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COMBINATORIAL OPTIMIZATION
- -

An optimization problem where Kie have to pick the optimum
from a finite set of options

Eg: - shortest path in a graph
-

minimum spanning tree

- minimum cost matching
- minimum weight vertex cover

÷
- A combinatorial algorithm is a procedure that searches through
the finitely many solutions to get to the optimum . Typically
there are exponentially many possibilities .

↳
The goal is to use LP theory to design
efficient combinatorial algorithms

At times
,
the designed algorithms give exact answers

,
and in

other cases , we get approximate answers
.

- We will make use of a primal
- dual pair to arrive at the optimum .

So these algorithms will be called primal- dual algorithms .

- We next give a generic template to design a primal
-dual algorithm .



PRIMAL - DIAL nLGMIMS : I g template

Optimization problem

1
Frame it as an ILP

t
.

Generate an LP from the ILP
,
and write its dual

we now have a primal - dual pair . Let us say they
are in the following form ( this is not necessary , we

choose this for illustration)

Primal Dual

min Ctx max b'y

subj . to An Sb subj. to A' y £
C

n Zo y
30

↳

How do inte find

the optimum combinationally?



PRIMAL - DIAL nLGMIMS : I Rent template ( contd . )

Initialization : Find a feasible soln .
yo of the dual . Typically

for the problems under consideration
,
c 30 and

hence
g=o

will be feasible .

Iterative Iep : After the ith step , say we have a feasible soln.fi .

Let (AT)
'

denote the rows of dual that are tight at yi :

( At ) 'yi = c
'

c
'
is c restricted to rows of [A- 7

'

.

- If possible, find a g- S.t.

y
cosy aty

> °

adding
MY- to ⇒ → (A)

'

g- So and big > 0

multiple ¥Hy+tñ
y
wept

- and find an C- so that :

+ ☒ 1) lyi
-1 'T)

Alyi + c-g- ) SC jy.ee#I5
=

d
+

£0

Set : Yi -1 , =

Yi + c-g-

Termination:
-

When the iterative step cannot be performed anymore .

Optimality: From the final y that is obtained at the end of

the algorithm, generate a primal solution N and

use either complementary slackness or strong duality
to show that X and y are Optima of primal ☒ dual

resp .



Optimal son . for ILP ?
- -

The primal - dual algorithm terminates with an optimal solution

for the LP .

- Typically we obtain an integral soln . to the primal .

- We then need to analyze whether this coincides with

the optimum of the initial KP or it gives some

approximation .



Primal - dual algorithm for the shortest paths problem:
- - - -

- - - -

Protein: Given a directed graph G= CX
, E) with

non -negative weights on edges c : E - ce
,

and 2 vertices 's
'

and
' t

'

.

=
, path with minimum weight

Find the value of the shortest path from s to t .

Assume s has only outgoing edges and t has only incoming edges .

Example: 1.¥-3
ez

s e.f • t

③ ¥& ÷,
es

shortest path: ez es es ez value : 6



Part : Representing the graph

1.¥-3

s e.µ¥•t¥: ¥&

:

Incidence matrix:

s + I +1 O O
O O O O

l::::::1 - I 0 + I +1 O O O O

O - I - I 0 + I 0 0 0

3 O O O - I 0 - I 1- I 0

4 O O O O - I + I 0 + I

t

-

Edges are columns

- Vertices are rows ( Edge j is outgoing tomi )

- cell ij is +1 if → i

is -1 if
→ f- i

ledge j is incoming Ioi)
0 otherwise



^

Par Writing the ILP for SP
.

A path from S to t is a subset of edges

s → . - - . t

Va: Variables of Our KP are of the form Me for each edge e c- E.

tones : - Constraints should be designed so that each feasible solution gives a

path from s to t .

g.)
°

→ o- •
→ •

→
• t

A subset of edges P is a path from s to t Iff:

-

there is exactly one outgoing edge from s in P

- for every vertex v¢{sit } in the path , the number of

incoming edges to v in P equals no . of outgoing edges from vine
- there is exactly one incoming edge to t in P

- Assume the given graph has
'

n' edges and 'm '

vertices .

Let A be the incidence matrix .

Above constraints can be represented as :

+ I → row corresponding to sA Ze ,

/
=

.

{ "": :

seen row corresponding lot



s.IE?::-::::--E:f.o*.ts•②¥s 1 -1 0 +1 +1 0 0 0 0

a { o - , , o + , o o o

&
3 O O O - I 0 - I 1- I 0

4 O O O O - I + I 0 +1

I t o o o o o o - I - I

↳
A1

+e-

v s : Ne
, + Nez = I row of

"
"

"

""

" ""
" "

°

" "" " °
→

*
" " "

&
°

to
+en Nez

0
"

" "
es
- " "

- "" = ° ( I | = | ?+
it

y
,

3 : Nez - Ney - Ney =°

4 : Neb 1- Neg
- Neg =D 0

tent
" "

"

"

t : -ng -

neg = -1
% →

→ row of

+
eat
"

t

objective Objective is to minimize cost : minimize Scene
EEE

Final ILP :

-

Minimize Ece ne
e EE

subject to : An = ( Eg)
N E {0,13
e

feet

-



Final ILP :

-

Minimize Ece ne
e c-E

subject to : An = (¥;)
Nee {0,13 He

From ILP to LP:
-
-

- We will relax the integrality constraint . This gives.

0 £ Me £ 1

- Now
,

We remove the see si constraint as well

It can be proved
-

that for the final LP that INE obtain , there

is an optimum that assigns either 0021 to each ne . We will not

worry about this now and wait for the final answer of the

primal
- dual algorithm . At the moment

,
we have LP:

minimize Ece ne

eEE

subject to : An = o

I'
÷

N 30

Moreover : LP - optimum £ ILP - Optimum .



Parts Write the dual

Exercise : Write the dual of the LP :

min Scene
EEE

subject to An = [ ¥):
R 30

Obtained from our running example :

• t÷÷¥*
.

e.⑤
¥:es

ys.s.IE?::-;::-1 - I 0 + I +1 O O O O

yn
z ( o - , , o + , o o o

Yz 3 O O O - I 0 - I 1- I 0

ya
0 O O O - I + I 0 + i

t o O O O O O - l - l

Yt ↳
A

r



Exercise: Write the dual of the LP :

min Scene
EEE

subject to An = [ ¥
,
]

R 30

Obtained from our running example :

"÷

:|:* .
s ¥-1: ¥
:

ysxs.IE?I;-e;;;i:::t-IHy , ✗ 1 - I 0 + I + I 0 0 0 0

yen
, , / o - , , o + , o o o

yz
+

3 O O O - I 0 - I + I 0 I,
ya

✗ 4 O O O O - I + I 0 + I

g.+
✗ t o O O O O O - I - I 2 )

↳
A

dual : Max ys
-

yt

subj. to : .gs
-

y ,
£ 2 → Ice

,)

Ys - yz SI

Yi - ye C- 3

:

Ya - Yt £5
-



Primal : DII :

min Scene Max Ys -

Tt
e c- E

An

=/ ¥ ) Yu - Yu f Cui, for all edges
u u

-9

N 30

Parts : The iterative step in the primal- dual algorithm

At the start of the iterative step , there is a feasible

som .

y
Of . the dual .

Let T= { e : u u I ya - yo = can }

These are the dual constraints that are light for g.

What we require ?

A dual feasible son . g- sit .

1) Ju - Ju Eo t edges e :u c- J

and 2) g- s - g- t > 0

↳ Design
a combinatorial algorithm to find this



Consider the graph with the edges from 3 marked in orange .

G

:→÷i -

•

t
→
→

•

→
.

\

⇐ i : suppose there is a path from s to t consisting
of orange edges lie , edges from 3)

s→→÷→

Claim : There is no g- satisfying the required conditions
.

PN0 Suppose the path of 3 edges from s to t is:

S - u, → Uz → . - . → Up→ t

condition (A) requires Ys - Yu , £0

Yui - Yui, so
titi Ek- I

Yk - Yt £0

⇒ Ys - Yt £0 . Hence condition

cannot be satisfied .



Cas There is no path
from s to t via J edges .

→ →

q

Let 14 = { v c- Y l there is a path from v to 1- via

I edges }

Here is a g- that satisfies (1) and 12)

The ) = {
° if ue Vt

condition lil

1 Otherwise

Ju -Ju go
for

ur c-
J

Condition G) requires Ju - Ju so Hu→v c- 3

Now for each U→✓ in J (orange edges?

- either UE Vt and v c- Vt - Ju =
° iyv-oiyu-Y.ro

- or u 4- Vt and V44 - Ju =\ , 5. ✓=\ , Ju-8rad

- or u c-Vt and ✓ Ef Vt Ju -0 , Jv=1
Ju-Ju so



Consider an arbitrary edge e : u - u

- @ c- Vt and vevo) or ( Ucf Vt and v4 Vt

↳ Ju - Ju - O

- u c- Vt and Ucf Vt : Tfa -Jv = -1 to

- u ¢ He and u c- Vt : Ju - Ju = 1



Pictorially , g-
looks like this :

1. --
→&÷÷÷¥÷÷
• ,

•
•
-

→ 0

\
• • 1

Green dotted edges are
"

border
"

edges that lead into

a vertex of Vt .

The next task is to find e s - t :

Y + EJ is feasible for dual

ie
, ya - yo + c- Ija - Ju) £ Cav

This condition is non - trivial only when u ¢1k and • c- Vt
.

- such edges u→v are not in 3
,

hence ya - yo < cure

By construction : Ju -Ju =L

Pick c- = min [Cao - Kyu-yr?]
u 4- Vt

v c- Vt



Primal - dual algorithm :

-
- -

Initialization: Set all Yu
to 0

-

Iterative :
- Consider the graph

G'= (HT) of

light edges .

-

In this graph find all vertices that can reach t
↳ call this Vt

- Increase the value of Yu 4- Ve '

until some edge becomes tight .

-

stop when s can reach t in G !

Notice that at each iterative step , one new edge become

tight . Hence the algorithm terminates
.

Proof of optimality :
-

Let y be the final solution . Let s be the tight edges .

- We know there is a path IT from s to t.ua sedges

consider a primal som . N defined as :

Ne = 1 if e is in the path t
= 0 otherwise



clearly this soln.is feasible since it is a path and it

satisfies all constraints of primal LP .

Moreover:

Cost at n = & Can

(a) 4) c- IT

= £ as ya - ya,
-_ cuu

1411)e+,
Ju
- Yr

=

Ys
- Yt

= Cost at y .

=
. We have a primal soln . n and a dual solmy

St . Cost ( primal son . ) = Cost ldual Sohn .)

By duality theorem , n should be primal optimism and

y is dual optimum .



Final argument :-

Recall that our primal is the LP relaxation of the original KP .

So optimum ( Lp) £ Opt . (Kp )

However our LP optimum is a feasible soln . not up .

This

shows that LP optimum = KP optimum .

Hence the Solh . we get is indeed the

shortest path .

Recall the final primal- dual algorithm :

- - -

Initialization: Set all ya
to 0

-

Iterative step : - Consider the graph
G'= (HT) of

-
-

light edges .

-

In this graph find all vertices that can reach t

- Increase the vveight of all the other edges
until some edge becomes tight .

-

stop when s can reach t in G
'

↳
This mimichs Dijkstra 's algorithm .



Examine: "
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Weight of shortest path


