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Stability, Popularity, and Lower Quotas

Problem Setup

A set of men A (applicants / students /medical interns)

A set of women B ( jobs / courses / hospitals )

Each participant has a preference ordering.

a1: b1 b2

a2: b1 b2

b1: a1 a2

b2: a1 a2

Here preferences are strict and complete.

Goal: Assign men to women optimally.
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Stability, Popularity, and Lower Quotas

Problem Setup

A set of men A (applicants / students /medical interns)

A set of women B ( jobs / courses / hospitals )

Each participant has a preference ordering.

a1: b1 b2

a2: b1 b2

b1: a1 a2

b2: a1 a2

Here preferences are strict and complete.

A possible assignment M = {(a1, b2), (a2, b1)}.
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Stability, Popularity, and Lower Quotas

Stability – a notion of optimality

a1: b1 b2

a2: b1 b2

b1: a1 a2

b2: a1 a2

A pair (a, b) ∈ E \M blocks M if

Both a and b prefer each other to their current partner in M.

(a1, b1): both a1 and b1 wish to deviate – blocking pair.

A matching is stable if no pair wishes to deviate.

M ′ = {(a1, b1), (a2, b2)} is a stable.

Known Facts:

Every instance admits a stable matching.

Stable matching can be computed in linear time.

All stable matchings are perfect.
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Stability, Popularity, and Lower Quotas

Today’s talk: Three Variants of the SM problem
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Stability, Popularity, and Lower Quotas

Variation #1: Incomplete Lists

Preferences are strict and can be incomplete.

a1: b1 b2

a2: b1

b1: a1 a2

b2: a1

Does a stable matching exist? Yes! M = {(a1, b1)}.

Known Facts:

Every instance admits a stable matching; can be computed in linear time.

All stable matchings are perfect of the same size.

Stable matching can be half the size of max. matching.

Question: Are there larger optimal matchings?
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Stability, Popularity, and Lower Quotas

Variation #2: Incomplete Lists and Ties

Preferences can contain ties and can be incomplete.

a1: b1 b2

a2: b1

b1: (a1 a2)
b2: a1

Redefine blocking pair.
A pair (a, b) ∈ E \M blocks M if

Both a and b strictly prefer each other to their current partner in M.

Does a stable matching exist? Yes!
M1 = {(a1, b1)} M2 = {(a1, b2), (a2, b1)}

Known Facts:

Every instance admits a stable matching; can be computed in linear time.

All stable matchings are of the same size need not be of same size.

A stable matching can be half the size of another stable matching.

Question: How to compute largest size stable matching?
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Stability, Popularity, and Lower Quotas

Variation #3: Lower Quotas

Preferences are strict and can be incomplete.

Some vertices must be matched – lower quota vertices.

a1: b1 b2

a2: b1

b1: a1 a2

b2: a1

Does a stable and feasible matching exist? Not necessarily.

M1 = {(a1, b1)} Stable but not feasible.
M1 = {(a2, b1), (a1, b2)} Feasible but not stable.

Known Fact:

In linear time we can check if an instance admits a feasible and stable
matching.

Question: How to compute optimal feasible matching?

8 / 31
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Stability, Popularity, and Lower Quotas

Classical Model: Strict and Complete lists
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Stability, Popularity, and Lower Quotas

Computing a stable matching Gale and Shapley 1962

a1: b1 b2

a2: b1 b2

b1: a1 a2

b2: a1 a2

Gale and Shapley Algo.

Men propose.

Women accept / reject.

a1 → b1 accept.

a2 → b1 reject.

a2 → b2 accept.

Order of proposals does not matter.

The side which proposes does matter.
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Stability, Popularity, and Lower Quotas

Models : Recap

Model Details Goal

Classical
setting

strict and
complete list

Compute a
stable match-
ing

X

Variation #1 strict and in-
complete list

Compute a
larger optimal
matching

Variation #2 strict and tied
list

Compute a
largest stable
matching

Variation #3 strict and in-
complete list;
lower quotas

Compute a
feasible opti-
mal matching
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Variation #2: Incomplete Lists and Ties
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Stability, Popularity, and Lower Quotas

Variation #2: Incomplete Lists and Ties

Assume ties only on B side.

a1: b1 b2

a2: b1

b1: (a1 a2)
b2: a1

Recall:

Multiple stable matchings of different sizes.

M1 = {(a1, b1)} M2 = {(a1, b2), (a2, b1)}

Compute largest size stable matching

NP-hard even for restricted setting.

Naive method:

Break ties arbitrarily.

Run GS algo.
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Variation #2: Incomplete Lists and Ties

Assume ties only on B side.
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Variation #2: Incomplete Lists and Ties Király 2011

Assume ties only on B side.

Király’s Algorithm

Break ties arbitrarily.

Execute GS algo.

Unmatched A’s propose again with increased priority.

b uses increased priority for breaking ties.
Stability is not violated.
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Variation #2: Incomplete Lists and Ties Király 2011

a1: b1 b2

a2: b1

b1: (a1 a2)
b2: a1

Király’s Algo.

Break ties arbitrarily.

Run GS algo.

Unmatched As propose with
increased priority.

a1 → b1 accept.

a2 → b1 reject.

a∗2 → b1 accept; recall ties originally.

a1 → b2 accept.

Show no short aug. paths.
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a1: b1 b2

a2: b1

b1: a1 a2

b2: a1
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Király’s Algo.

Break ties arbitrarily.

Run GS algo.

Unmatched As propose with
increased priority.

a1 → b1 accept.

a2 → b1 reject.

a∗2 → b1 accept; recall ties originally.

a1 → b2 accept.

M = {(a1, b2), (a2, b1)}.

Goal: Argue about the size of the matching.

Show no short aug. paths.

16 / 31



Stability, Popularity, and Lower Quotas

Variation #2: Incomplete Lists and Ties Király 2011
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Stability, Popularity, and Lower Quotas

Matchings and aug. paths: a detour

Is this the largest sized
matching?

a2, b1, a3, b5 – alternating path
with both end points free.

Aug. paths: odd number of
edges
(1, 3, 5, ..., 2k+1)

No one length aug. path →
maximal

No short aug. path, closer to
max. matching.

Matching M ′ without 1 and 3 length aug. paths.
|M ′| ≥ 2

3
|M∗|.
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Back to Király’s algorithm
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Stability, Popularity, and Lower Quotas

Recall Király’s algorithm

Break ties arbitrarily.

Execute GS algo.

Unmatched A’s propose again with increased priority.

b uses increased priority for breaking ties.
Stability is not violated.

Need to argue about the size of the output.

Show that there are no short (1 and 3 length) aug. paths.

Some observations:

If a woman b is unmatched at the end of algo., she never got a proposal.

If a man a is unmatched at the end of algo., he got increased priority.

19 / 31



Stability, Popularity, and Lower Quotas
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Stability, Popularity, and Lower Quotas

Output of Király’s algorithm

Suppose there exists a 3 length aug. path w.r.t. Malgo .

a2 never proposed to b2 (∵ b2 is unmatched after algo)
→ a2 did not get increased priority.

→ a2 strictly prefers b1 over b2.

a1 is unmatched at the end of algo.
→ a1 must have got high priority.

→ b1 strictly prefers a2 over a1.

(a2, b1) is a blocking pair w.r.t. M∗.

contradicts stability of M∗.

There are no 3 length aug. paths w.r.t. Malgo .
Thus, |Malgo | ≥ 2

3
|M∗|.
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Stability, Popularity, and Lower Quotas

Variation #2: Incomplete Lists and Ties

Assume ties only on B side.

0

0.5

Irving and
Manlove (2007)

Kiraly
(2011) Halldorsson et al.

(2003)

Iwama et al.
  (1999)

Folklore

0.6

0.666 0.9 1

Main takeaways

A simple extension of GS algo.

Extension to capacitated case (hospital residents).

Extension to case of ties on both sides.
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Stability, Popularity, and Lower Quotas

Models : Recap

Model Details Goal

Classical
setting

strict and
complete list

Compute a
stable match-
ing

X

Variation #1 strict and in-
complete list

Compute a
larger optimal
matching

Variation #2 strict and tied
list

Compute a
largest stable
matching

X

Variation #3 strict and in-
complete list;
lower quotas

Compute a
feasible opti-
mal matching
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Stability, Popularity, and Lower Quotas

Variation #1 & Variation #3
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Stability, Popularity, and Lower Quotas

Popularity – an alternative to stability Gärdenfors 1975

Compare two matchings by votes of participants.

a1: b1 b2

a2: b1

b1: a1 a2

b2: a1

Ms = {(a1, b1)} M = {(a2, b1)}

Ms M
a1 X
a2 X
b1 X

Ms beats M w.r.t. popularity.

Popular Matching:
One which cannot be beaten!

Q: Does a popular matching exist?
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Stability, Popularity, and Lower Quotas

Variation #1: Incomplete Lists

Preferences are strict and can be incomplete.

a1: b1 b2

a2: b1

b1: a1 a2

b2: a1

Does a stable matching exist? Yes! M = {(a1, b1)}.

Question: Are there larger optimal matchings?

Yes! M ′ = {(a1, b2), (a2, b1)} is popular.
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Stability, Popularity, and Lower Quotas

Variation #1: Incomplete Lists Kavitha 2012

a1: b1 b2

a2: b1

b1: a1 a2

b2: a1

Goal: Compute Largest sized Popular matching.

Run GS algo. Unmatched A’s propose with increased priority.

Stability may be violated.
Guarantees on output :

Malgo is max. sized popular.

|Malgo | ≥ |Ms | and |Malgo | ≥ 2
3
|M∗|.

Linear time algo.

Goal: Compute a max. card. matching that is popular.

Run GS algo. Unmatched A’s propose with increased priority n times.

Stability may be violated.
Guarantees on output :

Malgo is max. cardinality matching.
Malgo is popular amongst max. card. matchings.
Running time: O(nm).
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Stability, Popularity, and Lower Quotas

Variation #3: Lower Quotas

Preferences are strict and can be incomplete.

Some vertices must be matched – lower quota vertices.

a1: b1 b2

a2: b1

b1: a1 a2

b2: a1

Does a stable and feasible matching exist? Not necessarily.

Question: How to compute optimal feasible matching?

Yes! M ′ = {(a2, b1), (a1, b2)} Feasible, not stable, but popular.

28 / 31



Stability, Popularity, and Lower Quotas

Variation #3: Lower Quotas

Preferences are strict and can be incomplete.

Some vertices must be matched – lower quota vertices.

a1: b1 b2

a2: b1

b1: a1 a2

b2: a1

Does a stable and feasible matching exist? Not necessarily.

Question: How to compute optimal feasible matching?

Yes! M ′ = {(a2, b1), (a1, b2)} Feasible, not stable, but popular.

28 / 31



Stability, Popularity, and Lower Quotas

Variation #3: Lower Quotas N., Nimbhorkar 2017

Preferences are strict and can be incomplete.

Some vertices must be matched – lower quota vertices.

a1: b1 b2

a2: b1

b1: a1 a2

b2: a1

Goal: Compute a feasible matching that is popular.

Run GS algo. Unmatched A’s propose with increased priority. Deficient
A’s propose as long as they are deficient.

Stability will be violated.

Guarantees on output :
Malgo is feasible.
Malgo is max. sized popular. amongst feasible matchings.
Running time: O(nm).
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Stability, Popularity, and Lower Quotas

Models : Summary

Model Details Goal

Classical
setting

strict and
complete list

Compute a
stable match-
ing

X

Variation #1 strict and in-
complete list

Compute a
larger optimal
matching

X

Variation #2 strict and tied
list

Compute a
largest stable
matching

X

Variation #3 strict and in-
complete list;
lower quotas

Compute a
feasible opti-
mal matching

X
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Stability, Popularity, and Lower Quotas

To summarize..

A simple extension of GS algo.

Each case requires different proof techniques and several non-trivial details.

All algorithms can be written as a reduction to a suitable SM instance.

Works in the presence of capacities (upper quotas).

Thank You!
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