
Solving parity games using progress
measures

Lecture notes for the course “Games on Graphs”

B. Srivathsan

Chennai Mathematical Institute, India

These notes are based on the paper [Jur00] and Section 3.3.3 of the book [AG11]. The
paper [Jur00] introduced the small progress measures algorithm for solving parity games.
In these notes, we give a more detailed desription of the algorithm along with illustrative
examples.

1 Overview

We consider finite graphs G = (V,E), decorated with a priority function p : V 7→
{1, 2, . . . , d} which labels every vertex with a number between 1 and d. Without loss
of generality, we will assume that the number d is even. A cycle in a graph is said to be
even if the maximum priority occuring in it is even. It is said to be odd if the maximum
priority is odd.

Goal: Given a graph, we want to attach a “quantity” to every vertex so that if the quan-
tities satisfy some local property at every vertex, the graph satisfies some global property.
For us, the global property is that all cycles in the graph are even. By local property, we
mean that the quantity at each vertex satisfies a condition with respect to the quantities
of its neighbours. The goal is to come up with an appropriate definition of the quantity
and the local property. This can then be extended to characterize 0-dominions in a parity
game graph.

Let us start with a simple cycle G1: v0 → v1 → · · · → vn → v0. Let us further assume
that d = 2, that is, the only priorities are 1 and 2. We now want a witness to the fact that
G1 contains a vertex of priority 2 - in other words, it is not the case that all vertices have
priority 1. Attach a natural number ξ1(vi) to each vertex constrained with the following
local property for every vertex vi (assume that vn+1 = v0):

if p(vi) = 1, then ξ1(vi) > ξ1(vi+1) (1.1)

if p(vi) = 2, then no constraints

1



2 Solving parity games using progress measures

Note that if we are able to attach a ξ1 satisfying (1.1) to G1, then the cycle G1 should
necessarily have a 2. If all vertices had priority 1, then (1.1) requires that ξ1(v0) > ξ1(v1) >
· · · > ξ1(vn) > ξ1(v0), which is not possible. The cycle G1 needs to have a 2 to stop this
strictly decreasing sequence. Conversely, if G1 is a cycle containing a 2, we would be able
to attach a ξ1 satisfying the local constraints.

Let us now assume that d = 4, that is the possible priorities are 1, 2, 3 and 4. The
condition (1.1) says that if 1 occurs in G1, then 2 should necessarily occur. However,
it does not say anything about priority 3 and allows cycles containing only priorities 2
and 3, for instance. We need the additional constraint that if 3 is present, then 4 should
necessarily be present in the cycle. To achieve this, an additional number ξ3 is attached to
every vertex. This number decreases whenever there is a priority smaller than 3. To reset
this decreasing sequence, a 4 needs to be present. This gives the following local property
for each vertex vi:

if p(vi) = 1, then ξ1(vi) > ξ1(vi+1) and ξ3(vi) ≥ ξ3(vi+1) (1.2)

if p(vi) = 2, then no constraint on ξ1 and ξ3(vi) ≥ ξ3(vi+1)

if p(vi) = 3, then no constraint on ξ1 and ξ3(vi) > ξ3(vi+1)

if p(vi) = 4, then no constraint on ξ1 and ξ3

The above condition (1.2) can be read as: if 1 is present in the cycle, then either 2, 3 or 4
should necessarily be present and if 3 is present in the cycle, then 4 should necessarily be
present. This entails that we can attach the pair 〈ξ3, ξ1〉 to G1 iff the maximum priority
occuring in G1 is even.

This observation can be extended to the case when the priorities are 1, 2, . . . , d (recall
that d is assumed to even). A tuple 〈ξd−1, ξd−3, . . . , ξ3, ξ1〉 needs to be attached to every
vertex. This contains a representative for every possible odd priority. The quantity ξk
should decrease in all vertices with priority smaller than k and at k it should strictly
decrease. To put it differently, at a vertex v with priority j:

if j is odd, then ξj(vi) > ξj(vi+1),

ξj+2(vi) ≥ ξj+2(vi+1),

· · ·
ξd−1(vi) ≥ ξd−1(vi+1)

if j is even, then ξj+1(vi) ≥ ξj+1(vi+1),

ξj+3(vi) ≥ ξj+3(vi+1),

· · ·
ξd−1(vi) ≥ ξd−1(vi+1)

The above condition says that if an odd priority occurs in the cycle, then a higher priority
should necessarily occur. This ensures that the highest priority occuring in the cycle is even.
Conversely, for any cycle with maximum priority even, we will be able to attach quantities
satisfying the above criterion. These quantities (or measures) give a characterization for
even cycles.



Progress measures 3

We wish to have a similar characterization for graphs in which every cycle is even. To do
this, we will use the core idea: at a vertex of odd priority k the measure 〈ξd−1, ξd−3, . . . , ξk〉
should strictly decrease along its edges (for a suitably defined ordering). Therefore, the only
way to get back to an odd priority vertex is by visiting a vertex of higher priority, where
this measure can be increased. This entails that there can be no cycles with maximum
priority odd.

2 Progress measures

Let d be an even number. Consider tuples of the form 〈ad−1, ad−3, . . . , a3, a1〉 where
each ai ∈ N. The set of such tuples is denoted as Nd/2. We will use {≤, <,=, >,≥}
to denote lexicographic ordering on tuples. For instance, 〈4, 3, 2, 6〉 > 〈4, 2, 5, 9〉.
Let G = (V,E) be a graph and let p : V 7→ {1, . . . , d} be a priority function. We
define a function ξ : V 7→ Nd/2. Following the notation of [AG11], we will define the
function ξ using a sequence of functions ξd−1, ξd−3, . . . , ξ3, ξ1 : V 7→ N. Each ξ(v) would
hence be a tuple 〈ξd−1(v), ξd−3(v), . . . , ξ3(v), ξ1(v)〉. We denote by ξ[k](v) the tuple
〈ξd−1(v), ξd−3(v), . . . , ξk(v)〉 if k is odd and the tuple 〈ξd−1(v), ξd−3(v), . . . , ξk+1(v)〉 if k is
even.

Definition 1 (Parity progress measure) Given a graph G = (V,E), a function ξ :
V 7→ Nd/2 is said to be a parity progress measure for G if for all vertices v ∈ V

ξ[p(v)](v) ≥ max
(v,w)∈E

ξ[p(v)](w)

The inequality is strict if p(v) is odd.

A graph G is said to admit a progress measure if such a function ξ exists for G.

Lemma 2 If a graph G admits a progress measure, all cycles in G are even.

Proof
Suppose there is an odd cycle in G: v0 → v1 → · · · → vn → v0. Assume that v0 is the
vertex with the maximum priority, say k. By our assumption, k is odd. Let ξ be the
progress measure admitted by G. We have:

ξ[p(vi)](vi) ≥ ξ[p(vi)](vi+1)

Since p(vi) ≤ k for all i, we have that ξ[k](vi) ≥ ξ[k](vi+1) for all i (note that this is the
lexicographic ordering over tuples of the form (ad−1, ad−3, . . . , ak)). This gives:

ξ[k](v0) ≥ ξ[k](v1) ≥ · · · ≥ ξ[k](vn) ≥ ξ[k](v0)

Additionally the inequality ξ[k](v0) ≥ ξ[k](v1) is strict. This gives a contradiction ξ[k](v0) >
ξ[k](v0). Hence there can be no odd cycles in G. �

The converse to the statement of the above lemma is also true - if all cycles in a graph
are even, it admits a progress measure. We can in fact prove some boundedness criterion
on the progress measure which it admits. For a graph G, let nq be the number of vertices
of priority q. We denote by MG the set of tuples 〈ad−1, ad−3, . . . , a3, a1〉 ∈ Nd/2 such that
each aq ≤ nq.



4 Solving parity games using progress measures

Definition 3 (Small parity progress measure) A progress measure ξ : V 7→ Nd/2 on
a graph G = (V,E) is said to be small if ξ(v) ∈MG for each v ∈ V .

The following lemma and its proof appear in [Jur00] with a different notation.

Lemma 4 If all cycles in a graph G are even, G admits a small progress measure.

Proof
We will prove a stronger property about the small progress measure: we can construct a
progress measure ξ for G in which for all vertices v with p(v) odd, ξ[p(v)](v) > 〈0, 0, . . . , 0〉.
Proof proceeds by induction. For the base case, assume that graph G has a single vertex
v. If p(v) is even, assign ξ(v) to 〈0, 0, . . . , 0〉. If p(v) is odd, then set ξp(v)(v) = 1 and set
the rest to 0.

Now, consider a graph G with n vertices. Assume that the lemma holds for all graphs
with at most n− 1 vertices. Without loss of generality, we can also assume that the set of
vertices with priority d or d− 1 is non-empty.

Suppose G has a vertex u with p(u) = d. Consider the subgraphs induced by G \ {u}
and {u}. By induction hypothesis, we can associate a small progress measure ξ′ to G \ u.
Set ξ(u) := 〈0, 0, . . . , 0〉, and ξ(v) := ξ′(v) to all v ∈ G \ {u}. Since p(v) is even and is
also the highest priority, the function ξ satisfies the conditions to be a progress measure.
Clearly, it is also small.

Suppose G has no vertices with priority d. Pick a vertex u with priority p(u) = d −
1. Such a vertex should definitely exist because of our assumption. Let W1 := {v ∈
V | there is a non-trivial path from u to v in G}. The vertex u /∈ W1 since that gives
a cycle containing u, and as p(u) = d − 1 and there are no vertices of priority d, this
cycle would be odd. Therefore the set W2 := V \W1 is a non-empty set (containing at
least u). This gives a partition (W1,W2) of G such that there are no edges from W1 to
W2. Let n′q, n

′′
q , nq be the number of vertices of priority q in W1,W2 and G respectively.

Clearly, nq = n′q + n′′q . By induction hypothesis, we can associate small progress measures
ρ1 : W1 7→MW1 and ρ2 : W2 7→MW2 . Define the function ξ for G as follows:

ξ(v) :=

{
ρ1(v) if v ∈ W1

ρ2(v) + 〈n′d−1, n′d−3, . . . , n′3, n′1〉 if v ∈ W2

From our additional assumption that ρ2(v)[p(v)] > 〈0, 0, . . . , 0〉, it can be inferred that ξ(v)
is a progress measure. The fact that nq = n′q +n′′q for every q gives that ξ is a small progress
measure. �

The above lemmas give us the following theorem.

Theorem 5 A graph G has all cycles even iff it admits a small progress measure.

Small progress measures are therefore a witness for graphs containing only even cycles.
Not all graphs have all cycles even. For graphs with odd cycles, we can characterize
subgraphs which contain only even cycles by extending the progress measures with a fresh
element >. The element > is defined to be bigger than every tuple. A progress measure is
now a function ξ : V 7→ Nd/2∪{>} such that for all vertices v with ξ(v) 6= >, the condition



Progress measures 5

given by 1 holds. Similarly a small progress measure is such a function ξ : V 7→MV ∪{>}.
We define dom(ξ) := {v ∈ V | ξ(v) 6= >}.

Lemma 6 For a progress measure ξ, the graph induced by dom(ξ) has all cycles even.

Proof
Follows from Lemma 2. �

A converse statement to the above holds too. Let us call a set G′ ⊆ G a trap if G′ is
an induced subgraph and there is no edge from a vertex in G′ to a vertex in G.

Lemma 7 For every trap G′ = (V ′, E ′) of G in which all cycles are even, there exists a
progress measure ξ such that dom(ξ) = V ′.

Proof
The trap G′ partitions the graph into V ′, V \ V ′ such that there are no edges from V ′ to
V \ V ′. Since in V ′ all cycles are even, we can give a progress measure (without >) thanks
to Lemma 4. For vertices in V \ V ′, we can assign >. This is a progress measure since
there are no edges from V ′ to V . Moreover its domain is exactly V ′. �

Lemmas 2 and 4 characterize traps in a graph in which all cycles are even. We will now
use this idea to characterize dominions of Player 0 in a parity game. Recall that Player 0
wins a play if the maximum priority occurring infinitely often is even. A set D ⊆ V is said
to be a 0-dominion if 0 can win from every vertex in D and moreover 0 can force Player 1
to stay inside D. Due to positional determinacy of parity games, 0 has a positional winning
strategy in its dominion. If we remove the edges from 0 vertices in D that are not given
by the strategy, the resultant graph would be a trap in which all cycles are even. This now
leads us to the definition of a progress measure for a parity game.

Definition 8 (Game parity progress measure) Let G = (V,E) be a parity game
graph. A function ξ : V 7→ MV ∪ {>} is a (small) game parity progress measure if for all
vertices v ∈ V :

if v ∈ V0 and ξ(v) 6= > , then ξ[p(v)] ≥ min
(v,w)∈E

ξ[p(v)](w)

and if p(v) is odd the inequality is strict

and

if v ∈ V1 and ξ(v) 6= > , then ξ[p(v)] ≥ max
(v,w)∈E

ξ[p(v)](w)

and if p(v) is odd the inequality is strict

The discussion above leads us to the following lemmas. Fix a game graph G = (V,E).

Lemma 9 The set dom(ξ) of a game parity progress measure is a 0-dominion.



6 Solving parity games using progress measures

Proof
We will define a strategy σ for Player 0. For every v ∈ V0 ∩ dom(ξ), let σ(v) be the w
with minimum progress measure. Restrict the graph to vertices in dom(ξ) and remove all
edges from 0 vertices that are not given by σ. Call this graph G′. In this graph all Player
0 vertices have a single outgoing edge. Therefore the function ξ satisfies the condition 1
given for a parity progress measure. From Lemma 2, all cycles in G′ are even. Since Player
1 vertices in G′ belong to dom(ξ), all edges out of these vertices lead to vertices in dom(ξ)
and hence in G′. These two observations show that G′ is a 0 dominion for which σ is a
winning strategy. �

Lemma 10 For every 0-dominion D ∈ V , there exists a game parity progress measure ξ
such that dom(ξ) = D.

Proof
Similar to proof of Lemma 7. �

The above two lemmas give a function from the set of progress measures to the set of
0-dominions. We want the progress measure corresponding to the biggest 0-dominion. In
the subsequent sections, we will address the following two questions:

1. Which progress measure corresponds to the biggest 0-dominion?

2. How do we compute this progress measure?

2.1 Least progress measure

Fix a graph G = (V,E) and a priority function p : V 7→ {1, 2, . . . , d} where d is even. For
each i ≤ d, let ni be the number of vertices in V having priority i. Recall that we denote
by MV the set of tuples 〈ad−1, ad−3, . . . , a3, a1〉 such that 0 ≤ ai ≤ ni for each ai. Clearly,
MV is a finite set. We consider the lexicographic ordering on the set MV , denoted by ≤lex.
Additionally, we will define the element > to be strictly bigger than every element of MV ,
that is, s <lex > for every element s ∈MV .

Let F be the set of functions of the form V 7→ MV ∪ {>}. This set is finite. The
lexicographic ordering ≤lex can now be extended to functions. For two functions f1, f2 ∈ F ,
we define f1 v f2 if for all v ∈ V , we have f1(v) ≤lex f2(v). The relation v is a partial
order (not all pairs of functions are comparable).

Game progress measures are elements of F which additionally satisfy the local condi-
tions given by Definition 8. As mentioned before, each progress measure can be mapped
to a 0-dominion. The following lemma establishes that as the progress measures decrease
(in the order v), the 0-dominions become bigger (in the usual subset order).

Lemma 11 Let ρ1 and ρ2 be progress measures. Then, ρ1 v ρ2 ⇒ dom(ρ1) ⊇ dom(ρ2).

Proof
Pick v ∈ dom(ρ2). By definition, ρ2(v) 6= >. As ρ2(v) ≥lex ρ1(v) by assumption, the value
ρ1(v) cannot be > either. Hence v ∈ dom(ρ1), showing that dom(ρ2) ⊆ dom(ρ1). �



Computing the least progress measure 7

Definition 12 (Least progress measure) Let ρ1, ρ2, . . . , ρk be the set of progress mea-
sures for G. Define ρ∗ : V 7→MV ∪ {>} as:

ρ∗(v) := min
0≤i≤k

ρi(v) for each v ∈ V

It is not immediate that the function ρ∗ defined above satisfies the local conditions
needed for it to be a progress measure. The following lemma shows that the local conditions
are indeed satisfied.

Lemma 13 The function ρ∗ is a progress measure.

Proof
Pick a v ∈ V0. The value ρ∗(v) equals ρm(v) for some m. Since ρm is a progress measure, we
know that ρm(v) ≥lex ρm(w) for some neighbour w of v, and the inequality is strict if p(v)
is odd. By definition, ρ∗(w) ≤ ρm(w). This gives the following sequence of inequalities:

ρ∗(v) =lex ρm(v) ≥lex ρm(w) ≥lex ρ∗(w)

The inequality in the middle is strict if p(v) is odd. This shows that v satisfies the local
condition if v ∈ V0. A similar reasoning can be done for the case v ∈ V1. �

From Lemma 11, the smaller the progress measure, the bigger is the dominion. Since
ρ∗ is the smallest progress measure, it will correspond to the winning region of 0 which is
the biggest 0-dominion, as every 0-domininion has an associated progress measure due to
Lemma 10.

3 Computing the least progress measure

Algorithm 1.1 gives a method to compute the least progress measure. Consider the proce-
dure progress-measure-lifting(G). It starts by assigning the tuple (0, . . . , 0) ∈ Nd/2 to every
vertex. Call this initial function ρ0. After each iteration of the while loop, another function
is computed. Let ρi denote the function resulting after the ith iteration. In each iteration,
a vertex which does not satisfy the local progress condition is picked and its value is lifted
to the least value in MV ∪ {>} so that the local condition is met. The lift procedure in
Algorithm 1.1 shows the implementation. The algorithm stops if the progress condition is
satisfied at every vertex. Therefore, if the algorithm stops, it is clear that the function in
the end is a progress measure. We will now show that the algorithm does terminate, and
moreover the progress measure obtained in the end is the least progress measure ρ∗.

Lemma 14 For each i, we have ρi v ρi+1.

Proof
If ρi+1 is the same as ρi, we are done. Otherwise ρi+1 differs from ρi only at a single vertex
v. At this vertex, the value ρi+1(v) is bigger than ρi(v) due to the while loop condition in
Line 3. This proves the lemma. �

The above lemma shows that the algorithm does terminate. The following lemma shows
that the computed progress measure is the least.



8 Solving parity games using progress measures

Algorithm 1.1: Progress measure lifting algorithm

1 algorithm progress-measure-lifting(G)

2 for a l l v ∈ V do ξ(v)← (0, 0, . . . , 0)

3 while ξ(v) <lex lift(ξ, v)

4 do ξ(v)← lift(ξ, v)

5 endwhile

6 return (dom(ξ), V \ dom(ξ))

7

8 algorithm lift(ξ, v)

9 i f v ∈ V0 then t← minv→w ξ
[p(v)](w)

10 else t← maxv→w ξ
[p(v)](w)

11 endif

12 i f (t = >) return >
13 i f p(v) i s even return 〈td−1, td−3, . . . , tp(v)+1, 0, 0, . . . , 0〉
14 else

15 i f (ti = ni for a l l i ∈ {p(v), . . . , d− 3, d− 1})
16 return >
17 else

18 f i nd sma l l e s t j ∈ {p(v), . . . , d− 3, d− 1} s . t . tj < nj

19 return 〈td−1, td−3, . . . , tj + 1, 0, . . . , 0〉
20 endif

21 endif

Lemma 15 For each i, we have ρi v ρ∗.

Proof
Clearly, ρ0 v ρ∗. We will now show that if ρi v ρ∗, then ρi+1 v ρ∗, which proves the
lemma.

Either ρi+1 = ρi, in which case we are done. Otherwise, ρi+1 differs from ρi at a single
vertex v. It is therefore enough to show that ρi+1(v) ≤lex ρ

∗(v). Let us assume that v ∈ V0.
The case when v ∈ V1 can be shown using the same arguments as below, replacing min
with max.

Firstly, note that as ρi v ρ∗, we have:

min
v→w

ρ
[p(v)]
i (w) ≤lex min

v→w
ρ∗[p(v)](w) (1.3)

Since ρ∗ is a progress measure, we have:

ρ∗[p(v)](v) ≥lex min
v→w

ρ∗[p(v)](w) where ≥lex is strict if p(v) is odd (1.4)

From (1.3) and (1.4), we get:

min
v→w

ρ
[p(v)]
i (w) ≤lex ρ∗[p(v)](v) where ≤lex is strict if p(v) is odd (1.5)



Computing the least progress measure 9

Let ~a be the smallest tuple which is ≥lex than minv→w ρ
[p(v)]
i (w) with ≥lex being strict if

p(v) is odd. If ~a = >, then from (1.5), we have ρ∗(v) = >. The algorithm sets ρi+1(v) := >
in this case and hence we get ρi+1(v) v ρ∗(v). If ~a 6= >, again from (1.5), we get that

~a ≤lex ρ
∗[p(v)](v). The algorithm sets ρ

[p(v)]
i+1 (v) := ~a and ρki+1(v) = 0 for all k < p(v). This

shows that ρi+1(v) v ρ∗(v).
�



10 REFERENCES

References

[AG11] Krzysztof R Apt and Erich Grädel. Lectures in game theory for computer scientists.
Cambridge University Press, 2011.

[Jur00] Marcin Jurdziński. Small progress measures for solving parity games. In Annual
Symposium on Theoretical Aspects of Computer Science (STACS), pages 290–301.
Springer, 2000.


	Solving parity games using progress measures
	Overview
	Progress measures
	Least progress measure

	Computing the least progress measure


