1. In the following Markov Chain, find the probability to reach 1-sink from each node:

Node 3 is the 0 -sink and node 4 is the 1 -sink. Triangle shaped nodes are average vertices - each outgoing edge from a triangle node has $\frac{1}{2}$ probability.
2. Consider a Markov Chain G with states $\{1,2, \ldots, n-1, n\}$, with $n-1$ and n being sink states. Assume that G is stopping, that is, from every state there is a non-zero probability to reach either $n-1$ or n. Let $\bar{\lambda}$ be the vector denoting probabilities to reach n from each vertex.

Consider a modified Markov Chain G^{\prime} : its states are $\left\{1,2, \ldots, n, 1^{\prime}, 2^{\prime}, \ldots,(n-2)^{\prime}\right\}$; the edges from unprimed states $\{1, \ldots, n\}$ are the same as in G; edges for primed states are as follows - if vertex i has edges to j, k with $j \geq k$, then i^{\prime} has edges $i^{\prime} \rightarrow j$ and $i^{\prime} \rightarrow k^{\prime}$ (essentially, one edge goes to unprimed copy, and one edge goes to primed copy, and if $j=k$, both go to unprimed copy). If k equals $n-1$ or $n-2$, then $i^{\prime} \rightarrow k$, instead of $i^{\prime} \rightarrow k^{\prime}$.
Find the probabilities to reach n in G^{\prime}, in terms of $\bar{\lambda}$.
3. Run the strategy improvement algorithm for the following MDP, starting from the strategy marked in red. Node 8 and 7 are the 1 -sink and 0 -sink respectively.

4. Run value iteration for the above MDP. What is the LP corresponding to the above MDP?
5. Consider the following modification of the strategy improvement algorithm:

```
algorithm modified - strategy - improvement(G)
    \sigma}\leftarrow\mathrm{ an arbitrary positional strategy
    v\sigma}\leftarrow\mp@code{probabilities to reach 1-sink in G\sigma
    repeat
        for every node i\in Vmax
            \sigma}(i):= arg max{v\sigma(j),\mp@subsup{v}{\sigma}{}(k)} where j and k are children of 
        \sigma\leftarrow\mp@subsup{\sigma}{}{\prime}
        v\sigma}\leftarrow\mathrm{ probabilities to reach 1-sink in G}\mp@subsup{G}{\sigma}{
    until }\sigma\mathrm{ is optimal
```

In the normal strategy improvement algorithm, during each iteration only one node $i \in V_{\max }$ is picked and the strategy is made to point to the child with bigger value. In the above algorithm, every node is made to point to the maximum child.

Assume that G is a stopping MDP. Is the above algorithm correct? Justify.

