LECTURE 3

PI	a	n	•
•			

- Permutations and combinations
 - with repetitions allowed
- Distributing objects into boxes

Reference:

Sections 6.5 of book:

DISCRETE MATHEMATICS

AND ITS APPLICATIONS

(7th edilion)

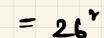
Example 1: How many strings of length 'r' can be formed

trom the uppercase letters of the English alphabet?

Example 1: How many strings of length 'r' can be formed

trom the uppercase letters of the English alphabet?

Using product rule:



No. Of r-permutations of a set of n distinct elementer

when repetitions are allowed is:

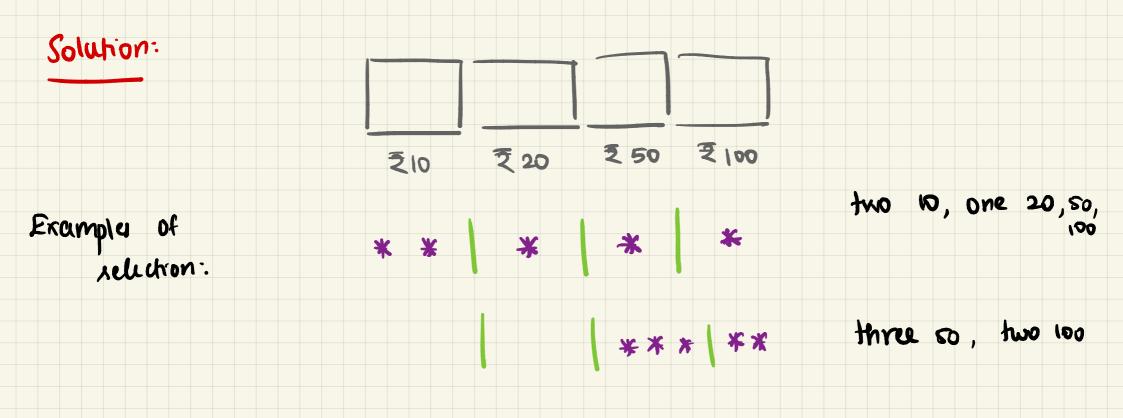
Example 2: A box contains some ₹10, ₹20, ₹50

and ₹100 moter. Assume that there are at least 5 notes

of each value. In how many ways can 5 notes

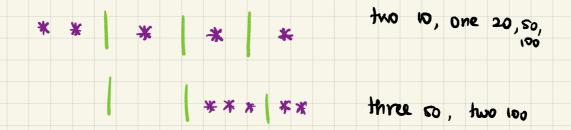
be Selected? Noter of same denomination are

indistinguishable.



Each selection can be denoted using a picture that

arrange 5 * and 3



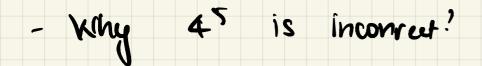
Sub-question: Find the no. of strings of length 8 over 1 and *

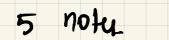
that contain exactly five *.

8 position. To chouse 3 positions for the 1

This can be done in 8C2 ways

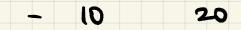
= 805

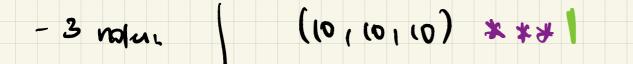




-> Notes are not ordered.

1 There is no first note, second note, etr.



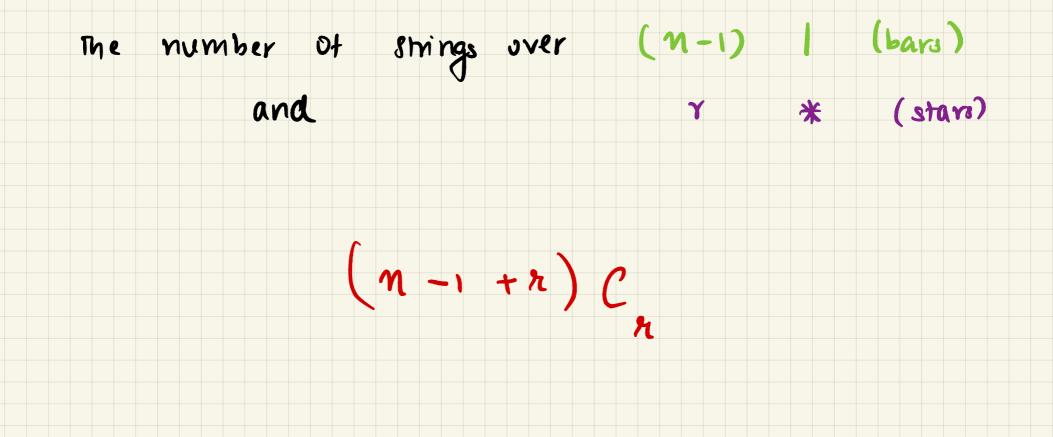


COMBINATIONS WITH REPETITIONS:

No. of r-combinations of n (distinct) objects

1 2 × 1 ···· 1 n * * * * *

where repetitions are allowed is the same as



Example 3: A shop har 5 different kinds of cookin.

How many different ways can 3 coohies be choren?

Example 3: A shop har 5 different kind of cookin. How many different ways can 3 coohies be choren? Multiple cookies of the same type can be schehe. Solution: Cookie 1 Cookie 2 Cookie 3 Cookie 4 Cookie 5 Choose three of them: * * * Arrange 4 and 3 *

7 C₃

Example 4: How many solutions dous

 $\lambda_1 + \lambda_2 + \lambda_3 = 15$ have where $\lambda_{11} + \lambda_{2}, \lambda_{3}$ are non-negative integers?

Example 4: How many solutron dous

$\lambda_1 + \lambda_2 + \lambda_3 = 15$ have

where n_1, n_2, n_3 are non-negative integere?

15 * and 2 1

Permutations and Combinations:

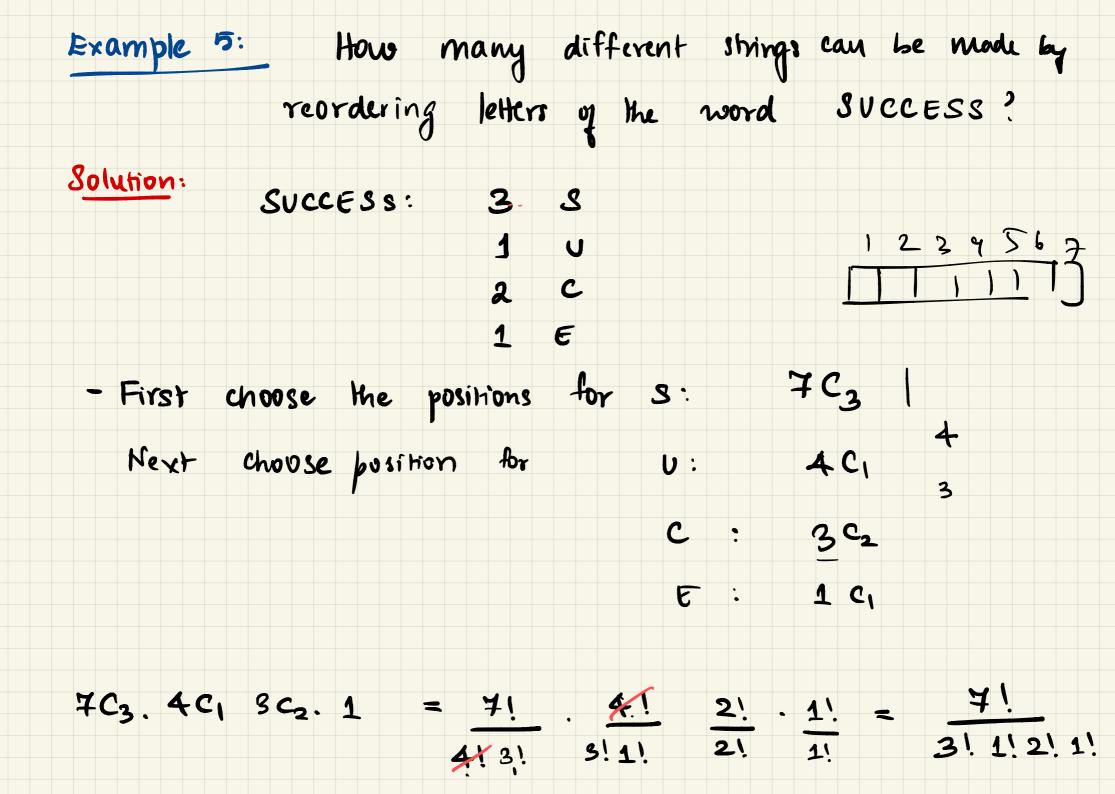
Repetition allowed?

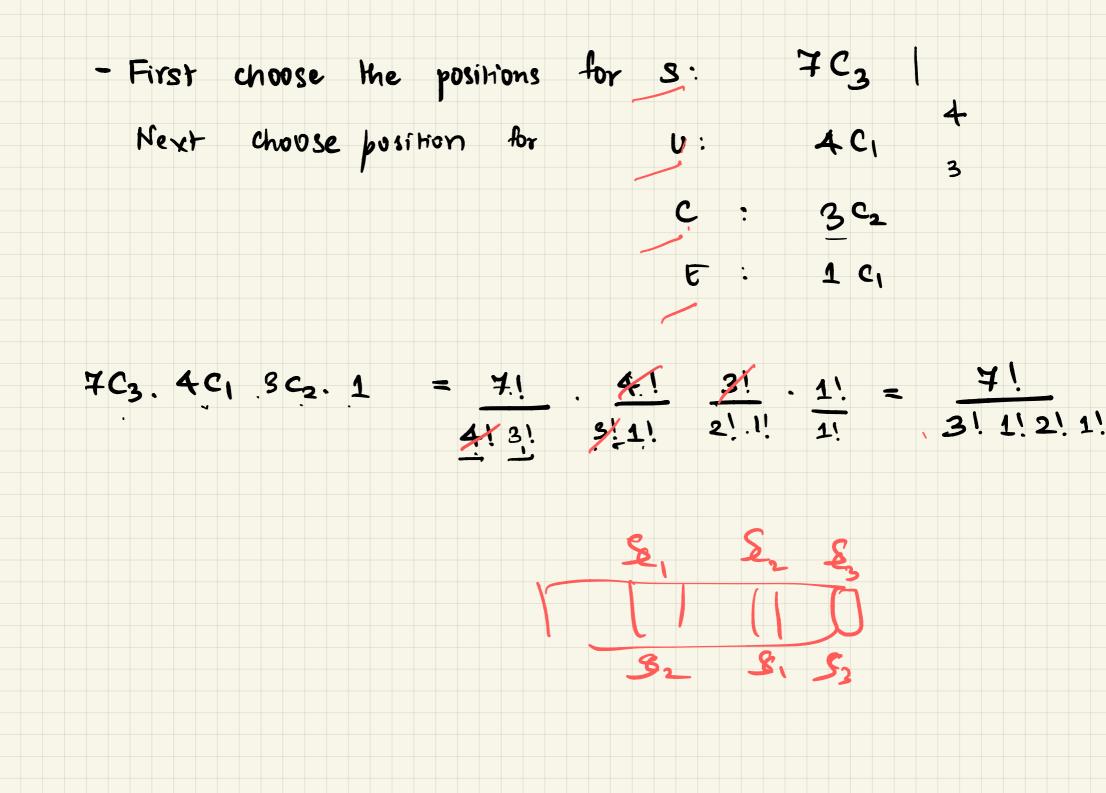
nPr

nr

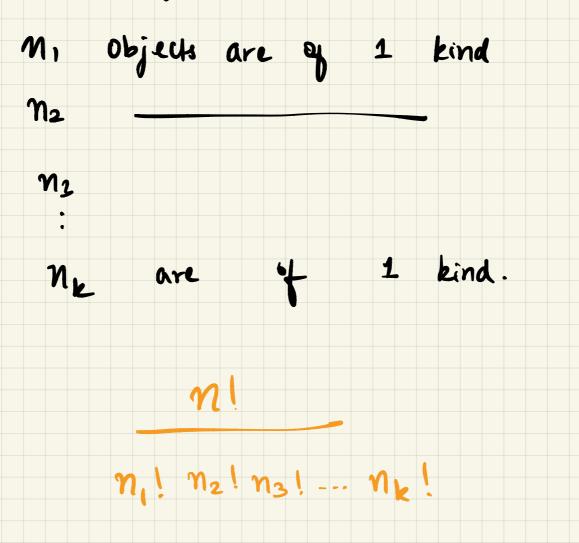
- Nlo Y-permutations
- Yes r - permutation
- r-combination No
- $\frac{nC_r}{(n-1+r)C_r}$ r-combinations Yes

Example 5: How many different strings can be made by reordering letters of the word SUCCESS?





Permutations with indistinguishable objects:



Distributing objects to bores:

Example 6: There are 10 distinct objeus to

be placed in 4 distinct boxes

such that Box 1 contains 3 Objects

Box 2 contains 4 objects

Box 3 contains 1

Box 4 containe 2.

In how many ways can this be done?

PAUSE

Solution:

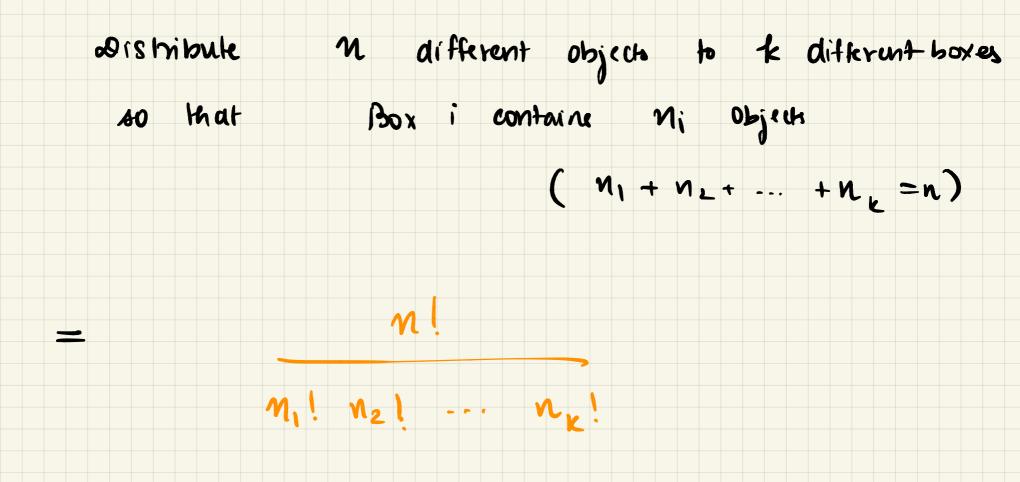
Object 1 Object 2 Obj. 3 Obj. 4 Obj. 5 Obj. 6 Obj. 7 Obj. 8 06.9 06.10

A string of length 10 containing 3

 $\frac{10!}{3! 4! 1! 2!} = 10C_3 \cdot 7C_4 \cdot 3C_1 \cdot 2C_2$

Distributing distinguishable objects to distinguishable bores:

No of ways to:

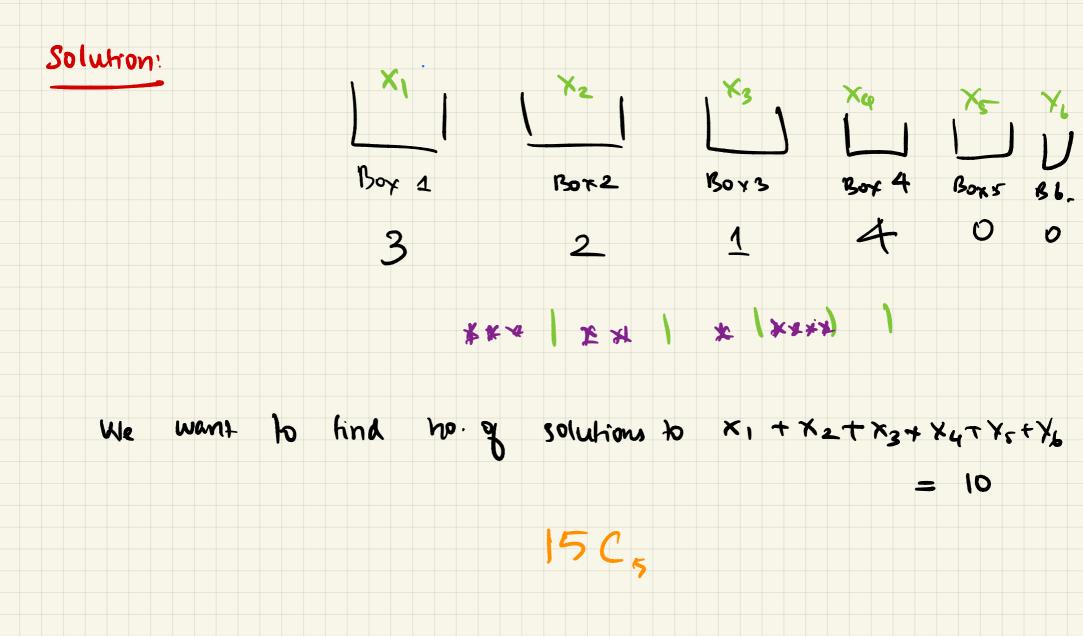


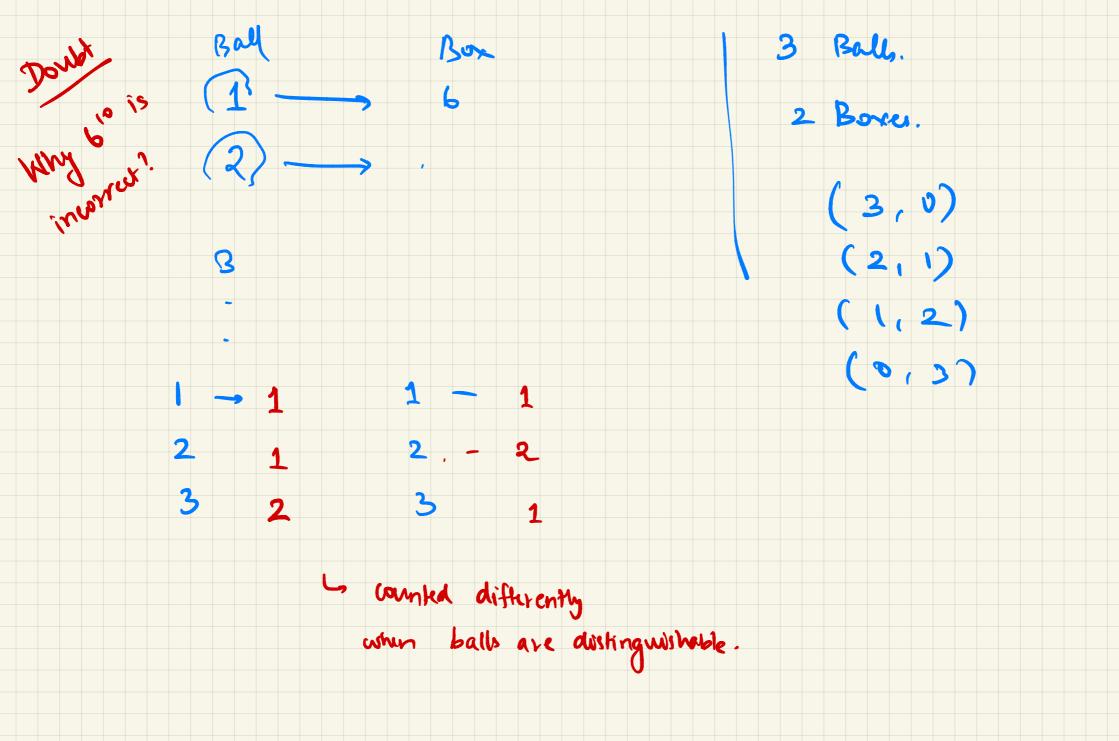
Example 7: How many ways are there to place

10 identical balls into 6 different boxes?

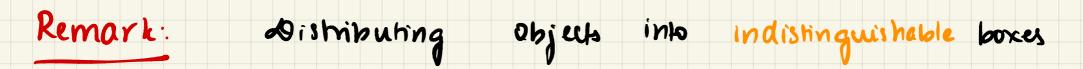
Example 7: How many ways are there to place

10 identical balle into 6 different boxes?





orstributing indistinguishable objeus into distinguishable boxes No. eg varge to distribute n indistinguishable objects into k distinguishable boxes < \mathbf{y} (n+k-i)Ck-isome as arranging K-1 bars and in stars.



is more difficult.

Please read the book if you're interested.

Summary:

- Permutation with repetitions
- combinations with repetitions
- Permutations with indistinguishable Object.
- Distributing Objects (distinguishable / indistinguishable)

into distinguishable boxu