LINEAR OPTIMIZATION

LECTURE 11

25/05/2024 Lecture 11: Bland's rule In the last lecture, we have shown that when the simplex method terminatus, it does so with a correct answer. But: does Simplex terminate always? - No. We have seen an example previously where the pivoting did not change the birs. This happens when several bases correspond to a single bfs. This degenerate pivoling step may potentially lead to cycling. We will now see a pivoking rule that prevents cycling. Bland's rule: Assume variables are $\Xi_{1}, \pi_{2}, \dots, \pi_{n}$ 3 basic x_{k_1} $p_1 + q_{k_1} x_{k_1} + \dots + T_{cbl eau} B$ $Van \cdot x_{k_m}$ p_m non - basis $z = z_0 + x_1 x_{k_1} + \dots + T_{cbl eau} B$, non-basic vars. N Choice of entring / If there are several possibilities choose the variable with the leaving variable smallest index

Example: Maximize 21 - 272 + 72 Subject to: $\chi_1 + 2\eta_2 + \chi_3 \leq 12$ $2n_1 + n_2 - n_3 \leq 6$ $-\eta_1 + 3\eta_2 \leq 9$ x₁, n₂, n₃ ≥ 0 - Add slack variable ng, x5, n. $\chi_4 = 12 - \chi_1 - 2\chi_2 - \chi_3$ $\eta_{5} = 6 - 2\eta_{1} - \eta_{2} + \eta_{3}$ $\pi_{1} = 9 + \pi_{1} - 3\pi_{2}$ $\chi = \chi_1 - 2\eta_2 + \eta_3$ x, 1 x, 1 x, 1 $\lambda_{4} = 9 + \frac{1}{2}\lambda_{5} - \frac{3}{2}\lambda_{2} - \frac{3}{2}\lambda_{3}$ $\begin{array}{rcl} n_{1} & = & 3 & -\frac{1}{2} n_{7} & -\frac{1}{2} n_{2} & +\frac{1}{2} n_{3} \\ n_{1_{0}} & = & \frac{12}{2} & -\frac{1}{2} n_{5} & -\frac{7}{2} n_{2} \end{array}$ $Z = 3 - \frac{1}{2} \frac{1}{3} - \frac{5}{2} \frac{1}{2} + \frac{3}{2} \frac{1}{3}$ ↓ 23 ↑ 24 ↓ -----

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

Any other equation would look like this: In B, $\chi = p_{\ell} + \dots + \beta \chi_{\nu_{1}} + \dots$ In br: $\chi_{e} = p_{e} + \cdots + p(0 + \cdots - j\chi_{u_{1}} + \cdots -) + \cdots$ When all variables in Nr are made 0, the quantity: 0 + ···· - jxu, + ···· remains 0, - ne has some value in Bz as well.

$$\frac{Claim 4:}{h_{k}} \text{ The this bits which is the some in all he tableaus of the cycle,} \\ Variable in F have value 0. \\ \mathcal{R}_{F} = 0 \\ F = \frac{5}{2} \mathcal{R}_{\mathcal{V}_{1}}, \mathcal{R}_{\mathcal{V}_{2}}... \mathcal{R}_{\mathcal{V}_{k}} J = \frac{5}{2} \mathcal{R}_{\mathcal{U}_{1}}, \mathcal{R}_{\mathcal{U}_{2}}... \mathcal{R}_{\mathcal{V}_{k}} J = \frac{5}{2} \mathcal{R}_{\mathcal{U}_{1}}, \mathcal{R}_{\mathcal{U}_{2}}... \mathcal{R}_{\mathcal{V}_{k}} J = \frac{5}{2} \mathcal{R}_{\mathcal{U}_{1}}, \mathcal{R}_{\mathcal{U}_{2}}... \mathcal{R}_{\mathcal{U}_{k}} J = \frac{5}{2} \mathcal{R}_{\mathcal{U}_{1}}, \mathcal{R}_{\mathcal{U}_{k}} J = \frac{5}{2} \mathcal{R}_{\mathcal{U}_{1}} J = \frac{5}{2} \mathcal{R$$

Consider the foll auxiliary LP: maximize c^Tx subject to: Ar = b $\chi_{N\setminus F} = 0$ xu ≤ o x_{F\v}≥0 Claim: The aux. LP is bounded by Zo. Because: Cost = Zo + (- - -) + (pos. coc)).) nu some fin. in terme of F13v3 where + (befficients are -ive come fin. involving 2 2 2 5 In way feasible soln. $\chi_{NJF}=0$ No <0 The cannot be increased above 0. 2 E 12 70 Increasing three variables only reduces the cost. Zo is obtained by setting NFINE=0, NV=0, NNF=0 - Optimum of aux 2P < Zo.

maximize CTX Now consider the subject to: Ar = b tableau B' from Where $\lambda_{N\setminus F} = 0$ the variable no leave xv ≤ o the banis. ^AF* ≥0 \varkappa_{\vee} າງ B' Claim: B' prover that the aux. LP is unbounded. i) ^a u c F \ {n 2. Increasing ⁿu will increase Variables in F that are also in B, Ix upt for the. this is because the chose it to have the basis. Hence Bland's rule will imply that all variables of F have a mon-negative coefficient in the ny column of B'.

Contradiction: i) Pableau B proves that aux. LP. is bounded. ii) Tabican B' prover that aux. Lp. is unbounded. So ow arown prion that simplex dow not terminate is talse.