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We will use definitions from [Con92].

Definition 1 (Simple Stochastic Games (SSG)) A Simple Stochastic Game (SSG) G
is given by a graph (V = VavgtVmaxtVmin, E). The vertex set is of the form {1, 2, . . . , n−
1, n}. From every vertex, there are two outgoing edges. Note that both the outgoing edges
can lead to the same vertex. Each outgoing edge from vertices in Vavg is marked with
probability 1

2
. Vertex n− 1 is called the 0-sink and vertex n is called the 1-sink. The only

edges from n− 1 and n are self loops.

For convenience, we will call vertices in Vmax as max vertices, the ones in Vmin as min
vertices and vertices in Vavg as average vertices.

The game is played by two players Max and Min. A token is placed at some vertex. If
it is a max (resp. min) vertex, player Max (resp. Min) moves it to one of the successors.
If it is an average vertex, the token moves to each successor with probability 1

2
.

Definition 2 (Strategy/Policy) A strategy σ for Max is a function σ : Vmax → V such
that (v, σ(v) ∈ E. The strategy chooses an edge for every max vertex. Strategies are also
called policies. Similarly, we can define a strategy τ for Min as a function τ : Vmin → V .

Each pair of strategies (σ, τ) for G gives a Markov Chain Gσ,τ obtained by restricting
the graph to the edges given by the strategies. An SSG is said to be stopping if for every
σ, τ , the SSG Gσ,τ is stopping. For the Markov Chain Gσ,τ , we know the vector denoting
reachability probabilities vσ,τ .

We will now define a value vector for SSGs.

Definition 3 (Value vector for SSGs) For an SSG G, we define its value vector as:

v :=


maxσ minτ vσ,τ (1)
maxσ minτ vσ,τ (2)

...
maxσ minτ vσ,τ (n)
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Notice that we have chosen max min, whereas we could have also considered min max.
Later, we will show that this order does not matter: replacing max min in the above
definition with min max gives the same value.

1 Charactering value vector using constraints

Similar to the constraints for MDPs, we will now give constraints for SSGs. Given an SSG
G, consider the following set of constraints over the variables 〈w1, w2, . . . , wn〉:

0 ≤ wi ≤ 1 for every i (1.1)

wn = 1

wn−1 = 0

for each i ≤ n− 2 in Vmax wi = max(wj, wk) where j and k are children of i

for each i ≤ n− 2 in Vmin wi = min(wj, wk) where j and k are children of i

for each i ≤ n− 2 in Vavg wi =
1

2
wj +

1

2
wk where j and k are children of i

Theorem 4 For a stopping SSG, its value vector v is the unique solution to (1.1).

Before proving the above theorem, let us mention that just from the definition of v,
each of its components need not be related, that is, v(1) and v(2) can arise out of different
strategies. But Theorem 4 relates all these values. Therefore, in order to prove the above
theorem, it will be convenient if we can get a link between the components of v: we will
show that the whole of v can be obtained using special types of strategies.

Definition 5 (Optimal strategies) We consider two notions of optimality:

• Let σ be a strategy for Max. A strategy τ for Min is said to be optimal w.r.t. σ
if τ is an optimal strategy in the (min)-MDP Gσ: for every min vertex i, the value
vσ,τ (i) = min(vσ,τ (j), vσ,τ (k)) where j and k are its children.

• A pair of strategies (σ, τ) is said to be optimal if vσ,τ satisfies the optimality equations.

Lemma 6 Let (σ1, τ1) and (σ2, τ2) be optimal strategies. Then vσ1,τ1 = vσ2,τ2
1.

Proof
Denote vσ1,τ1 as v1 and vσ2,τ2 as v2. Let U = {i ∈ V | v1(i) > v2(i)}. Wlog, assume this
set U is non-empty. Let U ′ = {i ∈ U | v1(i)− v2(i) ≥ v1(j)− v2(j) for all vertices j}. Pick
i ∈ U ′. If i ∈ Vavg, we can show that both of its children are in U ′.

Let i ∈ Vmax. Suppose σ1(i) = σ2(i) = j, then we have j ∈ U ′. Suppose σ1(i) = j
and σ2(i) = k 6= j such that v2(k) > v2(j). We have: v1(i) = v1(j), v2(i) = v2(k) > v2(j).
So, v1(j)− v2(j) = v1(i)− v2(j) > v1(i)− v2(k) = v1(i)− v2(i), contradicting that i gives
a maximum difference. Therefore, if σ1(i) = j and σ2(i) = k then we necessarily have
v2(k) = v2(j). Moreover, from the above calculation, v1(j) − v2(j) = v1(i) − v2(i) and
hence j ∈ U ′.

1Proof suggested by Rohan Goyal (B. Sc Math and Comp. Sci, second year)
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Let i ∈ Vmin. Similar argument as above, with a minor change. Suppose σ1(i) = σ2(i) =
j, then we have j ∈ U ′. Suppose σ1(i) = j such that σ1(j) < σ1(k) and σ2(i) = k. We
have: v1(i) = v1(j) < v1(k), v2(i) = v2(k). So, v1(k)− v2(k) > v1(j)− v2(k) = v1(i)− v2(i).
The rest of the argument proceeds as above.

uild a Markov chain G′ as follows. Pick some arbitrary vertex i ∈ U ′ and add it to G′.
If i ∈ Vavg add both its successors to G′. If i ∈ Vmax, add the successor j ∈ U ′ as in the
argument above, and if i ∈ Vmin, add the successor k ∈ U ′ as above to G′. This process
should terminate at some point. Notice that we are building strategies for Max and Min
in this process. Since G is stopping, at some point, we should hit one of the sink vertices.
This gives a contradiction as the sink vertices cannot be present in U ′. �

The above lemma shows that optimality equations have a unique solution. We will now
show that the value vector equals this unique solution.

Lemma 7 Let σ be a strategy for Max and τ a strategy for Min which is optimal w.r.t.
σ. Let i be a Max vertex with children j and k, such that vσ,τ (i) 6= max(vσ,τ (j), vσ,τ (k)).

Let σ′ be the strategy obtained from σ by switching the successor at i: σ′(i) =
arg max(vσ,τ (j), vσ,τ (k)), and σ′(i′) = σ(i′) for other i′ ∈ Vmax. Let τ ′ be an optimal
strategy w.r.t σ′.

Then: vσ,τ (i) < vσ′,τ ′(i) and vσ,τ (i
′′) ≤ vσ′,τ ′(i

′′) for all other i′′ ∈ V .

Proof
We have vσ,τ = Qσ,τvσ,τ + bσ,τ and vσ′,τ ′ = Qσ′,τ ′vσ′,τ ′ + bσ′,τ ′ . We have:

vσ′,τ ′ − vσ,τ = Qσ′,τ ′vσ′,τ ′ −Qσ,τvσ,τ + bσ′,τ ′ − bσ,τ
= Qσ′,τ ′(vσ′,τ ′ − vσ,τ ) + (Qσ′,τ ′ −Qσ,τ )vσ,τ + bσ′,τ ′ − bσ,τ

Denote by M the column vector (Qσ′,τ ′−Qσ,τ )vσ,τ +bσ′,τ ′−bσ,τ . From the above equations:

vσ′,τ ′ − vσ,τ = (I −Qσ′,τ ′)
−1M

Let us look at what M(i′′) is for each vertex i′′. Assume j′′ and k′′ are the children of i′′.

• When i′′ ∈ Vavg, we have the row Qσ′,τ ′ [i
′′] to be equal to Qσ,τ [i

′′] and bσ′,τ ′(i
′′) =

bσ,τ (i
′′). Hence M(i′′) = 0.

• Let i′′ ∈ Vmin. Notice that M(i′′) = vσ,τ (τ
′(i′′))− vσ,τ (τ(i′′)). Since τ is optimal wrt

σ, we have τ(i′′) = min(vσ,τ (j
′′), vσ,τ (k

′′)). This proves that M(i′′) ≥ 0.

• Let i′′ ∈ Vmax. We have M(i′′) = vσ,τ (σ
′(i′′)) − vσ,τ (σ(i′′)). By definition of σ′, this

will mean M(i) > 0 and M(i′′) = 0 for all i′′ 6= i.

We have seen earlier that the inverse (I − Qσ′,τ ′)
−1 equals I + Qσ′,τ ′ + Q2

σ′,τ ′ + . . . . This
shows that the product (I −Qσ′,τ ′)

−1M has all entries non-negative, and in particular the
entry at i is strictly bigger than 0. This proves the required result. �

Proof of Theorem 4. Firstly, for every optimal strategy (σ, τ), the value vector vσ,τ satisfies
the optimality equations, just by definition. Moreover, by Lemma 6, every optimal pair
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Algorithm 1.1: Strategy improvement algorithm for MDPs, also known as policy iteration

1 algorithm strategy − improvement(G)
2 σ ← an a rb i t r a r y p o s i t i o n a l s t r a t e gy
3 τ ← an optimal s t r a t e gy wrt σ
4 vσ,τ ← p r o b a b i l i t i e s to reach 1−s ink in Gσ,τ
5 repeat
6 pick i ∈ Vmax s . t . vσ,τ (i) < max(vσ,τ (j), vσ,τ (k)) where j ,k are i t s ch i l d r en
7 σ′(i) ← argmax{vσ,τ (j), vσ,τ (k)} , σ′(i′′) = σ(i′′) when i′′ ∈ Vmax with i′′ 6= i
8 τ ′ ← an optimal s t r a t e gy wrt σ′

9 σ ← σ′

10 τ ← τ ′

11 vσ,τ ← p r o b a b i l i t i e s to reach 1−s ink in Gσ,τ
12 until (σ, τ) i s opt imal

gives the same value. It remains to show that the value vector v is obtained by an optimal
pair.

For each strategy σ of max, the value minτ vσ,τ (i) is given by an optimal strategy
τ(σ) w.r.t σ in the min-MDP Gσ (from the analogous theorem studied in the MDP case).
Therefore, maxσ minτ vσ,τ (i

′′) = maxσ vσ,τ(σ)(i
′′) for all vertices i′′. Suppose σ is a strategy

that gives the maximum at some i′′. If (σ, τ(σ)) is not optimal, then there is a max vertex i
where the optimality equation is not satisfied. We can then get a strategy σ′ as in Lemma 7
such that vσ,τ (i

′′) ≤ vσ′,τ(σ′)(i
′′), with the inequality being strict when i′′ = i. Therefore,

we can assume that σ satisfies optimality equations. In particular, the same optimal pair
(σ, τ(σ)) gives the maximum at every vertex i.

Lemma 8 For every vertex i, we have maxσ minτ vσ,τ (i) = minτ maxσ vσ,τ (i).

Proof
For each strategy σ, we have minτ vσ,τ (i) ≤ minτ maxσ vσ,τ (i). Therefore,
maxσ minτ vσ,τ (i) ≤ minτ maxσ vσ,τ (i). We need to show the other direction.

Suppose (σ∗, τ ∗) is an optimal pair. We have maxσ minτ vσ,τ = vσ∗,τ∗ from Theorem 4.
Now: minτ maxσ vσ,τ (i) ≤ maxσ vσ,τ∗(i). But, maxσ vσ,τ∗ will be given by an optimal
strategy in the MDP Gτ∗ . From the fact that every pair of optimal strategies gives the
same value vector (Lemma 6), we can say maxσ vσ,τ∗ = vσ∗,τ∗ . This proves max min equals
min max.

�

2 Algorithms

Strategy improvement. Algorithm 1.1 gives the procedure. At each iteration, we get
a switched strategy of Max. From Lemma 7, this gives a strictly better value vector. This
shows that no pair is repeated, and hence the process terminates. When it terminates, it
necessarily gives an optimal pair.

Quadratic programming.
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Value iteration.
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