Tutorial on Mean-Payoff Games

1. Let $p_{1}, p_{2}, q_{1}, q_{2}$ non-zero integers with $1 \leqslant q_{1}, q_{2} \leq n$.

$$
\left|\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}\right|=\frac{\left|p_{1} q_{2}-p_{2} q_{1}\right|}{q_{1} q_{2}}
$$

When $q_{1}=q_{2}=q($ say :

$$
\left|\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}\right|=\frac{\left|p_{1}-p_{2}\right|}{q} \geqslant \frac{1}{q} \geqslant \frac{1}{n} \geqslant \frac{1}{n(n-1)}
$$

When $\quad q_{1} \neq q_{2}$:

$$
\begin{aligned}
q_{1} q_{2} & \leqslant n(n-1) \\
\therefore & \left|\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}\right|=\frac{\left|p_{1} q_{2}-p_{2} q_{1}\right|}{q_{1} q_{2}} \geqslant \frac{1}{q_{1} q_{2}} \geqslant \frac{1}{n(n-1)}
\end{aligned}
$$

This shows that there cannot be two rationals of the required form in the $\frac{1}{n(n-1)}$ interval.
2. We will use the result that value $v(a)$ is the same as the value in the first-Eycle version of the game.

- Weight of any "first cycle"

$$
\begin{aligned}
& =\frac{\text { Sum of weights on edges }}{\# \text { edges in the cycle }} \\
& \in[-w, w]
\end{aligned}
$$

- via) equals the weight of some first cycle that is obtained by a pair of optimal strategies.

These two observations prove the required statements.
3. Value $=1$

Value iteration algorithm: $\quad k=4 n^{3} W=4 \times 3^{3} \times 1$

$$
\begin{array}{l|lllll}
0 & 0 & 1 & 2 & & 4 \times 3^{3} \\
1 & 0 & 1 & 2 & \cdots & 4 \times 3^{3} \\
2 & 0 & 1 & 2 & & 4 \times 3^{3} \\
& v_{0} & v_{1} & v_{2} & & v_{k}
\end{array}
$$

$v^{\prime}=\frac{v_{k}}{k}=1$ for all vertices.
v is the unique rational no. between:

$$
\begin{gathered}
1-\frac{1}{2 \cdot 3 \cdot 2}, 1+\frac{1}{2 \cdot 3 \cdot 2} \\
{\left[1-\frac{1}{12}, 1+{ }^{1} / 12\right]}
\end{gathered}
$$

- Algorithm will conclude 1 as the answer.

4. Similar as above.

$$
k=4 n^{3}
$$

Algorithm will sun for $4 n^{3}$ steps:

$$
v^{\prime}=\frac{v_{k}}{k}=1
$$

By similar analysis algorithm will conclude 1 as final answer.

After $4 n^{3}$ steps. each vertex has value $4 n^{2}$.

$$
\therefore v^{\prime}=\frac{v_{k}}{k}=\frac{4 n^{2}}{4 n^{3}}=\frac{1}{n} \quad \text { Value will also be } y_{n} \text {. }
$$

\# Vertices $=(n-1)+n+n=3 n-1$
Value at the start vertex $=1 / n-1$
4 This comer from the cycle of lengthen $n-1$.
However, due to the large prefix for the n-cycle, the value due to the n-cycle is higher for some number of iterations after which the $n-1$ cycle takes over. We will find the position where this happens.
Suppose we perform $m \cdot n$ iterations.
Value due to the n-cycle $=n W+(m-1)$.
In there m steps, suppose we have unfolded the $(m-1)$ uncle m^{\prime} times. Value due to the $(n-1)-$ cycle $=m^{\prime}$

We have

$$
m^{\prime}(n-1)+c=m n \quad \text { for some } 0 \leq c<n-1
$$

We want.

$$
m^{\prime} \geqslant n w+(m-1)
$$

$$
\text { le, } \quad \frac{m n-c}{n-1} \geqslant n w+(m-1)
$$

$$
\begin{aligned}
m n-c & \geqslant n(n-1) w+(m-1)(n-1) \\
m n-c & \geqslant n(n-1) w+m n-m-n+1 \\
\therefore \quad m & \geqslant n(n-1) w-n+1+c \\
\Rightarrow \quad m \quad & \geqslant n(n-1) w-n+1 \quad \text { as } \quad c \geqslant 0
\end{aligned}
$$

\therefore No. of iterations needed to get the accurate value $=m n$

$$
\geqslant(n(n-1) w-n+1) n .
$$

8. Consider a simple cycle: $u_{1} \longrightarrow u_{2} \longrightarrow \cdots u_{m} \rightarrow u_{1}$

The sum of weights in the MPG equals: $\quad-(-n)^{p\left(u_{1}\right)}-(-n)^{p\left(u_{2}\right)}$

$$
-\cdots-(-n)^{p\left(u_{m}\right)}
$$

If $p(u)$ is odd, then $-(-n)^{p(u)}>0$
When the max priority is odd, we have one term $-(-n)^{d}=n^{d}$

Every term with smaller priority is between $-n^{(d-1)}$ and $-n^{(d-1)}$
There are at most n terms.
\therefore The sum of weights of a cycle with max priority odd is >0.

- For the MPG, we can look at the first cycle version.

Any winning strategy for P_{1} in the Parity game will ensure that all cycles have max priority odd. This strategy will give $V(a)>0$ in the MPG.

- For the converse. Suppose we have a simple cycle $u_{1} \rightarrow u_{2} \rightarrow \cdots u_{m} \rightarrow u_{1}$

$$
\text { s.t. }-(-n)^{p\left(u_{1}\right)}-(-n)^{p\left(u_{2}\right)}-\cdots-(-n)^{p\left(u_{m}\right)}>0
$$

Then the max priority should be odd.
\therefore Winning strategy in MPG gives winning strategy in Parity game.

