Ri (shown in green below)

Ei

"

¥
- Edges out of Ci do not cross Ri . Therefore by our

construction of J ,

E, J, =0 for all e & Ci
.

e crosses t

Hence we need to find an c- sat .

£
, fyi + c- Y) Ice for all e c- Ci

R M

e crossest

ien
,
£ Yi + c- £ Ñ E ce for all eeci
e crosses te

R
ecrossests

"

Hence we need to find an c- sat .

ii
"

£
, (y

"
+ c- F) E ce for all e c- Ci

µ

.

.É!
i

?
e crossest

" "

Y

n

,

o

it 0° ien
,
£ Yi 1- C- £ Ñ E ce for all eeci

v e crosses te
t

eerossests

"

s

ie, I, Yi + c- . 1 £ Ce for all e c- Ci
TT

e crosses R

c- = min { ce - Z y;]
e crossest

e. c- Ci

PRIMAL - DUAL ALGORITHM:
- - -

- Assume y =O ft . Notice that Kie do not want

to explicitly write this out since

there are exponentially many of them .

- Iterative step: At the ith iteration : let Ei denote the set of

edges that are tight for yi .

- Find the connected components of Gi
= Hi Ei) .

Let Mi be the partition given by these component .

- Increase yiq until some edge becomes tight .

- Termination: Previous step terminates Keher the tight edges
form one connected component .

trample: B
b-

:
7

E

¥

÷÷¥% .

←
⇐ $ 9=14%7

To

*
?⃝ E

,
= { Ac }

2- .

yno-iy.ie
-
-
-

£
&

"

g¥ E = { Aa AB}
2

3" +
g.me

-

-
-
-

£
"

✗Jin

* "" * ⇒

yao

92
3

ii. ?⃝

•

←
" "" * a.⇒

✗3

§
'

Eq = { AG AB, GF, DF}

/

The

"

"""
"" """"

I

1^5

Eg = { Ac , AB , GF , DF , BE }

1

BE

a
,

→

F-
+
= { Ac , n-B.BG ,

af , DF , ¥-3

4

Minimum spanning Tree

summary :

PRIMAL - DUAL ALGORITHM:
- - -

- Assume y =O U→ . Notice that Kie do not want

to explicitly write this out since

there are exponentially many of them .

- Iterative step: At the ith iteration : let Ei denote the set of

edges that are tight for yi .

- Find the connected components of Gi
= Hi Ei) .

Let Mi be the partition given by these components .

- Increase Ying until some edge becomes tight .

- Termination: Previous step terminates Keher the tight edges
form one connected component .

Gss : Why is this primal- dual algorithm correct ?

¥1b : Is the running time a polynomial !

We will see this in the next lecture
.

This primal
- dual

algorithm in fact mimioks Kruskal 's algorithm for hast .

