Solve for:
$$v_2 = \frac{1}{2}v_1 + 1$$

 $v_1 = \frac{1}{2}v_2$

$$v_1 = \frac{1}{4} v_1 + \frac{1}{2}$$
 $\frac{3}{4} v_1 = \frac{1}{2}$
 $v_1 = \frac{2}{3}$
 $v_2 = \frac{1}{3}$

Equations for primed variables would be:

Notice that substituting $v_i = \overline{\lambda}(i)$ for all i satisties the equation.

In G': prob to reach n equals $\widetilde{\lambda}(i)$ for both i and i'.

Switch 3 to 6.

2.

Switch 2 to 5 $G_{12}: \qquad \begin{array}{c} 1 \\ \\ \end{array}$ $\begin{array}{c} 1 \\ \\ \end{array}$

final strategy.

At ith skrahon: 1/2 + 1/22 2:

Will converge in the limit to 1.

IP: minimize $x_1 + x_2 + \dots + x_6$ S.F. $x_7 = 0$, $x_8 = 1$ $x_6 = \frac{1}{2} x_7 + \frac{1}{2} x_8$ $x_5 = \frac{1}{2} x_6 + \frac{1}{2} x_8$ $x_4 = \frac{1}{2} x_5 + \frac{1}{2} x_8$ $x_3 \ge x_6$, x_7 $x_2 \ge x_3$, x_5 $x_1 \ge x_2$, x_4

5. Similar to the proof the normal "switch-one" also done in class-