Stability, Popularity, and Lower Quotas

Meghana Nasre

IIT Madras

CAALM 2019

Chennai Mathematical Institute

Jan 22, 2019

A set of men \mathcal{A} (applicants / students / medical interns)

- A set of men \mathcal{A} (applicants / students / medical interns)
- A set of women \mathcal{B} (jobs / courses / hospitals)

- A set of men \mathcal{A} (applicants / students / medical interns)
- A set of women ${\cal B}$ (jobs / courses / hospitals)
- Each participant has a preference ordering.

- A set of men A (applicants / students / medical interns)
- A set of women \mathcal{B} (jobs / courses / hospitals)
- Each participant has a preference ordering.

<i>a</i> 1:	b_1	b_2	b ₁ :	a_1	a ₂
a ₂ :	b_1	<i>b</i> ₂	b ₂ :	a_1	a ₂

Here preferences are strict and complete.

- A set of men \mathcal{A} (applicants / students / medical interns)
- A set of women ${\cal B}$ (jobs / courses / hospitals)
- Each participant has a preference ordering.

a 1:	b_1	b_2	L	b 1:	a_1	a_2
a 2:	b_1	b_2	L	b ₂ :	a_1	a_2

Here preferences are strict and complete.

Goal: Assign men to women optimally.

- A set of men A (applicants / students /medical interns)
- A set of women ${\cal B}$ (jobs / courses / hospitals)
- Each participant has a preference ordering.

a 1:	b_1	b_2	<i>b</i> ₁ :	a_1	a_2	
a 2:	b_1	b_2	<i>b</i> ₂ :	a_1	a_2	

Here preferences are strict and complete.

A possible assignment $M = \{(a_1, b_2), (a_2, b_1)\}$.

a 1:	b_1	b_2	<i>b</i> ₁ :	a_1	a_2
a 2:	b_1	b_2	<i>b</i> ₂ :	a_1	a_2

A pair $(a, b) \in E \setminus M$ blocks M if

Both *a* and *b* prefer each other to their current partner in *M*.

a 1:	b_1	b_2	<i>b</i> ₁ :	a_1	a_2
a 2:	b_1	b_2	<i>b</i> ₂ :	a_1	a_2

A pair $(a, b) \in E \setminus M$ blocks M if

- Both *a* and *b* prefer each other to their current partner in *M*.
- (a_1, b_1) : both a_1 and b_1 wish to deviate blocking pair.

a 1:	b_1	b_2	b ₁ :	a_1	a_2
a 2:	b_1	b_2	<i>b</i> ₂ :	a_1	a_2

A pair $(a, b) \in E \setminus M$ blocks M if

- Both *a* and *b* prefer each other to their current partner in *M*.
- (a_1, b_1) : both a_1 and b_1 wish to deviate blocking pair.

A matching is stable if no pair wishes to deviate.

a 1:	b_1	b_2	b ₁ :	a_1	a_2
a 2:	b_1	b_2	<i>b</i> ₂ :	a_1	a_2

A pair $(a, b) \in E \setminus M$ blocks M if

- Both *a* and *b* prefer each other to their current partner in *M*.
- (a_1, b_1) : both a_1 and b_1 wish to deviate blocking pair.

A matching is stable if no pair wishes to deviate.

 $M' = \{(a_1, b_1), (a_2, b_2)\}$ is a stable.

a 1:	b_1	b_2	b ₁ :	a_1	a_2
a 2:	b_1	b_2	<i>b</i> ₂ :	a_1	a_2

A pair $(a, b) \in E \setminus M$ blocks M if

Both *a* and *b* prefer each other to their current partner in *M*.

• (a_1, b_1) : both a_1 and b_1 wish to deviate – blocking pair.

A matching is stable if no pair wishes to deviate.

 $M' = \{(a_1, b_1), (a_2, b_2)\}$ is a stable.

- Every instance admits a stable matching.
- Stable matching can be computed in linear time.
- All stable matchings are perfect.

Today's talk: Three Variants of the SM problem

Preferences are strict and can be incomplete.

a ₁ : a ₂ :	$b_1 \\ b_1$	<i>b</i> ₂	b ₁ : b ₂ :		a ₂
--------------------------------------	--------------	-----------------------	--------------------------------------	--	-----------------------

Preferences are strict and can be incomplete.

a 1:	b_1	<i>b</i> ₂	b 1:	a_1	a ₂
a ₂ :	b_1		b ₂ :	a_1	

Does a stable matching exist? Yes!

Preferences are strict and can be incomplete.

<i>a</i> 1:	b_1	b_2	b 1:	a_1	a ₂
a ₂ :	b_1		b ₂ :	a_1	

• Does a stable matching exist? Yes! $M = \{(a_1, b_1)\}.$

Preferences are strict and can be incomplete.

<i>a</i> 1:	b_1	<i>b</i> ₂	b ₁ :	a_1	a ₂
a ₂ :	b_1		b ₂ :	a_1	

• Does a stable matching exist? Yes! $M = \{(a_1, b_1)\}.$

Preferences are strict and can be incomplete.

<i>a</i> 1:	b_1	b_2	b 1:	a_1	a ₂
a ₂ :	b_1		b ₂ :	a_1	

• Does a stable matching exist? Yes! $M = \{(a_1, b_1)\}.$

Known Facts:

Every instance admits a stable matching; can be computed in linear time.

Preferences are strict and can be incomplete.

a 1:	b_1	b_2		b 1:	a_1	a_2	
a ₂ :	b_1			b ₂ :	a_1		

• Does a stable matching exist? Yes! $M = \{(a_1, b_1)\}.$

- Every instance admits a stable matching; can be computed in linear time.
- All stable matchings are perfect

Preferences are strict and can be incomplete.

a 1:	b_1	b_2		b 1:	a_1	a_2	
a 2:	b_1			b ₂ :	a_1		

• Does a stable matching exist? Yes! $M = \{(a_1, b_1)\}.$

- Every instance admits a stable matching; can be computed in linear time.
- All stable matchings are perfect of the same size.

Preferences are strict and can be incomplete.

a 1:	b_1	b_2		b ₁ :	a_1	a_2	
a ₂ :	b_1			b ₂ :	a_1		

• Does a stable matching exist? Yes! $M = \{(a_1, b_1)\}.$

- Every instance admits a stable matching; can be computed in linear time.
- All stable matchings are perfect of the same size.
- Stable matching can be half the size of max. matching.

Preferences are strict and can be incomplete.

a 1:	b_1	b_2		b 1:	a_1	a_2	
a 2:	b_1			b ₂ :	a_1		

• Does a stable matching exist? Yes! $M = \{(a_1, b_1)\}.$

Known Facts:

- Every instance admits a stable matching; can be computed in linear time.
- All stable matchings are perfect of the same size.
- Stable matching can be half the size of max. matching.

Question: Are there larger optimal matchings?

Preferences can contain ties and can be incomplete.

$a_2: b_1 \qquad b_2: a_1$		$b_1 \\ b_1$	<i>b</i> ₂			$(a_1 a_1)$	a 2)
----------------------------	--	--------------	-----------------------	--	--	-------------	-------------

Preferences can contain ties and can be incomplete.

a 1:	b_1	b_2	b_1 :	$(a_1$	a 2)
a ₂ :	b_1		<i>b</i> ₂ :	a_1	

Redefine blocking pair.

• A pair
$$(a, b) \in E \setminus M$$
 blocks M if

Both a and b strictly prefer each other to their current partner in M.

Preferences can contain ties and can be incomplete.

a 1:	b_1	b_2	b ₁ :	$(a_1$	a2)
a 2:	b_1		b ₂ :	a_1	

- Redefine blocking pair.
 - A pair $(a, b) \in E \setminus M$ blocks M if

Both a and b strictly prefer each other to their current partner in M.

Does a stable matching exist? Yes!

Preferences can contain ties and can be incomplete.

a 1:	b_1	b_2	b ₁ :	$(a_1$	a2)
a 2:	b_1		b ₂ :	a_1	

Redefine blocking pair.

• A pair $(a, b) \in E \setminus M$ blocks M if Both a and b strictly prefer each other to their current partner in M.

Does a stable matching exist? Yes! $M_1 = \{(a_1, b_1)\}$ $M_2 = \{(a_1, b_2), (a_2, b_1)\}$

Preferences can contain ties and can be incomplete.

a 1:	b_1	b_2	b ₁ :	$(a_1$	a2)
a 2:	b_1		b ₂ :	a_1	

Redefine blocking pair.

• A pair $(a, b) \in E \setminus M$ blocks M if Both a and b strictly prefer each other to their current partner in M.

Does a stable matching exist? Yes! $M_1 = \{(a_1, b_1)\}$ $M_2 = \{(a_1, b_2), (a_2, b_1)\}$

Preferences can contain ties and can be incomplete.

a 1:	b_1	b_2	b ₁ :	$(a_1$	a2)
a 2:	b_1		b ₂ :	a_1	

Redefine blocking pair.

• A pair $(a, b) \in E \setminus M$ blocks M if Both a and b strictly prefer each other to their current partner in M.

Known Facts:

Every instance admits a stable matching; can be computed in linear time.

Preferences can contain ties and can be incomplete.

a 1:	b_1	b_2	b ₁ :	$(a_1$	a2)
a 2:	b_1		b ₂ :	a_1	

Redefine blocking pair.

A pair $(a, b) \in E \setminus M$ blocks M if Both a and b strictly prefer each other to their current partner in M.

- Every instance admits a stable matching; can be computed in linear time.
- All stable matchings are of the same size need not be of same size.

Preferences can contain ties and can be incomplete.

a 1:	b_1	b_2	b ₁ :	$(a_1$	a2)
a 2:	b_1		b ₂ :	a_1	

Redefine blocking pair.

A pair $(a, b) \in E \setminus M$ blocks M if Both a and b strictly prefer each other to their current partner in M.

Does a stable matching exist? Yes!

$$M_1 = \{(a_1, b_1)\}$$
 $M_2 = \{(a_1, b_2), (a_2, b_1)\}$

- Every instance admits a stable matching; can be computed in linear time.
- All stable matchings are of the same size need not be of same size.
- A stable matching can be half the size of another stable matching.

Preferences can contain ties and can be incomplete.

a 1:	b_1	b_2	b ₁ :	$(a_1$	a2)
a 2:	b_1		b ₂ :	a_1	

Redefine blocking pair.

• A pair $(a, b) \in E \setminus M$ blocks M if Both a and b strictly prefer each other to their current partner in M.

Does a stable matching exist? Yes!

$$M_1 = \{(a_1, b_1)\}$$
 $M_2 = \{(a_1, b_2), (a_2, b_1)\}$

Known Facts:

- Every instance admits a stable matching; can be computed in linear time.
- All stable matchings are of the same size need not be of same size.
- A stable matching can be half the size of another stable matching.

Question: How to compute largest size stable matching?

Variation #3: Lower Quotas

Variation #3: Lower Quotas

- Preferences are strict and can be incomplete.
- Some vertices must be matched lower quota vertices.

- Preferences are strict and can be incomplete.
- Some vertices must be matched lower quota vertices.

	b_1	b_2	<i>b</i> ₁ :	a_1	a ₂
<u>a2</u> :	b_1		<i>b</i> ₂ :	a_1	

- Preferences are strict and can be incomplete.
- Some vertices must be matched lower quota vertices.

<i>a</i> 1:	b_1	b_2	b 1:	a_1	a ₂
<u>a2</u> :	b_1		b ₂ :	a_1	

Does a stable and feasible matching exist? Not necessarily.

- Preferences are strict and can be incomplete.
- Some vertices must be matched lower quota vertices.

a 1:	b_1	<i>b</i> ₂	b ₁ :	a_1	a_2	
<u>a</u> 2:	b_1		<i>b</i> ₂ :	a_1		

Does a stable and feasible matching exist? Not necessarily.

• $M_1 = \{(a_1, b_1)\}$ • $M_1 = \{(a_2, b_1), (a_1, b_2)\}$ Stable but not feasible. Feasible but not stable.

- Preferences are strict and can be incomplete.
- Some vertices must be matched lower quota vertices.

a 1:	b_1	b_2	b 1:	a_1	a 2
<u>a</u> 2:	b_1		b ₂ :	a_1	

Does a stable and feasible matching exist? Not necessarily.

$$M_1 = \{(a_1, b_1)\}$$

$$M_1 = \{(a_2, b_1), (a_1, b_2)\}$$

Stable but not feasible. Feasible but not stable.

Known Fact:

- Preferences are strict and can be incomplete.
- Some vertices must be matched lower quota vertices.

<i>a</i> 1:	b_1	b_2	b ₁ :	a_1	a_2
<u>a</u> 2:	b_1		b ₂ :	a_1	

Does a stable and feasible matching exist? Not necessarily.

$$M_1 = \{(a_1, b_1)\}$$

$$M_1 = \{(a_2, b_1), (a_1, b_2)\}$$

Stable but not feasible. Feasible but not stable.

Known Fact:

In linear time we can check if an instance admits a feasible and stable matching.

- Preferences are strict and can be incomplete.
- Some vertices must be matched lower quota vertices.

a 1:	b_1	b_2	b ₁ :	a_1	a_2	
<u>a</u> 2:	b_1		b ₂ :	a_1		

Does a stable and feasible matching exist? Not necessarily.

• $M_1 = \{(a_1, b_1)\}$ • $M_1 = \{(a_2, b_1), (a_1, b_2)\}$ Stable but not feasible. Feasible but not stable.

Known Fact:

In linear time we can check if an instance admits a feasible and stable matching.

Question: How to compute optimal feasible matching?

Classical Model: Strict and Complete lists

Computing a stable matching					Gale and	Shaple	y 1962	
	a ₁ : a ₂ :	b_1 b_1	b ₂ b ₂		$b_1: b_2:$	а ₁ а ₁	a 2 a 2	

a 1:	b_1	b_2	b 1:	a_1	a 2	
a 2:	b_1	b_2	b ₂ :	a_1	a_2	

Gale and Shapley Algo.

Men propose.

■ Women accept / reject.

Computing a stable matching Gale and Shapley 1962

a 1: a2:	b_1 b_1	-		a 1 a1	
Gale and Shapley Algo.			• $a_1 \rightarrow b_1$		
Men propose			$a_1 \rightarrow b_1$		

• Women accept / reject.

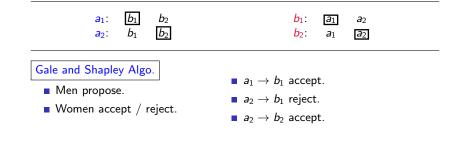
$\begin{array}{ccc} a_1: & \underline{b_1} & b_2 \\ a_2: & b_1 & b_2 \end{array}$	$\begin{array}{c} b_1: \boxed{a_1} a_2\\ b_2: a_1 a_2 \end{array}$
Gale and Shapley Algo. Men propose.	• $a_1 ightarrow b_1$ accept.

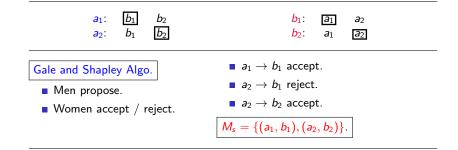
■ Women accept / reject.

$\begin{array}{ccc} \mathbf{a}_1: & \underline{b}_1 & b_2 \\ \mathbf{a}_2: & \mathbf{b}_1 & b_2 \end{array}$	$\begin{array}{ccc} \boldsymbol{b_1}: & \overline{\boldsymbol{a_1}} & \boldsymbol{a_2} \\ \boldsymbol{b_2}: & \boldsymbol{a_1} & \boldsymbol{a_2} \end{array}$
Gale and Shapley Algo.	
Men propose.	$a_1 \rightarrow b_1 \text{ accept.}$
Women accept / reject.	• $a_2 \rightarrow b_1$

$\begin{array}{ccc} a_1: & \underline{b_1} & b_2 \\ a_2: & b_1 & b_2 \end{array}$	$\begin{array}{ccc} b_1: & \boxed{a_1} & a_2 \\ b_2: & a_1 & a_2 \end{array}$			
Gale and Shapley Algo.				
Men propose.	• $a_1 \rightarrow b_1$ accept.			
Women accept / reject.	• $a_2 \rightarrow b_1$ reject.			

$\begin{array}{ccc} \mathbf{a}_1 \colon & \overline{b}_1 & b_2 \\ \mathbf{a}_2 \colon & b_1 & \mathbf{b}_2 \end{array}$	$\begin{array}{c} b_1: \overline{a_1} a_2 \\ b_2: a_1 a_2 \end{array}$
Gale and Shapley Algo. Men propose.	$ a_1 \to b_1 \text{ accept.} $ $ a_2 \to b_1 \text{ reject.} $
Women accept / reject.	• $a_2 \rightarrow b_2$ accept.





Order of proposals does not matter.

The side which proposes does matter.

Models : Recap

Model	Details	Goal	
Classical	strict and	Compute a	\checkmark
setting	complete list	stable match-	
		ing	
Variation #1	strict and in-	Compute a	
	complete list	larger optimal	
		matching	
Variation #2	strict and tied	Compute a	
	list	largest stable	
		matching	
Variation #3	strict and in-	Compute a	
	complete list;	feasible opti-	
	lower quotas	mal matching	

Assume ties only on \mathcal{B} side.

a 1:	b_1	b_2	<i>b</i> ₁ :	$(a_1$	a 2)
a 2:	b_1		<i>b</i> ₂ :	a_1	

Assume ties only on \mathcal{B} side.

a 1:	b_1	b_2	b ₁ :	$(a_1$	a 2)
a 2:	b_1		<i>b</i> ₂ :	a_1	

Recall:

Multiple stable matchings of <u>different</u> sizes.

Assume ties only on \mathcal{B} side.

a 1:	b_1	b_2	b 1:	$(a_1$	a 2)
a 2:	b_1		b ₂ :	a_1	

Recall:

Multiple stable matchings of <u>different</u> sizes.

 $M_1 = \{(a_1, b_1)\} \qquad M_2 = \{(a_1, b_2), (a_2, b_1)\}$

Compute largest size stable matching

Assume ties only on $\mathcal B$ side.

a 1:	b_1	b_2	b 1:	$(a_1$	a 2)
a 2:	b_1		b ₂ :	a_1	

Recall:

Multiple stable matchings of <u>different</u> sizes.

 $M_1 = \{(a_1, b_1)\} \qquad M_2 = \{(a_1, b_2), (a_2, b_1)\}$

Compute largest size stable matching

NP-hard even for restricted setting.

Assume ties only on $\mathcal B$ side.

a 1:	b_1	b_2	b 1:	$(a_1$	a 2)
a 2:	b_1		b ₂ :	a_1	

Recall:

Multiple stable matchings of <u>different</u> sizes.

 $M_1 = \{(a_1, b_1)\} \qquad M_2 = \{(a_1, b_2), (a_2, b_1)\}$

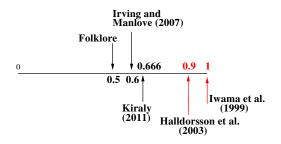
Compute largest size stable matching

NP-hard even for restricted setting.

Naive method:

- Break ties arbitrarily.
- Run GS algo.

Assume ties only on \mathcal{B} side.



Király 2011

Assume ties only on $\mathcal B$ side.

Király's Algorithm

- Break ties arbitrarily.
- Execute GS algo.
- Unmatched *A*'s propose again with increased priority.

Király 2011

Assume ties only on $\mathcal B$ side.

Király's Algorithm

- Break ties arbitrarily.
- Execute GS algo.
- Unmatched \mathcal{A} 's propose again with increased priority.
 - **b** uses increased priority for breaking ties.

Király 2011

Assume ties only on $\mathcal B$ side.

Király's Algorithm

- Break ties arbitrarily.
- Execute GS algo.
- Unmatched *A*'s propose again with increased priority.
 - **b** uses increased priority for breaking ties.
 - Stability is not violated.

a 1:	b_1	b_2	b 1:	$(a_1$	a 2)
a 2:	b_1		b ₂ :	a_1	

a 1:	b_1	b_2	b ₁ :	a_1	a_2
a 2:	b_1		b ₂ :	a_1	

- Break ties arbitrarily.
- Run GS algo.
- Unmatched As propose with increased priority.

a 1:	b_1	b_2	b 1:	a_1	a_2	
a 2:	b_1		b ₂ :	a_1		

- Break ties arbitrarily. $a_1 \rightarrow b_1$
- Run GS algo.
- Unmatched As propose with increased priority.

Király's Algo.

- Break ties arbitrarily.
- Run GS algo.
- Unmatched As propose with increased priority.

• $a_1 \rightarrow b_1$ accept.

Király 2011

a 1:	b_1	b_2		b 1:	a_1	a 2	
a 2:	b_1			b ₂ :	a_1		

- Break ties arbitrarily.
- Run GS algo.
- Unmatched As propose with increased priority.
- $a_1 \rightarrow b_1$ accept.

$$a_2 \rightarrow b_1$$

Király 2011

- Break ties arbitrarily.
- Run GS algo.
- Unmatched As propose with increased priority.
- $a_1 \rightarrow b_1$ accept.
- $a_2 \rightarrow b_1$ reject.

Király 2011

a 1:	b_1	b_2	b 1:	a_1	a_2	
a 2:	b_1		b ₂ :	a_1		

- Break ties arbitrarily.
- Run GS algo.
- Unmatched As propose with increased priority.
- $a_1 \rightarrow b_1$ accept.
- $a_2 \rightarrow b_1$ reject.
- $a_2^* \rightarrow b_1$ accept; recall ties originally.

Király 2011

- Break ties arbitrarily.
- Run GS algo.
- Unmatched As propose with increased priority.

- $a_1 \rightarrow b_1$ accept.
- $a_2 \rightarrow b_1$ reject.
- $a_2^* \rightarrow b_1$ accept; recall ties originally.

Király 2011

- Break ties arbitrarily.
- Run GS algo.
- Unmatched As propose with increased priority.

- $a_1 \rightarrow b_1$ accept.
- $a_2 \rightarrow b_1$ reject.
- $a_2^* \rightarrow b_1$ accept; recall ties originally.
- $a_1 \rightarrow b_2$ accept.

Variation #2: Incomplete Lists and Ties

Király 2011

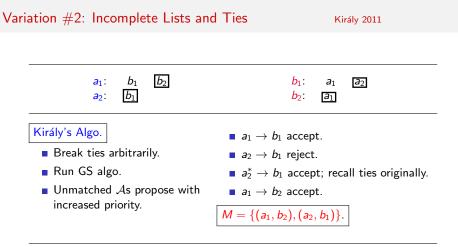
Király's Algo.

- Break ties arbitrarily.
- Run GS algo.
- Unmatched As propose with increased priority.

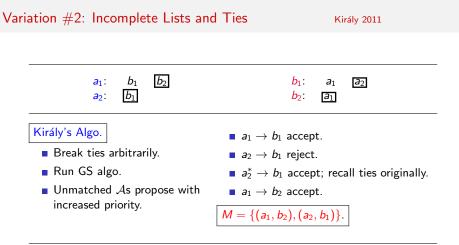
- $a_1 \rightarrow b_1$ accept.
- $a_2 \rightarrow b_1$ reject.
- $a_2^* \rightarrow b_1$ accept; recall ties originally.

•
$$a_1 \rightarrow b_2$$
 accept.

 $M = \{(a_1, b_2), (a_2, b_1)\}.$

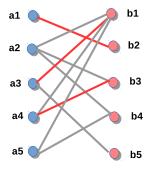


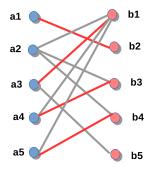
Goal: Argue about the size of the matching.



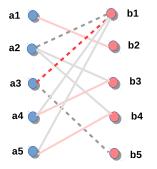
Goal: Argue about the size of the matching.

Show no short aug. paths.

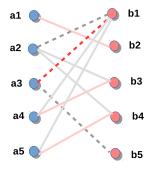




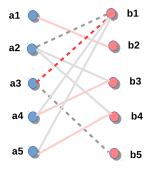
Is this the largest sized matching?



- Is this the largest sized matching?
- *a*₂, *b*₁, *a*₃, *b*₅ − alternating path with both end points free.



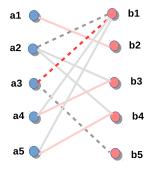
- Is this the largest sized matching?
- *a*₂, *b*₁, *a*₃, *b*₅ − alternating path with both end points free.
- Aug. paths: odd number of edges
 - (1, 3, 5, ..., 2k+1)



- Is this the largest sized matching?
- *a*₂, *b*₁, *a*₃, *b*₅ − alternating path with both end points free.
- Aug. paths: odd number of edges

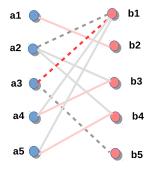
(1, 3, 5, ..., 2k+1)

 $\blacksquare \text{ No one length aug. path } \rightarrow \\ \text{maximal}$



- Is this the largest sized matching?
- *a*₂, *b*₁, *a*₃, *b*₅ − alternating path with both end points free.
- Aug. paths: odd number of edges
 - (1, 3, 5, ..., 2k+1)
- $\blacksquare \text{ No one length aug. path } \rightarrow \\ \text{maximal}$
- No short aug. path, closer to max. matching.

• Matching M' without 1 and 3 length aug. paths.



- Is this the largest sized matching?
- *a*₂, *b*₁, *a*₃, *b*₅ − alternating path with both end points free.
- Aug. paths: odd number of edges
 - (1, 3, 5, ..., 2k+1)
- $\blacksquare \text{ No one length aug. path } \rightarrow \\ \text{maximal}$
- No short aug. path, closer to max. matching.
- Matching M' without 1 and 3 length aug. paths. • $|M'| \ge \frac{2}{3}|M^*|$.

Back to Király's algorithm

- Break ties arbitrarily.
- Execute GS algo.
- Unmatched *A*'s propose again with increased priority.

- Break ties arbitrarily.
- Execute GS algo.
- Unmatched *A*'s propose again with increased priority.
 - **b** uses increased priority for breaking ties.

- Break ties arbitrarily.
- Execute GS algo.
- Unmatched *A*'s propose again with increased priority.
 - **b** uses increased priority for breaking ties.
 - Stability is not violated.

- Break ties arbitrarily.
- Execute GS algo.
- Unmatched *A*'s propose again with increased priority.
 - **b** uses increased priority for breaking ties.
 - Stability is not violated.
- Need to argue about the size of the output.

- Break ties arbitrarily.
- Execute GS algo.
- Unmatched *A*'s propose again with increased priority.
 - **b** uses increased priority for breaking ties.
 - Stability is not violated.
- Need to argue about the size of the output.
- Show that there are no short (1 and 3 length) aug. paths.

- Break ties arbitrarily.
- Execute GS algo.
- Unmatched *A*'s propose again with increased priority.
 - **b** uses increased priority for breaking ties.
 - Stability is not violated.
- Need to argue about the size of the output.
- Show that there are no short (1 and 3 length) aug. paths.

Some observations:

- Break ties arbitrarily.
- Execute GS algo.
- Unmatched *A*'s propose again with increased priority.
 - **b** uses increased priority for breaking ties.
 - Stability is not violated.
- Need to argue about the size of the output.
- Show that there are no short (1 and 3 length) aug. paths.

Some observations:

If a woman *b* is unmatched at the end of algo., she never got a proposal.

- Break ties arbitrarily.
- Execute GS algo.
- Unmatched *A*'s propose again with increased priority.
 - **b** uses increased priority for breaking ties.
 - Stability is not violated.
- Need to argue about the size of the output.
- Show that there are no short (1 and 3 length) aug. paths.

Some observations:

- If a woman **b** is unmatched at the end of algo., she never got a proposal.
- If a man *a* is unmatched at the end of algo., he got increased priority.

Suppose there exists a 3 length aug. path w.r.t. M_{algo} .

Suppose there exists a 3 length aug. path w.r.t. M_{algo} .

■ a_2 never proposed to b_2 (: b_2 is unmatched after algo) $\rightarrow a_2$ did not get increased priority.

Suppose there exists a 3 length aug. path w.r.t. M_{algo} .

- a_2 never proposed to b_2 (: b_2 is unmatched after algo)
 - \rightarrow *a*² did not get increased priority.

$$\rightarrow | a_2 \text{ strictly prefers } b_1 \text{ over } b_2.$$

Suppose there exists a 3 length aug. path w.r.t. M_{algo} .

- a_2 never proposed to b_2 (:: b_2 is unmatched after algo)
 - \rightarrow a_2 did not get increased priority.

 \rightarrow | a_2 strictly prefers b_1 over b_2 .

- *a*₁ is unmatched at the end of algo.
 - \rightarrow a_1 must have got high priority.

Suppose there exists a 3 length aug. path w.r.t. M_{algo} .

- a_2 never proposed to b_2 (:: b_2 is unmatched after algo)
 - \rightarrow a_2 did not get increased priority.

$$\rightarrow | a_2 \text{ strictly prefers } b_1 \text{ over } b_2.$$

- *a*₁ is unmatched at the end of algo.
 - \rightarrow a_1 must have got high priority.
 - $\rightarrow | b_1 \text{ strictly prefers } a_2 \text{ over } a_1.$

Suppose there exists a 3 length aug. path w.r.t. M_{algo} .

- a_2 never proposed to b_2 (: b_2 is unmatched after algo)
 - \rightarrow a_2 did not get increased priority.

$$\rightarrow | a_2 \text{ strictly prefers } b_1 \text{ over } b_2.$$

- a_1 is unmatched at the end of algo.
 - \rightarrow a_1 must have got high priority.
 - $\rightarrow | b_1 \text{ strictly prefers } a_2 \text{ over } a_1.$
- (a_2, b_1) is a blocking pair w.r.t. M^* .

Suppose there exists a 3 length aug. path w.r.t. M_{algo} .

- a_2 never proposed to b_2 (: b_2 is unmatched after algo)
 - \rightarrow a₂ did not get increased priority.

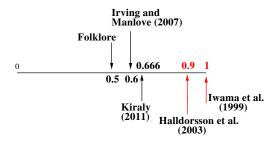
$$\rightarrow$$
 $|a_2$ strictly prefers b_1 over b_2 .

- \rightarrow a_1 must have got high priority.
- $\rightarrow | b_1 \text{ strictly prefers } a_2 \text{ over } a_1.$
- (a₂, b₁) is a blocking pair w.r.t. M^{*}.
- contradicts stability of M^{*}.

There are no 3 length aug. paths w.r.t. M_{algo} . Thus, $|M_{algo}| \ge \frac{2}{3} |M^*|$.

Variation #2: Incomplete Lists and Ties

Assume ties only on \mathcal{B} side.



Main takeaways

- A simple extension of GS algo.
- Extension to capacitated case (hospital residents).
- Extension to case of ties on both sides.

Models : Recap

Model	Details	Goal	
Classical	strict and	Compute a	\checkmark
setting	complete list	stable match-	
		ing	
Variation #1	strict and in-	Compute a	
	complete list	larger optimal	
		matching	
Variation #2	strict and tied	Compute a	\checkmark
	list	largest stable	
		matching	
Variation #3	strict and in-	Compute a	
	complete list;	feasible opti-	
	lower quotas	mal matching	

Variation #1 & Variation #3

Gärdenfors 1975

Gärdenfors 1975

Gärdenfors 1975

$\begin{array}{c} a_1: b_1 b_2 \\ a_2: b_1 \end{array}$	$b_1: (a_1) a_2 \\ b_2: a_1$
• $M_s = \{(a_1, b_1)\}$	$\blacksquare M = \{(a_2, b_1)\}$

	Ms	Μ
a_1	\checkmark	
a ₂		\checkmark
b_1	\checkmark	

Gärdenfors 1975

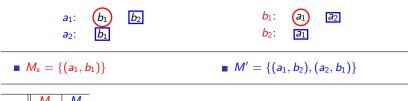
		$\begin{array}{c} a_1: b_1 b_2 \\ a_2: b_1 \end{array}$	b_1 : a_1 a_2 b_2 : a_1
. /	$M_s = \{$	(a_1, b_1)	$\blacksquare M = \{(a_2, b_1)\}$
	Ms	M	■ <i>M_s</i> beats <i>M</i> w.r.t. popularity.
a_1	\checkmark		Popular Matching:
a ₂		\checkmark	One which cannot be beaten!
b_1	\checkmark		

Gärdenfors 1975

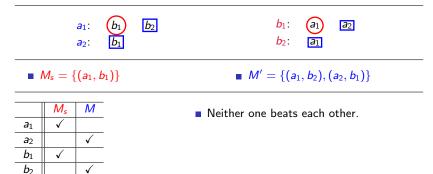
	$\begin{array}{c} a_1: b_1 \\ a_2: b_1 \end{array} b_2$	$b_1: (a_1) (a_2)$ $b_2: a_1$
• /	$M_s=\{(a_1,b_1)\}$	• $M = \{(a_2, b_1)\}$
	M _s M	■ <i>M_s</i> beats <i>M</i> w.r.t. popularity.
a_1	√	Popular Matching:
a 2	✓	One which cannot be beaten!
b_1	\checkmark	Q: Does a popular matching exist?

Gärdenfors 1975

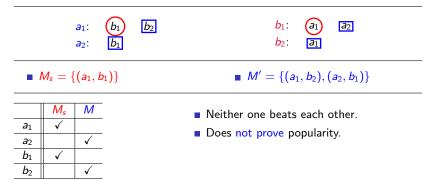
Gärdenfors 1975



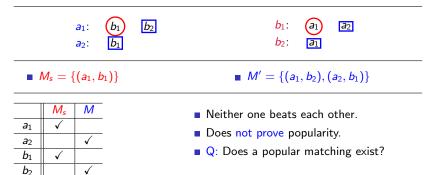
Gärdenfors 1975



Gärdenfors 1975



Gärdenfors 1975



Gärdenfors 1975

<i>M_s</i> =	$\in \{(a_1,$	$, b_1) \}$
------------------------	---------------	-------------

$$\blacksquare M' = \{(a_1, b_2), (a_2, b_1)\}$$

	Ms	Μ
a ₁	\checkmark	
a ₂		\checkmark
b_1	\checkmark	
<i>b</i> ₂		\checkmark

- Neither one beats each other.
- Does not prove popularity.
- Q: Does a popular matching exist? Yes! A stable matching is popular.

Variation #1: Incomplete Lists

Preferences are strict and can be incomplete.

a 1:	b_1	b_2	b 1:	a_1	a 2
a ₂ :	b_1		b ₂ :	a_1	

• Does a stable matching exist? Yes! $M = \{(a_1, b_1)\}$.

Question: Are there larger optimal matchings?

Variation #1: Incomplete Lists

Preferences are strict and can be incomplete.

<i>a</i> 1:	b_1	b_2	b ₁ :	a_1	a_2	
a 2:	b_1		b ₂ :	a_1		

• Does a stable matching exist? Yes! $M = \{(a_1, b_1)\}$.

Question: Are there larger optimal matchings?

Yes! $M' = \{(a_1, b_2), (a_2, b_1)\}$ is popular.

Variation #1: I	'ariation #1: Incomplete Lists				Kavitha 2012		
	a1: a2:		<i>b</i> ₂	b ₁ : b ₂ :		a ₂	

Variation #1: Inc	omplete Lists	Kavitha 2012
	$egin{array}{ccc} b_1 & b_2 & \ b_1 & \end{array}$	$\begin{array}{ccc} b_1: & a_1 & a_2 \\ b_2: & a_1 \end{array}$

\blacksquare Run GS algo. Unmatched \mathcal{A} 's propose with increased priority.

Variation #1: Inco	mplete Lists	Kavitha 2012
a1: a2:	b_1 b_2 b_1	$b_1: a_1 a_2$ $b_2: a_1$

- Run GS algo. Unmatched A's propose with increased priority.
- Stability may be violated.

Variation #1: Incor	nplete Lists	Kavitha 2012
a1: a2:	$b_1 b_2 b_1$	$b_1: a_1 a_2$ $b_2: a_1$

- \blacksquare Run GS algo. Unmatched $\mathcal{A}{}^{\prime}s$ propose with increased priority.
- Stability may be violated.
- Guarantees on output :
 - *M_{algo}* is max. sized popular.

$$|M_{algo}| \ge |M_s| \text{ and } |M_{algo}| \ge \frac{2}{3}|M^*|.$$

Linear time algo.

Variation #1: Inc	omplet	e Lists	Kavitha 2012		
	b_1 b_1	<i>b</i> ₂	<i>b</i> ₁ : <i>b</i> ₂ :		a ₂

- \blacksquare Run GS algo. Unmatched $\mathcal{A}{}^{\prime}s$ propose with increased priority.
- Stability may be violated.
- Guarantees on output :
 - *M_{algo}* is max. sized popular.

$$|M_{algo}| \geq |M_s|$$
 and $|M_{algo}| \geq rac{2}{3}|M^*|$.

Linear time algo.

Goal: Compute a max. card. matching that is popular.

Variation #1: I	riation #1: Incomplete Lists				Kavitha 2012			
	a ₁ : a ₂ :	-	<i>b</i> ₂		<i>b</i> ₁ : <i>b</i> ₂ :		a 2	

- \blacksquare Run GS algo. Unmatched $\mathcal{A}{}^{\prime}s$ propose with increased priority.
- Stability may be violated.
- Guarantees on output :
 - *M_{algo}* is max. sized popular.

$$|M_{algo}| \ge |M_s| \text{ and } |M_{algo}| \ge \frac{2}{3}|M^*|.$$

Linear time algo.

Goal: Compute a max. card. matching that is popular.

Run GS algo. Unmatched A's propose with increased priority n times.

Variation #1: I	riation #1: Incomplete Lists				Kavitha 2012			
	a ₁ : a ₂ :	-	<i>b</i> ₂		<i>b</i> ₁ : <i>b</i> ₂ :		a 2	

- \blacksquare Run GS algo. Unmatched $\mathcal{A}{}^{\prime}s$ propose with increased priority.
- Stability may be violated.
- Guarantees on output :
 - *M_{algo}* is max. sized popular.

$$|M_{algo}| \ge |M_s| \text{ and } |M_{algo}| \ge \frac{2}{3}|M^*|.$$

Linear time algo.

Goal: Compute a max. card. matching that is popular.

- Run GS algo. Unmatched A's propose with increased priority n times.
- Stability may be violated.

Variation #1: I	riation #1: Incomplete Lists				Kavitha 2012			
	a ₁ : a ₂ :	-	<i>b</i> ₂		b ₁ : b ₂ :		a 2	

- \blacksquare Run GS algo. Unmatched $\mathcal{A}{}^{\prime}s$ propose with increased priority.
- Stability may be violated.
- Guarantees on output :
 - *M_{algo}* is max. sized popular.

$$|M_{algo}| \ge |M_s| \text{ and } |M_{algo}| \ge \frac{2}{3}|M^*|.$$

Linear time algo.

Goal: Compute a max. card. matching that is popular.

- Run GS algo. Unmatched A's propose with increased priority n times.
- Stability may be violated.
- Guarantees on output :
 - *M_{algo}* is max. cardinality matching.
 - *M_{algo}* is popular amongst max. card. matchings.
 - Running time: O(nm).

- Preferences are strict and can be incomplete.
- Some vertices must be matched lower quota vertices.

a 1:	b_1	b_2	b ₁ :	a_1	a_2
<u>a</u> 2:	b_1		<i>b</i> ₂ :	a_1	

Does a stable and feasible matching exist? Not necessarily.

Question: How to compute optimal feasible matching?

- Preferences are strict and can be incomplete.
- Some vertices must be matched lower quota vertices.

a 1:	b_1	b_2	<i>b</i> ₁ :	a_1	a_2
<u>a</u> 2:	b_1		<i>b</i> ₂ :	a_1	

Does a stable and feasible matching exist? Not necessarily.

Question: How to compute optimal feasible matching?

Yes! $M' = \{(a_2, b_1), (a_1, b_2)\}$ Feasible, not stable, but popular.

- Preferences are strict and can be incomplete.
- Some vertices must be matched lower quota vertices.

<i>a</i> 1:	b_1	b_2		b 1:	a_1	a_2	
<u>a2</u> :	b_1			b ₂ :	a_1		

Goal: Compute a feasible matching that is popular.

- Preferences are strict and can be incomplete.
- Some vertices must be matched lower quota vertices.

a 1:	b_1	b_2	b ₁ :	a_1	a_2
<u>a</u> 2:	b_1		b ₂ :	a_1	

Goal: Compute a feasible matching that is popular.

Run GS algo. Unmatched A's propose with increased priority. Deficient A's propose as long as they are deficient.

- Preferences are strict and can be incomplete.
- Some vertices must be matched lower quota vertices.

a 1:	b_1	b_2	b ₁ :	a_1	a_2
<u>a</u> 2:	b_1		b ₂ :	a_1	

Goal: Compute a feasible matching that is popular.

- Run GS algo. Unmatched A's propose with increased priority. Deficient A's propose as long as they are deficient.
- Stability will be violated.

- Preferences are strict and can be incomplete.
- Some vertices must be matched lower quota vertices.

a 1:	b_1	b_2	b ₁ :	a_1	a_2
<u>a</u> 2:	b_1		b ₂ :	a_1	

Goal: Compute a feasible matching that is popular.

- Run GS algo. Unmatched A's propose with increased priority. Deficient A's propose as long as they are deficient.
- Stability will be violated.
- Guarantees on output :
 - *M_{algo}* is feasible.
 - *M_{algo}* is max. sized popular. amongst feasible matchings.
 - Running time: O(nm).

Models : Summary

Model	Details	Goal	
Classical	strict and	Compute a	\checkmark
setting	complete list	stable match-	
		ing	
Variation #1	strict and in-	Compute a	\checkmark
	complete list	larger optimal	
		matching	
Variation #2	strict and tied	Compute a	\checkmark
	list	largest stable	
		matching	
Variation #3	strict and in-	Compute a	\checkmark
	complete list;	feasible opti-	
	lower quotas	mal matching	

To summarize..

A simple extension of GS algo.

- Each case requires different proof techniques and several non-trivial details.
- All algorithms can be written as a reduction to a suitable SM instance.
- Works in the presence of capacities (upper quotas).

To summarize..

A simple extension of GS algo.

- Each case requires different proof techniques and several non-trivial details.
- All algorithms can be written as a reduction to a suitable SM instance.
- Works in the presence of capacities (upper quotas).

To summarize..

A simple extension of GS algo.

- Each case requires different proof techniques and several non-trivial details.
- All algorithms can be written as a reduction to a suitable SM instance.
- Works in the presence of capacities (upper quotas).

Thank You!