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Combinatorial network optimization

Fundamental examples of network optimization problems:

Shortest Path

Find a maximum number of Find an s-t path of minimum
edge-disjoint s-t paths length

O O =0

Classic algorithms for Maximum Flow and Shortest Path are
combinatorial: manipulate discrete objects (nodes, edges, paths...)

Computational complexity expressed in terms of:
@ n: number of nodes

@ m: number of edges
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Hybrid combinatorial-numerical methods

Since 2004, a new generation of fast algorithms is emerging:

Reduce network problems to solving equations of the form

where L € R™" is a graph Laplacian matrix

Theorem (Spielman-Teng 2004 and subsequent work)

A Laplacian linear system can be solved up to error ¢ in time

o) (m-logn-log%) = O(m)

“Laplacian paradigm”: build around this algorithmic primitive
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The Laplacian Paradigm

Directly related:
‘ Elliptic systems

Few iterations:

Mg E@ » Eigenvectors,

Heat kernels

Many iterations /

‘ modify algorithm AT
Graph problems e
Image processing N

Slide by Richard Peng
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Electrical flows as a network primitive

A representative example of a Laplacian system:

Computing currents and voltages in a resistive electrical network J

A crucial subroutine in many fast network algorithms:
e Maximum flows (Christiano et al. STOC 2010)
@ Shortest paths with negative weights (Cohen et al. SODA 2017)
@ Network sparsification (Spielman and Srivastava 2011)

Also the basis of some models of biological computation:

@ Physarum polycephalum slime mold (B. et al. SODA 2012)
@ Ant colonies (Ma et al. 2013)
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© Laplacian framework

e Electrical flows

© Decentralized solution of Lp = b
@ Jacobi's method
@ Token diffusion
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© Laplacian framework
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The Laplacian matrix

Xy . Weight of an edge u ~ v
d,: total weight of the edges around u (volume or gen. degree)

d, ifu=v
Lyyv=1q—xn ifu~v
0 otherwise.
2 -1 -1
L=| -1 1 O =D—-A
-1 0 1
D = diag(d)

A = weighted adjacency matrix
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The Laplacian matrix Il

The Laplacian is positive semidefinite: v Lv > 0 for any v € R"

L = BXBT where:

@ B is the n x m incidence matrix, e.g.:

edges

+1 +1
B = -1 0 nodes
0 -1

e X is a diagonal m x m weight matrix, e.g.:

. X1,2 0
X = ( 0 X3 )}edges
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Normalized Laplacian

The normalized Laplacian is

L=D'?LDV?

where
di 0
D— 0 0
0 d,

For d-regular graphs, £L = L/d
The eigenvalues of L satisfy

0=M<H<...<)\, <2
Ao > 0 < the network is connected

(1)
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Cuts and conductance

A cut is a bipartition of the nodes into two sets (S, N\ S)

The weight of a cut is the total weight of edges with one endpoint in
Sandonein N\ S: 37 s cmsXuv

5

Conductance of S:

os) = L0
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Cuts with small conductance

The conductance of a graph is

¢ =

= min
d(S)<d(N)/2

where ), is the second smallest eigenvalue of the normalized
Laplacian £
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e Electrical flows
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Electrical flows

Undirected graph G
N: nodes, E: edges

°
°
@ s, t € N: source and sink of flow
@ edge e has conductance x.

°

equivalently, resistance r, = 1/x,
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Poisson’s equation

The node potentials p € R” are the solutions to Poisson’s equation:

+1 ifu=s
L-p=b with (say) b, =<¢ -1 ifu=t

0 otherwise

A flow is a vector f € R™ that satisfies flow conservation:

(B = incidence matrix)

The electrical flow g € R™ is related to p by Ohm'’s law:

q:X.BT.p
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Example: a parallel-links network
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Combinatorial flows vs. electrical flow

For unit s-t flows f € R™:
@ The shortest path minimizes ||f]|,
@ The electrical flow minimizes ||f]|,

@ The (normalized) maximum flow minimizes ||f||_

1 22 3/5 V2 1/2
2/5 1/2
1 25 3/5 13 1/2
minimize ||f]|, minimize ||f||, minimize ||f]|
st. Bf =b st. Bf =b st. Bf =b
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From electrical flows to maximum flow

Reducing maximum flow to electrical flows (Christiano et al. 2010)
Intuition: increase the resistance of edges with excess flow

Algorithm sketch

@ Set resistance r. < 1 for each edge e
@ Repeat:

@ Laplacian solve: find the electrical flow g with respect to r
© Update: increase re proportionally to reqe

Process converges to a maximum flow
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From electrical flows to shortest path

Reducing shortest path to electrical flows (Becchetti et al. 2013)
Intuition: increase the conductance of edges with excess flow

Algorithm sketch

@ Set conductance x, < 1 for each edge e
@ Repeat:

@ Laplacian solve: find the electrical flow g with respect to x
@ Update: increase x. proportionally to ge — Xe

Process converges to a shortest path flow
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© Decentralized solution of Lp = b
@ Jacobi's method
@ Token diffusion
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Decentralized solution of Laplacian systems

Consider a connected network G with weights (conductances) x € R™
Can we solve L(x) p = b through a decentralized process?

We consider two approaches:
@ Jacobi's method (deterministic; send/receive real numbers)
@ Token diffusion (stochastic; send/receive tokens)
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Jacobi’'s method

An iterative method that can be applied to any positive-definite linear
system; in our setting,

(k)
pliert) = B +ZZMXWPV . k=01,... J
v~u Xuv

Node u maintains information of pl(,k) and b,
To update node u, need information only from the neighbors of u

It is well-known that Jacobi's method is convergent and
L-pk) — b as k — oo

But how fast in terms of the network parameters?
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Convergence rate of Jacobi's method

Theorem 1

The error in Jacobi's method converges to zero at rate

O(max(|1 — Ao|*, |1 = A\a[5)

where 0 = \; < Ay, < ... <\, < 2 are the eigenvalues of the
normalized Laplacian £ of the network.

Corollary: when )\, <1, the error is (1 — %gb%-)k where ¢¢ is the
conductance of the graph G
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Proof sketch

Lp=(D—Ap=5hb = p=(D'A)p+D'b

Transition matrix: P = D~ 1A

Jacobi's iteration: pkt1) = Ppk) + D=1p )

= A fixed point p is automatically a solution to Lp = b

Error at step k: e := p — pt) = {9 4 (1 J

What really matters is eik); we do not care about ¢®), since L1 =10

V. Bonifaci (IASI-CNR) Dynamics for Electrical Flows 21/01/2019 20/32



Proof sketch

If we unroll /) (calculation omitted) we get
1
elk ) = (/ -~ —11T) prelk)
n

ie., e(fﬂ) equals Pke(lk) without its component parallel to 1

= The behavior of the error is dictated by the eigenstructure of P
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Proof sketch

P := DA 'is similar to N := D~1/2AD~1/2
(so P* is similar to A/¥)
e Each eigenvector u; of A/ corresponds to an eigenvector v; of P
and vice versa, via u; = DYy,

@ u; and v; are associated to the same eigenvalue, call it p;, of N
and P

opm=12p>...2p,2>2-1
e pi=1—-XsinceL=I]-N
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Concluding the proof

)=

dmin

11T\ pk .(0)
(I — nll )P e}’
(I — ’1711T) 1/2NkD+1/2e(f)
1 T 1/2 +1/24 ()
(I — nll Zp, uiu; YD
1072 er 12|«
dmax

0
max(leal o) ||
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A stochastic diffusion-based model

Instead of continuous flows, consider flow particles (tokens)

Repeat forever:
@ insert one new token at the source

@ each token moves from node u to neighbor v with
probability proportional to the weight x,,

© remove all tokens at the sink, if any
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Why token diffusion?

Well-known analogy between the random walk and the electrical flow

Theorem [e.g. Doyle-Snell (1984); Tetali (1991)]

For a single random walker, and any node v,
E[# of visits to u before reaching sink] = d, - p,

where p is the solution to Lp = b with p; =0

We use the same intuition but with many “staggered” random walks
= Local instead of global estimator
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Correctness of token diffusion

Theorem 2

For our token diffusion process, the number of tokens, Z[Sk), on node
u at time k satisfies

E[ng)}—)du~pu as k — oo

where p is the solution to Lp = b with p, =0

= Local number of tokens at v can be used to estimate the local
node potential p,

We use Vlsk) = lek)/du as an estimate of p,
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We compare our estimator v = Zl(,k)/du against the k-th iterate
of a modified Jacobi iteration:

p® =0 for all ue N,
(k+1) _ diu (ZVNU Xuvp\(/k) + bu> if u % t (sink),
’ 0 if u =t (sink).
By the way diffusion is defined: ]E[Vlsk)] = pK (proof by induction)

Hence E[Vﬁk)] — py as k — oo, if we can prove pl(,k) — Py
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We can rewrite the iteration as

p(k+1) _ Pp(k) + Dill_)

with P and b obtained by zeroing out entries on row/column t (sink).

Lemma
The spectral radius of P, 2 satisfies

BZ].—Z”:V,"P,"t<1,
i=1

where v is the left dominant eigenvector of P (with ||v||; = 1).

Hence the iterations converge to a fixed point
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Time complexity

Theorem 3 (Time complexity)

o~ ol < (1

where
e GisG—t
@ d(-) is the volume in G

® )\ is the 2nd smallest eigenvalue of £(G)

Example. If G is regular,

— Kk
A
(k) _ _ 2
||p pH = (1 8n>
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Message complexity

Theorem 4 (Message complexity)

As k — 00, the expected message complexity per round of Token
Diffusion is

O(n dmax &)

where £ = p' Lp is the energy of the electrical flow.

V. Bonifaci (IASI-CNR) Dynamics for Electrical Flows 21/01/2019 30/32



Stochastic accuracy of the estimator

Previous results concern expected values
Are the estimators accurate with high probability?

Definition. X gives an (¢, d)-approximation of Y if

PrIX — Y| > eY] <6

Lemma
If we inject M > 1 tokens per round (instead of 1), then for any k, u

such that 5
(k) > In=
Pa” = 2ma, " 5

the estimator V¥ /M provides an (e, §)-approximation of pf,k).
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@ Methods based on electrical flows can be used to design fast and
conceptually simple network optimization algorithms

@ Electrical flows were known to be effectively computable in a
centralized setting

@ We give decentralized methods and bound their time and
message complexity as a function of network parameters

Thanks for the attention!

V. Bonifaci (IASI-CNR) Dynamics for Electrical Flows 21/01/2019 32/32



Some references

@ Spielman, Teng (2004)
Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving
linear systems, STOC
@ Christiano et al. (2010)
Electrical flows, Laplacian systems, and faster approximation of maximum flow in
undirected graphs, STOC
@ B., Mehlhorn, Varma (2012)
Physarum can compute shortest paths, SODA & J.Theor. Biology 309, pp. 121-133.
@ Becchetti et al. (2013)
Physarum can compute shortest paths: Convergence proofs and complexity bounds,
ICALP
@ Ma et al. (2013)
Current-reinforced random walks for constructing transport networks, Interface
@ Cohen et al. (2017)

Negative-weight shortest paths and unit capacity minimum cost flow in O(m'%/7 log W)
time, SODA

V. Bonifaci (IASI-CNR) Dynamics for Electrical Flows 21/01/2019 32/32



	Laplacian framework
	Electrical flows
	Decentralized solution of Lp=b
	Jacobi's method
	Token diffusion


