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1 Markov Chains

We will define Markov chains in a manner that will be useful to study simple stochastic
games. The usual definition of Markov chains is more general.

Definition 1 (Markov Chains) A Markov Chain G is a graph (Vavg, E). The vertex set
Vavg is of the form {1, 2, . . . , n − 1, n}. Vertex n − 1 is called the 0-sink and vertex n is
called the 1-sink. From every vertex, there are two outgoing edges each with probability
1
2
. Note that both the outgoing edges can lead to the same vertex. Only edges from n− 1

and n are self loops.

A Markov Chain of n vertices can be specified using its n× n transition matrix. Each
entry of this matrix is either 0, 1

2
or 1. A Markov Chain is said to be stopping if from every

vertex, there is a path to a sink vertex.

Definition 2 (Reachability probabilities) For a stopping Markov Chain G, let v :=
〈v1, v2, . . . , vn〉 denote the probabilities to reach the 1-sink n from each vertex. Then, v
satisfies the following constraints:

vn = 1

vn−1 = 0

for each 1 ≤ i ≤ n− 2 vi =
1

2
vj +

1

2
vk where j and j are children of i

If v is seen as a column vector, then the above system of equations can be written as
v = Qv + b, where Q is the transition matrix of G and b is a column vector containing
either 0, 1

2
or 1. A solution to this equation gives the reachability probabilities.

Here are some results about Markov chains.

1



2 Markov Decision Processes

Lemma 3 Let Q be a transition matrix of a stopping Markov chain. Then, limn→∞Q
n =

0.

Proof
See Theorem 11.3 (page 417) of [GS] �

Lemma 4 Let Q be a transition matrix of a stopping Markov chain. Then I − Q is
invertible. Moreover, I −Q = I +Q+Q2 + . . . .

Proof
See Theorem 11.4 (page 418) of [GS] �

Theorem 5 For a stopping Markov chain G, the system of equations v = Qv + b in
Definition 2 has a unique solution, given by v = (I −Q)−1b.

Proof
Follows from Lemma 4. �

2 Markov Decision Processes

Definition 6 (Markov Decision Process) A Markov Decision Process (MDP) G is a
graph (Vavg t Vmax, E). The vertex set is of the form {1, 2, . . . , n − 1, n}. From every
vertex, there are two outgoing edges. Note that both the outgoing edges can lead to the
same vertex. Each outgoing edge from vertices in Vavg is marked with probability 1

2
. Vertex

n − 1 is called the 0-sink and vertex n is called the 1-sink. Only edges from n − 1 and n
are self loops.

For convenience, we will call vertices in Vmax as max vertices and vertices in Vavg as
average vertices.

Definition 7 (Strategy/Policy) A strategy σ in an MDP is a function σ : Vmax 7→
Vmax tVavg which chooses an edge for every max vertex. Strategies are also called policies.

Observe that we have restricted to positional strategies in the above definition. Other
kinds of strategies for this model are out of scope of this course.

Each strategy σ for G gives a Markov Chain Gσ. An MDP is said to be stopping if for
every σ, the Markov Chain Gσ is stopping. Corresponding to Gσ is the vector denoting
reachability probabilities σ given in Definition 2.

Definition 8 (Value vector) For an MDP, we define its value vector as:

v :=


maxσ vσ(1)
maxσ vσ(2)

...
maxσ vσ(n)


In the following, we will give different methods to compute the value vector of an MDP.
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2.1 Charactering value vector using constraints

Similar to the constraints for Markov chain given in Definition 2, we will now give con-
straints for MDPs. Given and MDP G, consider the following set of constraints over the
variables 〈w1, w2, . . . , wn〉:

0 ≤ wi ≤ 1 for every i (1.1)

wn = 1

wn−1 = 0

for each i ≤ n− 2 in Vmax wi = max(wj, wk) where j and k are children of i

for each i ≤ n− 2 in Vavg wi =
1

2
wj +

1

2
wk where j and k are children of i

Theorem 9 For a stopping MDP, its value vector v is the unique solution to (1.1).

Before proving the above theorem, let us mention that just from the definition of v,
each of its components need not be related, that is, v(1) and v(2) can arise out of different
strategies. But Theorem 9 relates all these values. Therefore, in order to prove the above
theorem, it will be convenient if we can get a link between the components of v: we will
show that the whole of v can be obtained using special types of strategies.

Definition 10 (Optimal strategies) A strategy σ for an MDP is said to be optimal
if for every max vertex i, the value vσ(i) equals max(vσ(j), vσ(k)) where j and k are its
children.

Lemma 11 For every optimal strategy ρ, the vector vρ equals the value vector v of the
MDP.

Proof
Clearly, vρ ≤ v. We will now show that vσ ≤ vρ for every strategy σ. This will prove the
lemma.

Consider an arbitrary strategy σ. The value vectore vσ is obtained as the solution to
some equation: vσ = Qσvσ + bσ. Therefore, vσ = (I − Q)−1bσ. We will first show that
vρ ≥ Qσvρ + bσ. For an average vertex i, the left hand side gives vρ(i) and the right hand
sige gives vρ(j) + vρ(k). Hence both are equal. For a max vertex i, the left hand side
gives max(vρ(j), vρ(k)) and the right hand side gives either vρ(j) or vρ(k) (assuming that
j and k are the children of i). This shows that vρ ≥ Qσvρ + bσ. Rearranging, we get that
vρ ≥ (I −Q)−1bσ, which gives vρ ≥ vσ. �

Proof of Theorem 9

Each solution to (1.1) corresponds to an optimal strategy. From Lemma 11, every optimal
strategy gives the unique value vector of the MDP. This shows that (1.1) cannot have
multiple solutions. To show that there is a solution, it is sufficient to prove existence of an
optimal strategy. This is shown in Theorem 13 in the next section.
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Algorithm 1.1: Strategy improvement algorithm for MDPs, also known as policy iteration

1 algorithm strategy − improvement(G)
2 σ ← an a rb i t r a r y p o s i t i o n a l s t r a t e gy
3 vσ ← p r o b a b i l i t i e s to reach 1−s ink in Gσ
4 repeat
5 pick a node i ∈ Vmax s . t . vσ(i) < max(vσ(j), vσ(k)) where j ,k are i t s ch i l d r en
6 σ′(i) ← argmax{vσ(j), vσ(k)}
7 σ ← σ′

8 vσ ← p r o b a b i l i t i e s to reach 1−s ink in Gσ
9 until σ i s opt imal

2.2 Strategy improvement/policy iteration

We will now give an algorithm to compute an optimal strategy for an MDP. It starts with
an arbitrary initial strategy and over repeated iterations, it converges to an optimal one
(refer to Algorithm 1.1).

It is clear that if the algorithm terminates, it computes an optimal strategy. We will
now show termination.

Let us denote the strategy obtained after the pth iteration by σp and the value corre-
sponding to this as vp.

Lemma 12 The values satisfy vp ≤ vp+1 and there is at least one vertex where the in-
equality is strict.

Proof
Strategy σp induces as Markov Chain Gp. The values vp are obtained as a solution to some
equations: vp = Qpv + bp as given in Definition 2. Similarly, vp+1 = Qp+1vp+1 + bp+1.

Note that σp+1 is obtained from σp by modifying the strategy at a single vertex. There-
fore, the matrices Qp and Qp+1 can differ at most at one row i. Wlog, let us say that
Qp(i, j) = 1 and Qp+1(k) = 1. The rest of the entries are 0. Moreover, vp(k) − vp(j) > 0.
The case where the change of strategy leads to modification of b vector can be handled
similarly. Let us now look at vp+1 − vp.

vp+1 − vp = Qp+1vp+1 −Qpvp as bp = bp+1

vp+1 − vp = Qp+1vp+1 −Qp+1vp +Qp+1vp −Qpvp

(I −Qp+1)(vp+1 − vp) = (Qp+1 −Qp)vp

(I −Qp+1)(vp+1 − vp) = (0, . . . , 0, vp(k)− vp(j), 0, . . . , 0)T

In the last line, the quantity vp(k) − vp(j) appears in the ith coordinate. This, we know
is strictly bigger than 0. Since Gp+1 is stopping, from Lemma 4 we get that I − Qp+1 is
invertible. Therefore, vp+1 − vp = (I − Qp+1)

−1(0, . . . , 0, vp(k) − vp(j), 0, . . . , 0)T . From
Lemma 4, we also know that the inverse has all non-negative entries, and the diagonal
entries are strictly positive. This shows that vp+1 ≤ vp, where the inequality is strict in at
least one component. �

Theorem 13 The strategy improvement algorithm terminates with an optimal strategy.
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Proof
From Lemma 12, we can infer that after each iteration, a strategy which has not been
seen before is obtained. Since the number of strategies is finite, the algorithm terminates.
Moreover, the termination condition says that the finally obtained strategy is optimal. �

2.3 Linear Programming

Definition 14 (Linear Program for an MDP) For an MDP G, we associate the fol-
lowing linear program:

Minimize Σi xi subject to the constraints

0 ≤ xi ≤ 1 for every i

xn = 1

xn−1 = 0

for each i ≤ n− 2 in Vmax xi ≥ xj, xk where j and k are children of i

for each i ≤ n− 2 in Vavg xi =
1

2
xj +

1

2
xk where j and k are children of i

Theorem 15 For a stopping MDP, the linear program of Definition 14 has a unique so-
lution, and this solution gives the value vector v of the MDP.

Proof
From 9, the value vector v is one solution to constraints of the above LP. We will now show
that for any other feasible solution x of the LP, we will have v ≤ x. This will imply that v
is the solution which minimizes the sum, and hence will be the unique solution to the LP.

Let x be a feasible solution. Suppose there are some vertices where v is strictly bigger
than x. Let:

U = { i | 1 ≤ i ≤ n, vi − xi > 0 and |vi − xi| is maximum }.

The above set U gives the set of vertices where the difference between v and x is maximum.
We will now show a property about this set U .

Suppose i ∈ Vmax belongs to U . Since v is tight (that is, it satisfies (1.1)), we have
vi = vj for some child j of i. Also, as x is a feasible solution, xi ≥ xj. As i belongs to U ,
we have vi − xi ≥ vj − xj and substituting vi = vj gives xi ≤ xj. Combining this with the
previous argument gives xi = xj and hence vi− xi = vj − xj. This shows that j belongs to
U as well. Similarly, one can show that if i ∈ Vavg belongs to U , both its children j and k
belong to U . Since G is stopping, this property entails that if U is non-empty, then either
0-sink or 1-sink belongs to U . But for the sink vertices both v and x assign the same value.
This gives a contradiction to the assumption that there are some vertices where v gives a
strictly bigger value than x. �
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Algorithm 1.2: Value iteration algorithm, also known as Successive approximation algorithm

1 algorithm value−i t e r a t i o n (G)
2 l et u be the vec to r a s s i gn i ng 1 to 1−s ink and 0 to everyth ing else
3 repeat
4 de f i n e u′ as f o l l ow s :
5 u′(i) = max(u(j), u(k)) , i f i i s a max node and j, k are i t s ch i l d r en
6 u′(i) = 1

2u(j) +
1
2u(k) , i f i i s an average node and j, k are i t s ch i l d r en

7 u′(n− 1) = 0
8 u′(n) = 1
9 l et u← u′

10 until u s a t i s f i e s (1.1)

2.4 Value iteration

Algorithm 1.2 gives yet another method to compute the value vector. This method need
not necessarily terminate. It converges to the value vector in the limit.

Let vn be the vector obtained after n iterations. The procedure maintains the following
invariant:

vm(i) = max(vm−1(j), vm−1(k)) if i ∈ Vmax with children j, k (1.2)

vm(i) =
1

2
vm−1(j) +

1

2
vm−1(k) if i ∈ Vavg with children j, k

Theorem 16 For a stopping MDP, the sequence vm converges to the value vector.1

Proof
We first show that the sequence vm converges. We can prove by induction that vm is
monotonically increasing (at each vertex). It is also bounded above by 1. Therefore vm
converges, say to v∗.

From (1.2), we get:

lim
m→∞

vm(i) = lim
m→∞

max(vm−1(j), vm−1(k)) if i ∈ Vmax with children j, k (1.3)

lim
m→∞

vm(i) = lim
m→∞

(
1

2
vm−1(j) +

1

2
vm−1(k)) if i ∈ Vavg with children j, k

From the fact that sequence vn converges to v∗ and from (1.3) , we get:

v∗(i) = max(v∗(j), v∗(k)) if i ∈ Vmax with children j, k

v∗(i) =
1

2
v∗(j) +

1

2
v∗(k) if i ∈ Vavg with children j, k

Moreover every vm assigns 0 to the 0-sink and 1 to the 1-sink, giving us that v∗ is 0
and 1 for the 0 and 1-sink respectively. Hence v∗ is a solution to the system of constraints
given in (1.1). From Theorem 9, v∗ is the value vector for the MDP. �

1The proof of this theorem written in this document was given by one of the students J. Kishor (B. Sc
Maths and C.S. - 3rd year)



Markov Decision Processes 7

Intuitively, we can think of the values in vm as the maximum probability to reach the
1-sink in at most m steps (using any strategy, which need not necessarily be positional).
In the limit, this sequence converges to the probability to reach 1-sink. The above theorem
says that this value equals the value vector of the MDP as in Definition 8, which we know
can be obtained using positional strategies. This therefore gives a justification that for
stopping MDPs, the reachability probabilities can be obtained using positional strategies.
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