
Joint work with:

Michael Bender, Martin Farach-Colton, Sandor Fekete, Jeremy Fineman, Shunhao Oh

Seth Gilbert

How to Plan Ahead

Plans change.

Be prepared.

Scheduling Appointments

5 pm

6 am

7 am

8 am

9 am

10 am

11 am

12 am

1 pm

3 pm

4 pm

2 pm

Sideshow Mel
7—8 am
Homer
8—9 am
Duffman
9—10 am
Agnes Skinner
10—11 am
Captain Horatio
11—12 pm
Reverend Lovejoy
12—1 pm
Gil Gunderson
1—2 pm
Kent Brockman
2—3 pm
McBain
3—4 pm
Zoidberg
4—5 pm

I need an appointment
at 11am!

Scheduling Appointments

5 pm

6 am

7 am

8 am

9 am

10 am

11 am

12 am

1 pm

3 pm

4 pm

2 pm

Sideshow Mel
7—8 am
Homer
8—9 am
Duffman
9—10 am
Agnes Skinner
10—11 am

Montgomery Burns

Reverend Lovejoy
12—1 pm
Gil Gunderson
1—2 pm
Kent Brockman
2—3 pm
McBain
3—4 pm
Zoidberg
4—5 pm

Captain Horatio
11—12 pm

5 pm

6 am

7 am

8 am

9 am

10 am

11 am

12 am

1 pm

3 pm

4 pm

2 pm

Sideshow Mel
7—8 am
Homer
8—9 am
Duffman
9—10 am
Agnes Skinner
10—11 am
Captain Horatio
11—12 pm
Reverend Lovejoy
12—1 pm
Gil Gunderson
1—2 pm
Kent Brockman
2—3 pm
McBain
3—4 pm
Zoidberg
4—5 pm

Scheduling Appointments

5 pm

6 am

7 am

8 am

9 am

10 am

11 am

12 am

1 pm

3 pm

4 pm

2 pm

Sideshow Mel

Homer

Duffman

Agnes Skinner

Captain Horatio

Reverend Lovejoy

Gil Gunderson

Kent Brockman

I need an appointment
at 11am!

Scheduling Appointments

5 pm

6 am

7 am

8 am

9 am

10 am

11 am

12 am

1 pm

3 pm

4 pm

2 pm

Sideshow Mel

Montgomery Burns

5 pm

6 am

7 am

8 am

9 am

10 am

11 am

12 am

1 pm

3 pm

4 pm

2 pm

Sideshow Mel

Homer

Duffman

Agnes Skinner

Captain Horatio

Reverend Lovejoy

Gil Gunderson

Kent Brockman

Homer

Duffman

Reverend Lovejoy

Gil Gunderson

Kent Brockman

Agnes Skinner

Captain Horatio

Which schedule is better?

Basic Trade-Off

5 pm

6 am

7 am

8 am

9 am

10 am

11 am

12 am

1 pm

3 pm

4 pm

2 pm

Sideshow Mel

Homer

Duffman

Reverend Lovejoy

Gil Gunderson

Kent Brockman

Agnes Skinner

Captain Horatio

5 pm

6 am

7 am

8 am

9 am

10 am

11 am

12 am

1 pm

3 pm

4 pm

2 pm

Sideshow Mel
7—8 am
Homer
8—9 am
Duffman
9—10 am
Agnes Skinner
10—11 am
Captain Horatio
11—12 pm
Reverend Lovejoy
12—1 pm
Gil Gunderson
1—2 pm
Kent Brockman
2—3 pm
McBain
3—4 pm
Zoidberg
4—5 pm

More efficient
(More patients scheduled)

More flexible
(Less disruption on changes)

Big Picture Goal:

How do you maintain a near optimal schedule with
minimal reallocation cost when:

• Jobs are added and removed.

• Existing jobs can be reallocated at some cost.

Secondary Story:

How do you design a data structure to efficiently
maintain a set of elements:

• Elements are added and removed.

• Elements are spread out in the structure.

Basic Trade-Off

Many other problems:

Scheduling Ikea deliveries:

Minimize disruption caused by new deliveries / cancellations.

Depot

Basic Trade-Off

Many other problems:

Scheduling an assembly line:

Minimize disruption caused by future changes.

Basic Trade-Off

Many other problems:

Scheduling blocks on an FPGA:

Minimize disruption caused by changing functional units.

Basic Trade-Off

Many other problems:

Scheduling
flights:

Which schedule is better?

Basic Trade-Off

5 pm

6 am

7 am

8 am

9 am

10 am

11 am

12 am

1 pm

3 pm

4 pm

2 pm

Sideshow Mel

Homer

Duffman

Reverend Lovejoy

Gil Gunderson

Kent Brockman

Agnes Skinner

Captain Horatio

5 pm

6 am

7 am

8 am

9 am

10 am

11 am

12 am

1 pm

3 pm

4 pm

2 pm

Sideshow Mel
7—8 am
Homer
8—9 am
Duffman
9—10 am
Agnes Skinner
10—11 am
Captain Horatio
11—12 pm
Reverend Lovejoy
12—1 pm
Gil Gunderson
1—2 pm
Kent Brockman
2—3 pm
McBain
3—4 pm
Zoidberg
4—5 pm

More efficient
(More patients scheduled)

More flexible
(Less disruption on changes)

How to Plan Ahead
A Play in Three Acts

Act I : A Few Reservations

Wherein we schedule simple (unit-length) tasks with arrival times and deadlines.

Act II : One Algorithm to Rule Them All

Wherein we discover a (cost-oblivious) champion able to defeat any (subadditive)
reallocation cost. Our champion knows how to minimize the makespan, but no
more.

Act III : Data Structures to the Rescue!
Wherein our champion seeks aid from the faraway Land of Data Structures in
order to minimize the sum-of-completion-times dragon.

Many related approaches:

Related Work

Load balancing / Server scheduling:
• M. Andrews, M. X. Goemans, and L. Zhang. Improved bounds for on-line

load balancing. Algorithmica, 23(4):278–301, 1999.
• P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with bounded

migration. Math. Oper. Res., 34(2):481–498, 2009.
• M. Skutella and J. Verschae. A robust PTAS for machine covering and packing.

In Proc. ESA, pages 36–47, 2010.
• J. C. Verschae. The Power of Recourse in Online Optimization: Robust

Solutions for Scheduling, Matroid and MST Problems. PhD thesis, TU Berlin,
June 2012.

• J. Westbrook. Load balancing for response time. J. of Alg., 35(1):1 – 16, 2000.

Migration: reallocate a fraction of
tasks to other machines in order to
maintain a good schedule.

Many related approaches:

Related Work

Reoptimization:
• G. Baram and T. Tamir. Reoptimization of the minimum total flow-time

scheduling problem. In Proc. MedAlg, volume 7659 of LLNCS, pages 52–66,
2012.

• C. Archetti, L. Bertazzi, and M. G. Speranza. Reoptimizing the Traveling
Salesman Problem. Networks, 42(3):154–159, 2003.

• G. Ausiello, B. Escoffier, J. Monnet, V. Paschos. Reoptimization of minimum
and maximum traveling salesman's tours. Journal of Discrete Algorithms 7:4,
2009.

• H. Shachnai, G. Tamir, and T. Tamir. A theory and algorithms for
combinatorial reoptimization. In Proc. LATIN, pages 618–630, 2012.

Given an optimal solution for an
input, compute a near-optimal
solution for a closely related input

Many related approaches:

Related Work

Other reallocation / rescheduling:
• Gupta, Kumar, and Stein. Maintaining assignments online: matching,

scheduling, flows. In SODA 2014.
• S. Davis, J. Edmonds, and R. Impagliazzo. Online algorithms to minimize

resource reallocations and network communication. In Proc. APPROX-
RANDOM, pages 104–115, 2006.

• L. Epstein and A. Levin. A robust APTAS for the classical bin packing problem.
In Proc. ICALP, pages 214–225, 2006.

• N. G. Hall and C. N. Potts. Rescheduling for new orders. Op. Res., 52(3), 2004.
• A. T. Unal, R. Uzsoy, and A. S. Kiran. Rescheduling on a single machine with

part-type dependent setup times and deadlines. Ann. Op. Res., 70, 1997.

Many related approaches:

Related Work

Transportation:
• A. Caprara, L. Galli, L. Kroon, G. Maroti, and P. Toth. Robust train routing

and online re-scheduling. In Proc. ATMOS, pages 24–33, 2010.
• V. Chiraphadhanakul and C. Barnhart. Robust flight schedules through slack

re-allocation. EURO Journal on Transportation and Logistics, 2(4):277–306,
2013.

• H. Jiang and C. Barnhart. Dynamic airline scheduling. Transp. Sc., 43(3):336–
354, 2009.

How to Plan Ahead
A Play in Three Acts

Act I : A Few Reservations

Wherein we schedule simple (unit-length) tasks with arrival times and deadlines.

Act II : One Algorithm to Rule Them All

Wherein we discover a (cost-oblivious) champion able to defeat any (subadditive)
reallocation cost. Our champion knows how to minimize the makespan, but no
more.

Act III : Data Structures to the Rescue!
Wherein our champion seeks aid from the faraway Land of Data Structures in
order to minimize the sum-of-completion-times dragon.

Scheduling Simple Tasks

Unit-length tasks:

Easy offline solution: Earliest deadline first.

arrival
time

deadline

job’s	window
time

job’s	schedule

Today: 1 server

“It does not do to leave a live dragon out of your
calculations, if you live near him.” (Tolkien)

The Cost of Reallocation

Online with reallocation:

On new insertions: Reallocate jobs to make room

time

Cost = # items moves

“It does not do to leave a live dragon out of your
calculations, if you live near him.” (Tolkien)

The Cost of Reallocation

How many items move?

Reallocation can be expensive!

time

Cost of insertion:
O(n)

“It does not do to leave a live dragon out of your
calculations, if you live near him.” (Tolkien)

Underallocation

Require some slack in the schedule.

Definition:
Instance is γ-underallocated if there exists a feasible schedule
where each job takes γ times as long.

time

2-underallocated

“resource augmentation”

Simplification

Assume: laminar windows

Every window: size is a power of 2
start location is a power of 2

time

For any two windows W1 and W2 either: W1⊆W2 or
W2⊆W1

Lemma:

If instance is γ-underallocated, then we can trim windows to
be laminar and it is still (γ/4)-underallocated.

Reallocation Schedulers
Naïve Pecking Order Scheduling

Rule:
• Prioritize small windows over big windows.
• To allocate a new job, kick out a larger job (if necessary).

time

“Unless commitment is made, there are only promises and
hopes but no plans.” (Drucker)

Reallocation Schedulers
Naïve Pecking Order Scheduling

Algorithm:
• If there is an empty slot, use it.

time

“Unless commitment is made, there are only promises and
hopes but no plans.” (Drucker)

Reallocation Schedulers
Naïve Pecking Order Scheduling

Algorithm:
• If there is an empty slot, use it.
• If there is no empty slot, kick out a job from a larger window

and reinsert the kicked job.

time

“Unless commitment is made, there are only promises and
hopes but no plans.” (Drucker)

Reallocation Schedulers
Naïve Pecking Order Scheduling

Claim: Can always find larger job to kick out (if needed).

Claim: Worst-case O(log n) reallocations.

time

Assume maximum window size is O(n).

Reallocation Schedulers
Planning Ahead: Reservations

Idea:
• Group jobs by window.
• Each window reserves timeslots.
• Key invariant: each window gets enough reservations.

time
reservations

Reallocation Schedulers
Planning Ahead: Reservations

Two-level Scheduling:
• Intervals have size L = Θ(log n).
• Schedule any window of size ≤ L recursively.
• Focus on scheduling windows of size > L.

time
interval

“No matter what the work you are doing, be always ready
to drop it. And plan it so as to be able to leave it. (Tolstoy)

Reallocation Schedulers
Planning Ahead: Reservations

Each window requests:
• 1 reservation per contained interval.
• 2 reservations per job.

Requests are spread evenly over intervals.

3 jobs, 10 requests

1 job, 4 requests

requests:

2 jobs, 6 requests

0 jobs, 4 requests

0 jobs, 2 requests
0 jobs, 2 requests

“No matter what the work you are doing, be always ready
to drop it. And plan it so as to be able to leave it. (Tolstoy)

Reallocation Schedulers
Planning Ahead: Reservations

Intervals grant requests:
• Pecking-order scheduling!
• Grant requests for smaller windows first.

Not all requests are granted.

3 jobs, 10 requests

1 job, 4 requests

granted
requests:

2 jobs, 6 requests

0 jobs, 4 requests

waitlisted:

“No matter what the work you are doing, be always ready
to drop it. And plan it so as to be able to leave it. (Tolstoy)

Reallocation Schedulers
Planning Ahead: Reservations

Key claim:
If instance is 8 underallocated, then each window has
enough granted reservations.

3 jobs, 10 requests

1 job, 4 requests

granted
requests:

2 jobs, 6 requests

0 jobs, 4 requests

waitlisted:

Reallocation Schedulers
Planning Ahead: Reservations

Intuition:
• Assume window W covers I intervals, x jobs, and makes 2x+I

requests for reservations.
• Each interval gets ≅ 2x/I reservations.
• If I/2 intervals grant them, then all good.
• If I/2 intervals do not grant them, then they must be

completely full, contradicting 8-underallocation.

Key claim:
If instance is 8 underallocated, then each window has
enough granted reservations.

Reallocation Schedulers
Planning Ahead: Reservations

On a new job for window W:
• Window W makes 2 new reservations requests.
• If a new request is granted, it may force one reallocation.
• Place job in slot for granted reservation.

3 jobs, 10 requests

1 job, 4 requests

requests:

2 jobs, 6 requests

0 jobs, 4 requests

O(1) reallocations per insert/delete.

“Let our advance worrying become advance thinking and
planning.” (Churchill)

Reallocation Schedulers
Planning Ahead: Reservations

How to schedule jobs of size ≤ L:
1. Naïve pecking-order scheduling è O(log log n) reallocations.
2. Recursively use reservation system è O(log*n) reallocations.

Insert in a smaller interval can cause top level to
perform O(1) reallocations.

time
interval

“Let our advance worrying become advance thinking and
planning.” (Churchill)

Part 1
Reservations to the Rescue

Setting:
• Unit-length tasks.

• Number of servers: p
• Arrival times and deadlines.

Goal: Feasibility

Key result:
• Assume at all times:

• At most n tasks

• At least O(1) slack

• Reallocation cost per insertion/deletion: O(log*n)
• Number of migrations per insertion/deletion: O(1)

Key take-away:
Make 2 reservations for
dinner to ensure you have
somewhere to eat!

Reallocation Schedulers
Open Questions

Can we get O(1) reallocations?

What about non-unit-length jobs? With preemption?

What about dependencies? Jobs form a DAG?

time
interval

How to Plan Ahead
A Play in Three Acts

Act I : A Few Reservations

Wherein we schedule simple (unit-length) tasks with arrival times and deadlines.

Act II : One Algorithm to Rule Them All

Wherein we discover a (cost-oblivious) champion able to defeat any (subadditive)
reallocation cost. Our champion knows how to minimize the makespan, but no
more.

Act III : Data Structures to the Rescue!
Wherein our champion seeks aid from the faraway Land of Data Structures in
order to minimize the sum-of-completion-times dragon.

Simple Scheduling
Minimize Makespan

Basic problem:
• Arbitrary length jobs
• Jobs added
• Jobs deleted
• Goal: minimize the makespan

insert…
delete(purple)
delete(green)
insert(red, 4)

“In preparing for battle, I have always found that plans are
useless, but planning is indispensable.” (Eisenhower)

Simple Scheduling
Minimize Memory

AKA: Memory Allocation
• Allocate and free memory.
• Competitive ratio: log(n)

malloc…
free(purple)
free(green)
malloc(red, 4)

“In preparing for battle, I have always found that plans are
useless, but planning is indispensable.” (Eisenhower)

Reallocation
A Better Schedule

Reallocate:
• Move items to make more space.
• Results in a better schedule!

See: garbage collection!

insert…
delete(purple)
delete(green)
insert(red, 4)

“In preparing for battle, I have always found that plans are
useless, but planning is indispensable.” (Eisenhower)

Note: ensuring optimal schedule requires reallocating everything.

What is the cost of rescheduling a job?

Options:

• Unit cost: 1 per move.

• Linear cost: s to move job of size s.

• Mixed: migrating to a new server has linear cost
while changes on the same server are unit cost.

• Other: some function of size that depends on
buffering, caches, and other parameters.

Reallocation
What is the cost of reallocation?

Option 1: Unit cost
• Maintain schedule O(1)•OPT.
• Minimize number of jobs moved.

Moving a job of size X has cost 1.

“A goal without a plan is just a wish.” (Saint-Exupery)

Approximately
optimal schedule!

Reallocation
What is the cost of reallocation?

Algorithm:
• Sort jobs by approximate size: group by powers of 2.
• Cascade jobs on insertion / deletion.

size [2,3]size [0,1] size [4,7]

insert:

“A goal without a plan is just a wish.” (Saint-Exupery)

Reallocation
What is the cost of reallocation?

Algorithm:
• Sort jobs by approximate size: group by powers of 2.
• Cascade jobs on insertion / deletion.

size [2,3]size [0,1]

insert:

size [4,7]

“A goal without a plan is just a wish.” (Saint-Exupery)

Reallocation
What is the cost of reallocation?

Algorithm:
• Sort jobs by approximate size: group by powers of 2.
• Cascade jobs on insertion / deletion.

size [2,3]size [0,1]

insert:

size [4,7]

“A goal without a plan is just a wish.” (Saint-Exupery)

Reallocation
What is the cost of reallocation?

Algorithm:
• Sort jobs by approximate size: group by powers of 2.
• Cascade jobs on insertion / deletion.

size [2,3]size [0,1]

insert:

size [4,7]

O(1)•OPT timeO(log ∆) reallocations

Reallocation
What is the cost of reallocation?

Algorithm:
• Sort jobs by approximate size: group by powers of 2.
• Cascade jobs on insertion / deletion.

size [2,3]size [0,1]

insert:

size [4,7]

O(1)•OPT timeO(log ∆) reallocations
O(l) reallocations

(amortized)

Analysis same as binary counter amortized analysis!

“If you fail to plan, you are planning to fail.” (Benjamin
Franklin)

Reallocation
What is the cost of reallocation?

Option 2: Linear cost
• Maintain schedule O(1)•OPT.
• Minimize volume of jobs moved.

Moving a job of size X has cost X.

“If you fail to plan, you are planning to fail.” (Benjamin
Franklin)

Reallocation
What is the cost of reallocation?

Algorithm:
• Do nothing…
• …until half the space is empty.
• Then compress. O(1)•OPT time

O(l)•VAlloc
reallocation cost

cost of initial allocation

“If you fail to plan, you are planning to fail.” (Benjamin
Franklin)

Reallocation
What is the cost of reallocation?

Option 3: Unknown cost
• Maintain schedule O(1)•OPT.
• Minimize cost of jobs moved.

Moving a job of size X has cost f(X).

“There cannot be a crisis next week. My schedule is already
full.” (Kissinger)

Reallocation
What is the cost of reallocation?

Example: database storage allocation
• Moving one block has a fixed cost.
• Moving a large number of blocks is linear cost?
• Pre-fetching?
• Caching?

Moving a job of size X has cost f(X).

“There cannot be a crisis next week. My schedule is already
full.” (Kissinger)

Reallocation
What is the cost of reallocation?

Option 3: Cost Oblivious
• Maintain schedule O(1)•OPT.
• Minimize volume of jobs moved.

Moving a job of size X has cost f(X).

Assume f(x + y) ≤ f(x) + f(y).

“subadditive” functions

Unit Cost Linear Cost

“There cannot be a crisis next week. My schedule is already
full.” (Kissinger)

Cost-Oblivious Scheduling
Basic Idea

Organization:
• Sort jobs by approximate size: group by powers of 2.
• A job class of volume V is followed by a buffer of size V.

size class 1
buffer 1 buffer 3buffer 2

size class 3size class 2

Cost-Oblivious Scheduling
Basic Idea

On insertion:
• Put job from class j in first available buffer ≥ j.

On deletion:
• Mark deleted (do nothing).

size class 1
buffer 1 buffer 3buffer 2

size class 3size class 2

Key property: buffer j only holds items from size classes ≤ j

“Dreaming, after all, is a form of planning.” (Steinem)

Cost-Oblivious Scheduling
Basic Idea

If you cannot insert an item: (buffers are full)
• Find self-contained suffix of array.
• Remove deleted items.
• Rebuild with empty buffer.

size class 1
buffer 1 buffer 3buffer 2

size class 3size class 2

Key property: buffer j only holds items from size classes ≤ j

Rebuild Suffix

“Dreaming, after all, is a form of planning.” (Steinem)

Cost-Oblivious Scheduling
Basic Idea

If you cannot insert an item: (buffers full)
• Find self-contained suffix of array.
• Remove deleted items.
• Rebuild with empty buffer.

size class 1
buffer 1

buffer 2
size class 3

size class 2

Key point: full buffers pay for the rebuild.

“Dreaming, after all, is a form of planning.” (Steinem)

Cost-Oblivious Scheduling
Quick Analysis

Full buffers pay for size class:
• Buffers in “rebuild suffix” are half full (or small).
• Items in buffer are no larger than items in size class.
• Subadditive: many small items have larger budget than

equivalent volume big item.

size class 1
buffer 1

buffer 2
size class 3

size class 2

“Dreaming, after all, is a form of planning.” (Steinem)

Part 2
One Algorithm to Rule Them All

Setting:
• Arbitrary length tasks.
• No constraints on when to schedule.
• Unknown (!?!) allocation/reallocation cost.

Goal: Minimize makespan

Key results:
For any subadditive, non-decreasing cost function:

• ReallocationCost = O(1)•AllocationCost
• Makespan = O(1+𝜖)•OPT

How to Plan Ahead
A Play in Three Acts

Act I : Reservations to the Rescue

Wherein we schedule simple (unit-length) tasks with arrival times and deadlines.

Act II : One Algorithm to Rule Them All

Wherein we discover a (cost-oblivious) champion able to defeat any (subadditive)
reallocation cost. Our champion knows how to minimize the makespan, but no
more.

Act III : Data Structures to the Rescue!
Wherein our champion seeks aid from the faraway Land of Data Structures in
order to minimize the sum-of-completion-times dragon.

Part 3
Data Structures to the Rescue

Setting:
• Arbitrary length tasks.
• No constraints on when to schedule.

• Number of servers: p
• Unknown (!?!) allocation/reallocation cost.

Goal: Minimize sum-of-completion-times

Key results:
For any subadditive, non-decreasing cost function:

• ReallocationCost = O(log3log ∆)•AllocationCost
• SoCT= O(1)•OPT

“Give me six hours to chop down a tree and I will spend the
first four sharpening the axe.” (Lincoln)

SoCT
Minimize Sum-of-Completion-Times

Basic problem:
• Arbitrary length jobs
• Jobs added
• Jobs deleted
• Goal: minimize the sum-of-completion-times.

2 3 7 8 12 è SoCT = 32

“Give me six hours to chop down a tree and I will spend the
first four sharpening the axe.” (Lincoln)

SoCT
Minimize Sum-of-Completion-Times

Standard solution:

Sort jobs by size from smallest to largest.

1 2 4 8 12 è SoCT = 27

“Give me six hours to chop down a tree and I will spend the
first four sharpening the axe.” (Lincoln)

SoCT
Minimize Sum-of-Completion-Times

Strategy (as before):
• Sort jobs by approximate size: group by powers of 2.
• Job classes are separated by buffers.

size class 1
buffer 1 buffer 3buffer 2

size class 3size class 2

“Give me six hours to chop down a tree and I will spend the
first four sharpening the axe.” (Lincoln)

SoCT
Minimize Sum-of-Completion-Times

Things not to do:
• Do not cascade jobs.

Too expensive: small insert causes large jobs to move.

SoCT
Minimize Sum-of-Completion-Times

Things not to do:
• Do not cascade jobs.
• Do not use later buffers.

Sum-of-completion-times is too big.

SoCT
Minimize Sum-of-Completion-Times

Things not to do:
• Do not cascade jobs.
• Do not use later buffers.
• Do not move small jobs to make room for big jobs.

Only move jobs “to the right.”

SoCT
Minimize Sum-of-Completion-Times

Key requirements:
• Maintain job classes by (approximate) size.
• Maintain “prefix density” (i.e., buffers not too big).
• On insertion, do not move too many jobs.
• Insertions only move larger jobs.

size class 1
buffer 1 buffer 3buffer 2

size class 3size class 2

Data structure problem:

Maintain an array subject to insertion/deletion:

• At most k cursors, i.e., points of insertion/deletion.

• Prefix density: First x items stored in O(x) space.

• Movement: On insertion, items move only to the
right. On deletion, items move only to the left.

• Cost: Amortized O(log k) items moved per
operation.

SoCT
Sparse Table Data Structure

Maintain elements in an array:
• Stored in order with gaps.
• Items rebalanced to make room when necessary.
• Support insertions and deletions in O(log2n) time.

5 7 9 14 15 17 22 24 26 32 42 43 55

16

rebalance

“If you don’t know where you are going, you’ll end up
someplace else.” (Berra)

SoCT
Sparse Table Data Structure

Maintain elements in an array:
• Stored in order with gaps.
• Items rebalanced to make room when necessary.
• Support insertions and deletions in O(log2n) time.

16

rebalance

5 7 9 14 15 17 22 24 26 32 42 43 55

“If you don’t know where you are going, you’ll end up
someplace else.” (Berra)

5 7 9 14 15 17 22 24 26 32 42 43 55

SoCT
Sparse Table Data Structure

Maintain elements in an array:
• Stored in order with gaps.
• Items rebalanced to make room when necessary.
• Support insertions and deletions in O(log2n) time.

16

rebalance

“If you don’t know where you are going, you’ll end up
someplace else.” (Berra)

SoCT
k-Cursor Data Structure

Maintain elements in an array:
• Items grouped into k zones.
• Insert and delete only at end of zone.
• Support insertions and deletions in O(log3 k) time.

5 7 9 14 15 17 22 24 26 32 42 43 55

Zone 3Zone 1 Zone 2

insertion points

“If you don’t know where you are going, you’ll end up
someplace else.” (Berra)

SoCT
k-Cursor Data Structure

Maintain size classes:
• Each zone stores one size class.
• Each zone determines boundaries for size class.
• Support insertions and deletions in O(log3 log ∆) time.

5 7 9 14 15 17 22 24 26 32 42 43 55

Zone 3Zone 1 Zone 2

insertion points

“If you don’t know where you are going, you’ll end up
someplace else.” (Berra)

Part 3
Data Structures to the Rescue

Setting:
• Arbitrary length tasks.
• No constraints on when to schedule.

• Number of servers: p
• Unknown (!?!) allocation/reallocation cost.

Goal: Minimize sum-of-completion-times

Key results:
For any subadditive, non-decreasing cost function:

• ReallocationCost = O(log3log ∆)•AllocationCost
• SoCT= O(1)•OPT

Windowed Feasibility

O(log*n) cost

Makespan

O(1) cost

Sum-of-Completion Times

O(log3log ∆) cost

2

2D-Scheduling?

Online Square Packing

Support: insert/delete with reallocation

2D-Scheduling?

Online Circle / Square Packing

Support: insert/delete with reallocation

2D-Scheduling?

Online Circle / Square Packing

Current results:

O(1) efficiency O(log ∆)•Volume
reallocation cost

2D-Scheduling?

Online Circle / Square Packing

Open questions:
• Unit cost reallocation?
• Cost oblivious?

Open Questions

Other questions:

Scheduling variants:

• Preemption?

• Flowtime?

• Stochastic job sizes?

Open Questions

Other questions:

Cost metrics:

• Mixed costs?

• Migration vs. Local differentiation?

• Non-size-based costs?

• Stochastic costs?

Open Questions

Other questions:

Problem variants:

• Scheduling routes/flows?

• Scheduling delivery routes?

• Scheduling DAGs?

• FPGA reconfiguration?

Open Questions

Other questions:

Depot

In search of: PhD students
Postdocs

