1. Show that if a system $Ax \leq b$ has an extreme point, then the columns of A are linearly independent.

(3 marks)

(7 marks)

- Prove or disprove the following statement: if the primal has a unique optimum, then the dual has a unique optimum (an LP is said to have a unique optimum if there is exactly one feasible solution giving the optimum value).
 (5 marks)
- 3. Suppose x^* is the unique optimum of an LP. Show that the second best extreme point must be adjacent to x^* . (5 marks)
- 4. Consider the problem: minimize $c^T x$ subject to Ax = b and $x \ge 0$, where A is an $n \times n$ square matrix with $A = A^T$, and c = b.

Show that if there exists an x_0 such that $Ax_0 = b$, $x_0 \ge 0$, then x_0 is an optimal point. (5 marks)

5. Consider the following problem.

 $10x_1 + 24x_2 + 20x_3 +$ Maximize $20x_4 +$ $25x_{5}$ $\stackrel{\leq 19}{\leq 57}$ Subject to x_1 + x_2 + $5x_5$ (C1) $2x_1$ + $4x_2$ + x_5 (C2) x_1 , x_3 , x_4 , x_5 ≥ 0 x_2 ,

- (a) Write its dual with two variables w_1, w_2 (corresponding to the constraints (C1) and (C2)) and verify that $(w_1, w_2) = (4, 5)$ is a feasible solution.
- (b) Use complementary slackness to show that $(w_1, w_2) = (4, 5)$ gives the optimal solution to the dual.