Notations: Fix a game graph G = (V, E). Let n_q be the number of vertices in V with priority q. Let M_V be the set of tuples of the form $(x_{d-1}, x_{d-3}, \ldots, x_1)$ with $0 \le x_q \le n_q$. The algorithm *progress-measure-lifting*(G) associates a value from $M_V \cup \{\top\}$ to each vertex. Let $N_b \subseteq M_V$ be the set of tuples that such $\Sigma_{\text{odd } q} x_q \le b$. The algorithm *progress-measure-lifting*[†](G, b) is the progress measure lifting algorithm restricted to $N_b \cup \{\top\}$.

- 1. What can you say about the 0-dominions obtained using progress-measure-lifting[†](G, b) when b = 1?
- 2. Let \mathcal{T}_n be the (directed) binary tree of depth n. Assume that the leaves of \mathcal{T}_n have self loops. All non-leaf nodes have priority 1. Among the leaf nodes, some (arbitrary number) of them have priority 1 and the others have priority 2.
 - i) Assuming that all nodes are Player 0's nodes, what is the progress measure computed by progressmeasure-lifting(\mathcal{T}_n).
 - ii) Assuming that all nodes are Player 1's nodes, what is the progress measure computed by progressmeasure-lifting(\mathcal{T}_n).

How does your answer depend on the arrangement of priorities 1 and 2 among leaf nodes?

3. For a graph G with 2n vertices, let D_0 be the 0-dominion obtained by running progress-measurelifting[†](G, n). Give an example of a G for which D_0 and reach₀(D_0) are different sets.