
Collective Dynamics

for Electrical Flow Estimation

Vincenzo Bonifaci

Istituto di Analisi dei Sistemi ed Informatica (IASI-CNR)
Consiglio Nazionale delle Ricerche, Italy

joint work with
L. Becchetti (Sapienza U. Rome), E. Natale (MPII Saarbrücken)

CAALM, Chennai Mathematical Institute
21–25 January 2019

V. Bonifaci (IASI-CNR) Dynamics for Electrical Flows 21/01/2019 1 / 32



Combinatorial network optimization

Fundamental examples of network optimization problems:

Maximum Flow
Find a maximum number of
edge-disjoint s-t paths

s
t

Shortest Path
Find an s-t path of minimum
length

s
t

Classic algorithms for Maximum Flow and Shortest Path are
combinatorial: manipulate discrete objects (nodes, edges, paths. . . )

Computational complexity expressed in terms of:

n: number of nodes

m: number of edges

V. Bonifaci (IASI-CNR) Dynamics for Electrical Flows 21/01/2019 2 / 32



Hybrid combinatorial-numerical methods

Since 2004, a new generation of fast algorithms is emerging:

Reduce network problems to solving equations of the form

L x = b

where L ∈ Rn×n is a graph Laplacian matrix

Theorem (Spielman-Teng 2004 and subsequent work)

A Laplacian linear system can be solved up to error ε in time

O

(
m · log n · log

1

ε

)
= Õ(m)

“Laplacian paradigm”: build around this algorithmic primitive
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The	Laplacian	Paradigm

Directly	related:
Elliptic systems

Few	iterations:	
Eigenvectors,
Heat	kernels

Many	iterations	/	
modify	algorithm
Graph	problems
Image	processing

Slide by Richard Peng
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Electrical flows as a network primitive

A representative example of a Laplacian system:

Computing currents and voltages in a resistive electrical network

A crucial subroutine in many fast network algorithms:

Maximum flows (Christiano et al. STOC 2010)

Shortest paths with negative weights (Cohen et al. SODA 2017)

Network sparsification (Spielman and Srivastava 2011)

Also the basis of some models of biological computation:

Physarum polycephalum slime mold (B. et al. SODA 2012)

Ant colonies (Ma et al. 2013)
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1 Laplacian framework

2 Electrical flows

3 Decentralized solution of Lp = b
Jacobi’s method
Token diffusion
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The Laplacian matrix

xuv : weight of an edge u ∼ v
du: total weight of the edges around u (volume or gen. degree)

Lu,v =


du if u = v

−xuv if u ∼ v

0 otherwise.

1

2

3

L =

 2 −1 −1
−1 1 0
−1 0 1

 = D − A

D = diag(d)

A = weighted adjacency matrix
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The Laplacian matrix II

The Laplacian is positive semidefinite: v>Lv ≥ 0 for any v ∈ Rn

L = BXB> where:

B is the n ×m incidence matrix, e.g.:

B =

edges︷ ︸︸ ︷ +1 +1
−1 0
0 −1

 nodes

X is a diagonal m ×m weight matrix, e.g.:

X =

(
x1,2 0
0 x1,3

)}
edges
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Normalized Laplacian

The normalized Laplacian is

L = D−1/2 LD−1/2

where

D =


d1 . . . 0
0 . . . 0
. . . . . . . . .
0 . . . dn


For d-regular graphs, L = L/d

The eigenvalues of L satisfy

0 = λ1 ≤ λ2 ≤ . . . ≤ λn ≤ 2

λ2 > 0⇔ the network is connected
(1)
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Cuts and conductance

A cut is a bipartition of the nodes into two sets (S ,N \ S)

The weight of a cut is the total weight of edges with one endpoint in
S and one in N \ S :

∑
u∈S,v∈N\S xuv

Conductance of a graph

g
Φ g =

i g

Ojk(g)

Φ∗ n = min
Sop(q)r

X
0

Φ g

Conductance of S :

φ(S) =
x(S ,N \ S)

d(S)
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Cuts with small conductance

The conductance of a graph is

φG = min
d(S)≤d(N)/2

φ(S)

Cheeger inequality (1971; 1985)

λ2

2
≤ φG ≤

√
2λ2

where λ2 is the second smallest eigenvalue of the normalized
Laplacian L
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1 Laplacian framework

2 Electrical flows

3 Decentralized solution of Lp = b
Jacobi’s method
Token diffusion
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Electrical flows

Undirected graph G

N : nodes, E : edges

s, t ∈ N : source and sink of flow

edge e has conductance xe

equivalently, resistance re = 1/xe

+s − t

1
x1

1
x2

1
x3

1
x4

1
x5
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Poisson’s equation

The node potentials p ∈ Rn are the solutions to Poisson’s equation:

L · p = b with (say) bu =


+1 if u = s

−1 if u = t

0 otherwise

A flow is a vector f ∈ Rm that satisfies flow conservation:

B · f = b (B = incidence matrix)

The electrical flow q ∈ Rm is related to p by Ohm’s law:

q = X · B> · p
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Example: a parallel-links network

s t

x1

x2

x3

B =

(
+1 +1 +1
−1 −1 −1

)
X =

 x1 0 0
0 x2 0
0 0 x3


L(x) = BXB> =

(
1 −1
−1 1

)∑
e∈E

xe

ps(x) =

(∑
e∈E

xe

)−1

pt(x) = 0 qj(x) =

(∑
e∈E

xe

)−1

xj
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Combinatorial flows vs. electrical flow

For unit s-t flows f ∈ Rm:

The shortest path minimizes ‖f ‖1

The electrical flow minimizes ‖f ‖2

The (normalized) maximum flow minimizes ‖f ‖∞

s

t

1

1

minimize ‖f ‖1

s.t. Bf = b

s

t

2/5

2/5

3/5

2/5

3/5

minimize ‖f ‖2

s.t. Bf = b

s

t

1/2

1/2

1/2

1/2

1/2

minimize ‖f ‖∞
s.t. Bf = b
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From electrical flows to maximum flow

Reducing maximum flow to electrical flows (Christiano et al. 2010)
Intuition: increase the resistance of edges with excess flow

Algorithm sketch
Set resistance re ← 1 for each edge e

Repeat:
1 Laplacian solve: find the electrical flow q with respect to r
2 Update: increase re proportionally to reqe

Process converges to a maximum flow
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From electrical flows to shortest path

Reducing shortest path to electrical flows (Becchetti et al. 2013)
Intuition: increase the conductance of edges with excess flow

Algorithm sketch
Set conductance xe ← 1 for each edge e

Repeat:
1 Laplacian solve: find the electrical flow q with respect to x
2 Update: increase xe proportionally to qe − xe

Process converges to a shortest path flow
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1 Laplacian framework

2 Electrical flows

3 Decentralized solution of Lp = b
Jacobi’s method
Token diffusion
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Decentralized solution of Laplacian systems

Consider a connected network G with weights (conductances) x ∈ Rm

Can we solve L(x) p = b through a decentralized process?

We consider two approaches:

1 Jacobi’s method (deterministic; send/receive real numbers)

2 Token diffusion (stochastic; send/receive tokens)
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Jacobi’s method

An iterative method that can be applied to any positive-definite linear
system; in our setting,

p(k+1)
u =

bu +
∑

v∼u xuvp
(k)
v∑

v∼u xuv
, k = 0, 1, . . .

Node u maintains information of p
(k)
u and bu

To update node u, need information only from the neighbors of u

It is well-known that Jacobi’s method is convergent and

L · p(k) → b as k →∞

But how fast in terms of the network parameters?
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Convergence rate of Jacobi’s method

Theorem 1
The error in Jacobi’s method converges to zero at rate

O(max(|1− λ2|k , |1− λn|k))

where 0 = λ1 ≤ λ2 ≤ . . . ≤ λn ≤ 2 are the eigenvalues of the
normalized Laplacian L of the network.

Corollary: when λn ≤ 1, the error is (1− 1
2
φ2
G )k where φG is the

conductance of the graph G
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Proof sketch

Lp = (D − A)p = b ⇒ p = (D−1A)p + D−1b

Transition matrix: P = D−1A

Jacobi’s iteration: p(k+1) = Pp(k) + D−1b

⇒ A fixed point p is automatically a solution to Lp = b

Error at step k : e(k) := p − p(k) = e
(k)
⊥ + c (k)1

What really matters is e
(k)
⊥ ; we do not care about c (k), since L1 = 0 !
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Proof sketch

If we unroll e
(k)
⊥ (calculation omitted) we get

e
(k+1)
⊥ =

(
I − 1

n
11>

)
Pke

(k)
⊥

i.e., e
(k+1)
⊥ equals Pke

(k)
⊥ without its component parallel to 1

⇒ The behavior of the error is dictated by the eigenstructure of P
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Proof sketch

P := D−1A is similar to N := D−1/2AD−1/2

(so Pk is similar to N k)

Each eigenvector ui of N corresponds to an eigenvector vi of P
and vice versa, via ui = D1/2vi

ui and vi are associated to the same eigenvalue, call it ρi , of N
and P

ρ1 = 1 ≥ ρ2 ≥ . . . ≥ ρn ≥ −1

ρi = 1− λi since L = I −N
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Concluding the proof

∥∥∥e(k)
⊥

∥∥∥ =

∥∥∥∥(I − 1

n
11>)Pke

(0)
⊥

∥∥∥∥
=

∥∥∥∥(I − 1

n
11>)D−1/2NkD+1/2e

(0)
⊥

∥∥∥∥
=

∥∥∥∥∥(I − 1

n
11>)D−1/2(

n∑
i=2

ρki uiu
>
i )D+1/2e

(0)
⊥

∥∥∥∥∥
≤
∥∥D−1/2

∥∥∥∥∥∥∥
n∑

i=2

ρki uiu
>
i

∥∥∥∥∥∥∥D1/2
∥∥∥∥∥e(0)

⊥

∥∥∥
≤
√

dmax

dmin
max(|ρ2| , |ρn|)k

∥∥∥e(0)
⊥

∥∥∥ .
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A stochastic diffusion-based model

Instead of continuous flows, consider flow particles (tokens)

s

t

Repeat forever:

1 insert one new token at the source

2 each token moves from node u to neighbor v with
probability proportional to the weight xuv

3 remove all tokens at the sink, if any
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Why token diffusion?

Well-known analogy between the random walk and the electrical flow

Theorem [e.g. Doyle-Snell (1984); Tetali (1991)]

For a single random walker, and any node u,

E[# of visits to u before reaching sink] = du · pu

where p is the solution to Lp = b with pt = 0

We use the same intuition but with many “staggered” random walks
⇒ Local instead of global estimator
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Correctness of token diffusion

Theorem 2

For our token diffusion process, the number of tokens, Z
(k)
u , on node

u at time k satisfies

E
[
Z (k)
u

]
→ du · pu as k →∞

where p is the solution to Lp = b with pt = 0

⇒ Local number of tokens at u can be used to estimate the local
node potential pu

We use V
(k)
u := Z

(k)
u /du as an estimate of pu
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Proof idea

We compare our estimator V
(k)
u := Z

(k)
u /du against the k-th iterate

of a modified Jacobi iteration:

p(0)
u = 0 for all u ∈ N ,

p(k+1)
u =

{
1
du

(∑
v∼u xuvp

(k)
v + bu

)
if u 6= t (sink),

0 if u = t (sink).

By the way diffusion is defined: E[V
(k)
u ] = p

(k)
u (proof by induction)

Hence E[V
(k)
u ]→ pu as k →∞, if we can prove p

(k)
u → pu
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Proof idea

We can rewrite the iteration as

p(k+1) = Pp(k) + D−1b

with P and b obtained by zeroing out entries on row/column t (sink).

Lemma
The spectral radius of P , ρ, satisfies

ρ = 1−
n∑

i=1

vi · Pi ,t < 1,

where v is the left dominant eigenvector of P (with ‖v‖1 = 1).

Hence the iterations converge to a fixed point
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Time complexity

Theorem 3 (Time complexity)∥∥p(k) − p
∥∥ ≤ (1− 1

8

dmin

dmax

d(t)

d(G )
· λ2

)k

where

G is G − t

d(·) is the volume in G

λ2 is the 2nd smallest eigenvalue of L(G )

Example. If G is regular,

∥∥p(k) − p
∥∥ ≤ (1− λ2

8n

)k
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Message complexity

Theorem 4 (Message complexity)

As k →∞, the expected message complexity per round of Token
Diffusion is

O(n dmax E)

where E = p>Lp is the energy of the electrical flow.
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Stochastic accuracy of the estimator

Previous results concern expected values
Are the estimators accurate with high probability?

Definition. X gives an (ε, δ)-approximation of Y if

Pr[|X − Y | > εY ] ≤ δ

Lemma
If we inject M ≥ 1 tokens per round (instead of 1), then for any k , u
such that

p(k)
u ≥

3

ε2Mdu
ln

2

δ
,

the estimator V
(k)
u /M provides an (ε, δ)-approximation of p

(k)
u .
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Summary

Methods based on electrical flows can be used to design fast and
conceptually simple network optimization algorithms

Electrical flows were known to be effectively computable in a
centralized setting

We give decentralized methods and bound their time and
message complexity as a function of network parameters

Thanks for the attention!
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