Collective Dynamics for Electrical Flow Estimation

Vincenzo Bonifaci

Istituto di Analisi dei Sistemi ed Informatica (IASI-CNR) Consiglio Nazionale delle Ricerche, Italy

joint work with L. Becchetti (Sapienza U. Rome), E. Natale (MPII Saarbrücken)

CAALM, Chennai Mathematical Institute 21–25 January 2019

Combinatorial network optimization

Fundamental examples of network optimization problems:

Maximum Flow

Find a maximum number of edge-disjoint *s*-*t* paths

Shortest Path

Find an *s*-*t* path of minimum length

Classic algorithms for Maximum Flow and Shortest Path are combinatorial: manipulate discrete objects (nodes, edges, paths...)

Computational complexity expressed in terms of:

- n: number of nodes
- *m*: number of edges

Hybrid combinatorial-numerical methods

Since 2004, a new generation of fast algorithms is emerging: Reduce network problems to solving equations of the form

$$Lx = b$$

where $L \in \mathbb{R}^{n \times n}$ is a graph Laplacian matrix

Theorem (Spielman-Teng 2004 and subsequent work) A Laplacian linear system can be solved up to error ϵ in time $O\left(m \cdot \log n \cdot \log \frac{1}{\epsilon}\right) = \tilde{O}(m)$

"Laplacian paradigm": build around this algorithmic primitive

The Laplacian Paradigm

Directly related:

Elliptic systems

Few iterations: Eigenvectors, Heat kernels

Many iterations / modify algorithm Graph problems Image processing

Slide by Richard Peng

Dynamics for Electrical Flows

A representative example of a Laplacian system:

Computing currents and voltages in a resistive electrical network

A crucial subroutine in many fast network algorithms:

- Maximum flows (Christiano et al. STOC 2010)
- Shortest paths with negative weights (Cohen et al. SODA 2017)
- Network sparsification (Spielman and Srivastava 2011)

Also the basis of some models of biological computation:

- Physarum polycephalum slime mold (B. et al. SODA 2012)
- Ant colonies (Ma et al. 2013)

2 Electrical flows

- Jacobi's method
- Token diffusion

2 Electrical flows

3 Decentralized solution of Lp = b

- Jacobi's method
- Token diffusion

The Laplacian matrix

 x_{uv} : weight of an edge $u \sim v$ d_u : total weight of the edges around u (volume or gen. degree)

$$L_{u,v} = \begin{cases} d_u & \text{if } u = v \\ -x_{uv} & \text{if } u \sim v \\ 0 & \text{otherwise.} \end{cases}$$

$$L = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} = D - A$$

$$D = \text{diag}(d)$$

$$A = \text{weighted adjacency matrix}$$

The Laplacian matrix II

The Laplacian is positive semidefinite: $v^{\top}Lv \ge 0$ for any $v \in \mathbb{R}^n$

- $L = BXB^{\top}$ where:
 - B is the $n \times m$ incidence matrix, e.g.:

$$B = \overbrace{\left(egin{array}{c} +1 & +1 \ -1 & 0 \ 0 & -1 \end{array}
ight)}^{ ext{edges}}$$
 nodes

• X is a diagonal $m \times m$ weight matrix, e.g.:

$$X=\left(egin{array}{cc} x_{1,2} & 0 \ 0 & x_{1,3} \end{array}
ight)
ight\}$$
edges

Normalized Laplacian

The normalized Laplacian is

$$\mathcal{L} = D^{-1/2} L D^{-1/2}$$

where

$$D=\left(egin{array}{cccc} d_1&\ldots&0\ 0&\ldots&0\ \ldots&\ldots&\ldots\ 0&\ldots&d_n\end{array}
ight)$$

For *d*-regular graphs, $\mathcal{L} = L/d$

The eigenvalues of ${\cal L}$ satisfy

$$0 = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n \le 2$$
$$\lambda_2 > 0 \Leftrightarrow \text{ the network is connected}$$

(1)

A cut is a bipartition of the nodes into two sets $(S, N \setminus S)$

The weight of a cut is the total weight of edges with one endpoint in S and one in $N \setminus S$: $\sum_{u \in S, v \in N \setminus S} x_{uv}$

Conductance of *S*:

$$\phi(S) = \frac{x(S, N \setminus S)}{d(S)}$$

The conductance of a graph is

$$\phi_G = \min_{d(S) \le d(N)/2} \phi(S)$$

where λ_2 is the second smallest eigenvalue of the normalized Laplacian ${\cal L}$

Laplacian framework

2 Electrical flows

3 Decentralized solution of Lp = b

- Jacobi's method
- Token diffusion

Electrical flows

- Undirected graph G
- N: nodes, E: edges
- s, $t \in N$: source and sink of flow
- edge *e* has conductance *x_e*
- equivalently, resistance $r_e = 1/x_e$

Poisson's equation

The node potentials $p \in \mathbb{R}^n$ are the solutions to Poisson's equation:

$$\boxed{L \cdot p = b} \qquad \text{with (say) } b_u = \begin{cases} +1 & \text{if } u = s \\ -1 & \text{if } u = t \\ 0 & \text{otherwise} \end{cases}$$

A flow is a vector $f \in \mathbb{R}^m$ that satisfies flow conservation:

$$B \cdot f = b \qquad (B = \text{ incidence matrix})$$

The electrical flow $q \in \mathbb{R}^m$ is related to p by Ohm's law:

$$q = X \cdot B^{ op} \cdot p$$

Example: a parallel-links network

$$B = \begin{pmatrix} +1 & +1 & +1 \\ -1 & -1 & -1 \end{pmatrix} \qquad X = \begin{pmatrix} x_1 & 0 & 0 \\ 0 & x_2 & 0 \\ 0 & 0 & x_3 \end{pmatrix}$$
$$L(x) = BXB^{\top} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \sum_{e \in E} x_e$$
$$p_s(x) = \left(\sum_{e \in E} x_e\right)^{-1} \qquad p_t(x) = 0 \qquad q_j(x) = \left(\sum_{e \in E} x_e\right)^{-1} x_j$$

Combinatorial flows vs. electrical flow

For unit *s*-*t* flows $f \in \mathbb{R}^m$:

- The shortest path minimizes $\|f\|_1$
- The electrical flow minimizes $||f||_2$
- The (normalized) maximum flow minimizes $\left\|f
 ight\|_{\infty}$

Reducing maximum flow to electrical flows (Christiano et al. 2010) Intuition: increase the resistance of edges with excess flow

Algorithm sketch

- Set resistance $r_e \leftarrow 1$ for each edge e
- Repeat:

• Laplacian solve: find the electrical flow q with respect to r• Update: increase r_e proportionally to $r_e q_e$

Process converges to a maximum flow

Reducing shortest path to electrical flows (Becchetti et al. 2013) **Intuition**: increase the conductance of edges with excess flow

Algorithm sketch

- Set conductance $x_e \leftarrow 1$ for each edge e
- Repeat:

• Laplacian solve: find the electrical flow q with respect to x• Update: increase x_e proportionally to $q_e - x_e$

Process converges to a shortest path flow

Laplacian framework

2 Electrical flows

- Jacobi's method
- Token diffusion

Consider a connected network G with weights (conductances) $x \in \mathbb{R}^m$ Can we solve L(x) p = b through a decentralized process?

We consider two approaches:

- Jacobi's method (deterministic; send/receive real numbers)
- Iteration (stochastic; send/receive tokens)

An iterative method that can be applied to any positive-definite linear system; in our setting,

$$p_u^{(k+1)} = rac{b_u + \sum_{v \sim u} x_{uv} p_v^{(k)}}{\sum_{v \sim u} x_{uv}}, \qquad k = 0, 1, \dots$$

Node u maintains information of $p_u^{(k)}$ and b_u To update node u, need information only from the neighbors of uIt is well-known that Jacobi's method is convergent and

$$L \cdot p^{(k)} o b$$
 as $k o \infty$

But how fast in terms of the network parameters?

Theorem 1

The error in Jacobi's method converges to zero at rate

$$O(\max(|1-\lambda_2|^k, |1-\lambda_n|^k))$$

where $0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \leq 2$ are the eigenvalues of the normalized Laplacian \mathcal{L} of the network.

Corollary: when $\lambda_n \leq 1$, the error is $(1 - \frac{1}{2}\phi_G^2)^k$ where ϕ_G is the conductance of the graph G

$$Lp = (D - A)p = b \qquad \Rightarrow \qquad p = (D^{-1}A)p + D^{-1}b$$

Transition matrix: $P = D^{-1}A$

Jacobi's iteration:
$$p^{(k+1)} = Pp^{(k)} + D^{-1}b$$

 \Rightarrow A fixed point p is automatically a solution to Lp = b

Error at step
$$k:~e^{(k)}:=p-p^{(k)}=e_{\!\perp}^{(k)}+c^{(k)}\mathbf{1}$$

What really matters is $e_{\perp}^{(k)}$; we do not care about $c^{(k)}$, since $L\mathbf{1} = \mathbf{0}$!

If we unroll $e_{\perp}^{(k)}$ (calculation omitted) we get

$$e_{\perp}^{(k+1)} = \left(I - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top}\right)P^{k}e_{\perp}^{(k)}$$

i.e., $e_{\perp}^{(k+1)}$ equals $P^k e_{\perp}^{(k)}$ without its component parallel to $\mathbf{1}$ \Rightarrow The behavior of the error is dictated by the eigenstructure of P

$$P:=D^{-1}A$$
 is similar to $\mathcal{N}:=D^{-1/2}AD^{-1/2}$ (so P^k is similar to \mathcal{N}^k)

- Each eigenvector u_i of N corresponds to an eigenvector v_i of P and vice versa, via u_i = D^{1/2}v_i
- u_i and v_i are associated to the same eigenvalue, call it ρ_i , of \mathcal{N} and P
- $\rho_1 = 1 \ge \rho_2 \ge \ldots \ge \rho_n \ge -1$

•
$$\rho_i = 1 - \lambda_i$$
 since $\mathcal{L} = I - \mathcal{N}$

Concluding the proof

$$\begin{split} \left\| e_{\perp}^{(k)} \right\| &= \left\| (I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}) P^{k} e_{\perp}^{(0)} \right\| \\ &= \left\| (I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}) D^{-1/2} N^{k} D^{+1/2} e_{\perp}^{(0)} \right\| \\ &= \left\| (I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}) D^{-1/2} (\sum_{i=2}^{n} \rho_{i}^{k} u_{i} u_{i}^{\top}) D^{+1/2} e_{\perp}^{(0)} \right\| \\ &\leq \left\| D^{-1/2} \right\| \left\| \sum_{i=2}^{n} \rho_{i}^{k} u_{i} u_{i}^{\top} \right\| \left\| D^{1/2} \right\| \left\| e_{\perp}^{(0)} \right\| \\ &\leq \sqrt{\frac{d_{\max}}{d_{\min}}} \max(|\rho_{2}|, |\rho_{n}|)^{k} \left\| e_{\perp}^{(0)} \right\|. \quad \Box \end{split}$$

A stochastic diffusion-based model

Instead of continuous flows, consider flow particles (tokens)

Repeat forever:

- insert one new token at the source
- each token moves from node u to neighbor v with probability proportional to the weight x_{uv}
- I remove all tokens at the sink, if any

Well-known analogy between the random walk and the electrical flow

Theorem [e.g. Doyle-Snell (1984); Tetali (1991)]

For a single random walker, and any node u,

 $\mathbb{E}[\# \text{ of visits to } u \text{ before reaching sink}] = d_u \cdot p_u$

where *p* is the solution to Lp = b with $p_t = 0$

We use the same intuition but with many "staggered" random walks \Rightarrow Local instead of global estimator

Theorem 2

For our token diffusion process, the number of tokens, $Z_u^{(k)}$, on node u at time k satisfies

$$\mathbb{E}\left[Z_u^{(k)}
ight] o d_u \cdot p_u \qquad ext{as } k o \infty$$

where *p* is the solution to Lp = b with $p_t = 0$

 \Rightarrow Local number of tokens at *u* can be used to estimate the local node potential p_u

We use $V_u^{(k)} := Z_u^{(k)}/d_u$ as an estimate of p_u

We compare our estimator $V_u^{(k)} := Z_u^{(k)}/d_u$ against the *k*-th iterate of a modified Jacobi iteration:

$$p_u^{(0)} = 0 \text{ for all } u \in N,$$

$$p_u^{(k+1)} = \begin{cases} \frac{1}{d_u} \left(\sum_{v \sim u} x_{uv} p_v^{(k)} + b_u \right) & \text{ if } u \neq t \text{ (sink)}, \\ 0 & \text{ if } u = t \text{ (sink)}. \end{cases}$$

By the way diffusion is defined: $\mathbb{E}[V_u^{(k)}] = p_u^{(k)}$ (proof by induction) Hence $\mathbb{E}[V_u^{(k)}] \to p_u$ as $k \to \infty$, if we can prove $p_u^{(k)} \to p_u$

Proof idea

We can rewrite the iteration as

$$p^{(k+1)} = \underline{P}p^{(k)} + D^{-1}\underline{b}$$

with \underline{P} and \underline{b} obtained by zeroing out entries on row/column t (sink).

Lemma

The spectral radius of \underline{P} , $\underline{\rho}$, satisfies

$$\underline{\rho}=1-\sum_{i=1}^n v_i\cdot P_{i,t}<1,$$

where v is the left dominant eigenvector of <u>P</u> (with $||v||_1 = 1$).

Hence the iterations converge to a fixed point

V. Bonifaci (IASI-CNR)

Dynamics for Electrical Flows

Time complexity

Theorem 3 (Time complexity)

$$\left\|p^{(k)}-p\right\| \leq \left(1-rac{1}{8}rac{\overline{d}_{\min}}{d_{\max}}rac{d(t)}{\overline{d}(\overline{G})}\cdot\overline{\lambda}_{2}
ight)^{k}$$

where

- \overline{G} is G t
- $\overline{d}(\cdot)$ is the volume in \overline{G}
- $\overline{\lambda}_2$ is the 2nd smallest eigenvalue of $\mathcal{L}(\overline{G})$

Example. If G is regular,

$$\left\|p^{(k)}-p\right\| \leq \left(1-\frac{\overline{\lambda}_2}{8n}\right)^k$$

Theorem 4 (Message complexity)

As $k \to \infty$, the expected message complexity per round of Token Diffusion is

$$O(n d_{\max} \mathcal{E})$$

where $\mathcal{E} = p^{\top}Lp$ is the energy of the electrical flow.

Stochastic accuracy of the estimator

Previous results concern expected values Are the estimators accurate with high probability?

Definition. X gives an (ϵ, δ) -approximation of Y if

$$\Pr[|X - Y| > \epsilon Y] \le \delta$$

Lemma

If we inject $M \ge 1$ tokens per round (instead of 1), then for any k, u such that

$$p_u^{(k)} \ge \frac{3}{\epsilon^2 M d_u} \ln \frac{2}{\delta},$$

the estimator $V_u^{(k)}/M$ provides an (ϵ, δ) -approximation of $p_u^{(k)}$.

- Methods based on electrical flows can be used to design fast and conceptually simple network optimization algorithms
- Electrical flows were known to be effectively computable in a centralized setting
- We give decentralized methods and bound their time and message complexity as a function of network parameters

Thanks for the attention!

Some references

- Spielman, Teng (2004) Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems, STOC
- Christiano et al. (2010) Electrical flows, Laplacian systems, and faster approximation of maximum flow in undirected graphs, STOC
- B., Mehlhorn, Varma (2012)
 Physarum can compute shortest paths, SODA & J. Theor. Biology 309, pp. 121–133.
- Becchetti et al. (2013)
 Physarum can compute shortest paths: Convergence proofs and complexity bounds, ICALP
- Ma et al. (2013) Current-reinforced random walks for constructing transport networks, *Interface*
- Cohen et al. (2017) Negative-weight shortest paths and unit capacity minimum cost flow in $\tilde{O}(m^{10/7} \log W)$ time, SODA