LINEAR OPTIMIZATION

LECTURE 18

COMBIN ATORIAL OPTIMIZATION

- An optimization problem where we have to pick the optimum from a finite set of options
- Eg: shortest þætti in a graph - minimum spanning tree - minimum cost matching - minimum Weight Venex ævez
- A combinatorial algorithm is a procedure that searches through the finitely many solutions to get to the optimum. Typically there are exponentially many possibilities.
 - L The goal is to use LP theory to design efficient combinatorial algorithms
 - At times, the designed algorithms give exact answers, and in other cases, we get approximate answers.
 - We will make use of a primal-dual pais to arrive at the optimum. So these algorithms will be called primal-dual algorithms.

- We next give a generic template to duign a primal-dual algorithm.

PRIMAL - DUAL ALGORITHMS: a generic template Optimization problem Frame it as an ILP Generate an LP from the ILP, and write its dual We now have a primal-dual pair let us say they are in the following form (this is not necessary, we choose this for illustration) Primal Dual min c^tx max by subj.to A'y≤c y≥o subj. to Are 56 230 How do we find the optimum combinatorially?

PRIMAL - DUALALGURITHMS : a generic template(contail)Initialization:Find a feasible solo. yo of the dual. Typically
for the problems under consideration,
$$c \ge 0$$
 and
hence $y=0$ will be feasible.Iterative stp:After the it sup, say we have a feasible solon y:
 $det (A^T)'$ durok the rows of dual that are tight at y:
 $(A^T)'y: = c'$
 c' is c restricted to rows of $(A^T)'$.If possible, find a \overline{y} st. $(A^T)'y: = c'$
 c' is c restricted to rows of $(A^T)'$.If possible, find a \overline{y} st.
 $(A^T)'y: = c'$ $(A^T)'y: = c'$
 $c' is c restricted to rows of $(A^T)'$.If possible, find a \overline{y} st.
 $(A^T)'y: = c'$ $(A^T)'y: = c'$
 $(A^T)'y: = c'$ If possible, find a \overline{y} st.
 $(A^T)'y: = c'$ $(A^T)'y: = c'$
 $(A^T)'y: = c'$ If $(A^T)'y: = c'$
 $(A^T)'y: = c'$ $(A^T)'y: = c'$
 $(A^T)'y: = c'$ If $(A^T)'y: = c'$
 $(A^T)'y: = c'$ $(A^T)'y: = c'$
 $(A^T)'y: = c'$ If $(A^T)'y: = (A^T)'y: = (A^T)'y: = c'$
 $(A^T)'y: = c'$ $(A^T)'y: = c'$
 $(A^T)'y: = c'$ If $(A^T)'y: = (A^T)'y: = (A^T$$

Ophimal soln. for ILP? The primal-dual algorithm terminates with an optimal solution for the LP. - Typically we obtain an integral soln. to the primal. - We then need to analyze whether this coincider with the optimum of the initial)2P or it give some approximation.

Primal - dual algorithm for the shortest paths problem: Problem: Given a directed graph G = (Y, E) with non-negative weights on edge C: E - ce, and 2 vertices `s' and `t'. path with minimum weight Find the value of the shorked path from s to t. Assume s has only outgoing edges and t has only incoming edges. Example: ٩ 2 t S Shortest path: e2. e5 e6 e7 Value: 6

Part 2: Writing the ILP for SP. A path from s to t is a subset of edges $s \xrightarrow{e_{i_1}} \xrightarrow{e_{i_2}} \xrightarrow{\cdots} \xrightarrow{e_{i_4}} t$ Variables of our up are of the form re for each edge e E E. Constraints - Constraints should be designed so that each teasible solution gives a path from stot. A subject of edges P is a path from s to t iff. - there is exactly one outgoing edge from s in P - for every verkx v & [s,+3 in the path, the number of incoming edges to v in P equals no. of Outgoing edges from v in? - there is exactly one incoming edge to t in P - Assume the given graph has `n'edges and `m' vertice. Let A be the incidence matrix. Above constraints can be represented as: » row corresponding to s $A \begin{bmatrix} z_{e_1} \\ z_{e_2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ z_{e_1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ -1 \end{bmatrix}$ row corresponding to t

Frimal:Qual:min
$$E \leq e \neq e = 1$$
 $n \leq y \leq -y = y = 1$ $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $y = y \leq c_u$, for all edge $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $y = y \leq c_u$, for all edge $a \equiv 0$ $a \equiv 0$ Part 4: The iterative step in the primat dual algorithmAt the start of the iterative step, there is a hasible $x = 0$ At the start of the iterative step, there is a hasible $x = 0$ At the start of the iterative step, there is a hasible $x = 0$ At the start of the iterative step, there is a hasible $x = 0$ At the start of the dual. $det = \exists e : u \subseteq w \cup v \mid yu = yu = c_uv \exists$ These are the dual constraints that are hight for y.What we require?A dual feasible soln. $y = st$. $i) = yu = yu \leq 0 + cdgu = e : u \subseteq w \cup v \in J$ $and = 2$ $y = -yu > 0$ $u = xu = y = y = 0$ $u = xu = y = y = 0$

Consider the graph with the edges from J marked in orange.
G
G
G
G
G
Care 1: Suppose there is a path form S to t consisting
OI orange edge (ie, edges from J)
Claim: There is no
$$\tilde{g}$$
 satisfying the required conditions.
Proof: Suppose the path OI J edge from S to t is:
S — $u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_R \rightarrow t$
Condition (1) requires $y_{E} - y_{U_1} \leq 0$
 $y_{E} - y_{L} \leq 0$
 $y_{E} - y_{L} \leq 0$
 $y_{E} - y_{L} \leq 0$. Here condition (2)
cannot be satisfier.

Consider an arbitrary edge
$$e: u \rightarrow v$$

 $-(u \in V_t \text{ and } v \in V_t)$ or $(u \notin V_t \text{ and } v \notin V_t$
 $\rightarrow J_u - J_v = 0$
 $- u \in V_t \text{ and } v \notin V_t: \quad J_u - J_v = -1 \leq 0$
 $- u \notin V_t \text{ and } v \in V_t: \quad J_u - J_v = 1$

Clearly thic bolh is healible since it is a path and it
satisfies all constraints of primal LP.
Moreover:
Cost at
$$\alpha = \sum Cuv$$

 $(u,v) \in \pi$
 $= \sum y_u - y_u$ as $y_u - y_v = Cuv$
 $(u,v) \in \pi$
 $= (s - y_t)$
 $= (s - y_t)$
 \therefore We have a primal solut α and a dual solut y
 At . Cost (primal solut) α and a dual solut y
 At . Cost (primal solut) α and a dual solut y
 y is dual optimum and y is dual optimum and y is dual optimum.

Final argument: Recall that our primal is the LP relaxation of the original lut. SO oprimum (LP) ≤ opt. (ILP) However our 2P optimum is a frankle soln. of ILP. This shows that is optimum = 110 optimum. Hence the soln. we get is indeed the shortest path. Recall the final primal-dual apprixitm: Initialization: Set all yu to o Iterative <u>step</u>: Consider the graph G'= (V, J) of tignit edge. - In this graph find all vertices that can reach t - Increase the weight of all the other edge until some edge becoma hight. - stop when s can reach t in G' La This miniche Dijkstra's algorithm.

