Concatenation hierarchies and separation

Marc Zeitoun

LaBRI, Bordeaux University
Caalm '19, CMI Chennai
23/1/2019

Based on joint work with Thomas Place

Regular Languages, Concatenation, Separation

Re

La

Regular expressions for describing languages

Regular language = set of words built from:

0, {e} {a} 0. a
Union Ly + L
Concatenation L1l
lteration (star) L*

Lilo ={u;-up | up € Ly and up € Ly}

L*={e}uUlLuUl?Ul’® -

1/42

Regular expressions for describing languages

Regular language = set of words built from:

0, {e} {a} 0. a

Union Ly + Ly
Concatenation LiL,
lteration (star) L*

Lilo ={u;-up | up € Ly and up € Ly}
L*={e}uUlLuUl?Ul’® -

Example

((aa)* + b)* = Words over {a, b} with even blocks of a's

1/42

Regularity is robust (1): words containing an ‘a’

(a+ b)*a(a+ b)*

2/42

Regularity is robust (1): words containing an ‘a’

(a+ b)*a(a+ b)*

2/42

Regularity is robust (1): words containing an ‘a’

(a+ b)*a(a+ b)*

2/42

Regularity is robust (1): words containing an ‘a’

(a+ b)*a(a+ b)*

2/42

Regularity is robust (1): words containing an ‘a’

(a+ b)*a(a+ b)*

f:(a+ b)* — ({0,1}, x) g % 8_}
f(bab) = f(b)f(a)f(b) ~

Regularity is robust (1): words containing an ‘a’

(a+ b)*a(a+ b)*

f:(a+ b)* — ({0,1}, x) g % 8_}
f(bab) = f(b)f(a)f(b) ~

Regularity, robustness (2): words of even length

(aa)’

a
f:a"— (Z)2Z, +) —)@
a1 3
VX VY
(min € XA Alternate(X,Y))
X X X

3/42

Robustness Theorem for Regular Word Languages

Kleene, Biichi, Elgot, Trakhtenbrot (60s)
For a language of finite words L, TFAE:

1. L is described by a regular expression (U, e, *).
2. L is recognized by an NFA.

3. L is recognized by a DFA.
4. L is described by an MSO sentence.
5. L is recognized by a morphism into a finite monoid.

4/42

Robustness Theorem for Regular Word Languages

Kleene, Biichi, Elgot, Trakhtenbrot (60s)
For a language of finite words L, TFAE:

1. L is described by a regular expression (U, e, *).
2. L is recognized by an NFA.

3. L is recognized by a DFA.
4. L is described by an MSO sentence. Built-in
5. L is recognized by a morphism into a finite monoid. (complement

4/42

Robustness Theorem for Regular Word Languages

Kleene, Biichi, Elgot, Trakhtenbrot (60s)
For a language of finite words L, TFAE:

1. L is described by a regular expression (U, e, *).
2. L is recognized by an NFA.

3. L is recognized by a DFA.

4. L is described by an MSO sentence. Built-in

5. L is recognized by a morphism into a finite monoid. (complement
6. L is described by a generalized regular expression.

Generalized regular expression:

» Built from singletons, using U, e, x and complement.

4/42

Goal: Understanding expressiveness of fragments

Descriptive Formalisms Structures
Syntax Semantics

Restricted expressions
Fragments of MSO

Words
ababcbaa

T

Express Properties

We want to understand what a formalism can express

What does “understand”’ mean?

5/42

Meaningful fragments of regular languages

What languages can be expressed by a simple expression/formula?

What does simple mean? Several possible choices, e.g.:

» For (generalized) expressions: number of nested stars.
» For formulas: number of alternations between 3 and V.

6/42

Meaningful fragments of regular languages

What languages can be expressed by a simple expression/formula?

What does simple mean? Several possible choices, e.g.:

» For (generalized) expressions: number of nested stars.
» For formulas: number of alternations between 3 and V.

Star height problems (Eggan, 1963)

For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars

2. A generalized expression

6/42

Meaningful fragments of regular languages

What languages can be expressed by a simple expression/formula?

What does simple mean? Several possible choices, e.g.:

» For (generalized) expressions: number of nested stars.
» For formulas: number of alternations between 3 and V.

Star height problems (Eggan, 1963)

For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

E.g., over alphabet {a, b}: (a*b*)* = (a+ b)*

6/42

Meaningful fragments of regular languages

What languages can be expressed by a simple expression/formula?

What does simple mean? Several possible choices, e.g.:

» For (generalized) expressions: number of nested stars.
» For formulas: number of alternations between 3 and V.

Star height problems (Eggan, 1963)

For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

E.g., over alphabet {a, b}: (a*b*)* = (a+ b)* = 0.

6/42

Star height problems

Star height problems (Eggan, 1963)

For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars

2. A generalized expression

What is the GSH of b* over A= {a, b}?
» GSH at most 1: b* = (a + b)*a(a + b)*.
» Can we do better?

7/42

Star height problems

Star height problems (Eggan, 1963)

For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars

2. A generalized expression

What is the GSH of b* over A = {a, b}?
» GSH at most 1: b* = (a + b)*a(a + b)*.
» Can we do better? Yes: 0 a 0.

7/42

Star height problems

Star height problems (Eggan, 1963)

For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars

2. A generalized expression

What is the GSH of (a(bb)*a)* over A= {a, b}?

7/42

Star height problems

Star height problems (Eggan, 1963)

For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars

2. A generalized expression

What is the GSH of (a(bb)*a)* over A= {a, b}?
» GSH at most 1:

€ + aA*N A*an A*ab(bb)*aA*

» Can we do better?

7/42

Star height problems

Star height problems (Eggan, 1963)
For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars

2. A generalized expression

What is the GSH of (a(bb)*a)* over A= {a, b}?
» GSH at most 1:

€ + aA*N A*an A*ab(bb)*aA*
» Can we do better?

g + abnB@anPab(bb)*ad

7/42

Star height problems

Star height problems (Eggan, 1963)

For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

Natural problems, but turned out to be difficult:

» Problem 1 solved in 1988 by Hashiguchi and 2005 by Kirsten.
» Problem 2 open: no language of GSH 2 is known!

7/42

Star height problems

Star height problems (Eggan, 1963)

For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

Natural problems, but turned out to be difficult:

» Problem 1 solved in 1988 by Hashiguchi and 2005 by Kirsten.
» Problem 2 open: no language of GSH 2 is known!
— “restrict the generalization”: what about languages of GSH 07

7/42

Star height problems

Star height problems (Eggan, 1963)

For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

Natural problems, but turned out to be difficult:
» Problem 1 solved in 1988 by Hashiguchi and 2005 by Kirsten.
» Problem 2 open: no language of GSH 2 is known!
— “restrict the generalization”: what about languages of GSH 07

Notation. GSHO = Star-free = SF

7/42

Temporary conclusion

» Regular languages are easy, but complement is hard.

» Understanding a class = designing algorithms testing membership

8 /42

Outline

1. The Membership Problem

2. Concatenation Hierarchies

3. Beyond Membership: Separation

4. Generalizing Separation

The Membership Problem

Capturing expressiveness: seminal result

Membership problem for a class C
> INPUT A (regular) language L.
» QUESTION Does L belong to C?

> Does it belong to C7

0/42

Capturing expressiveness: seminal result

Membership problem for a class C
> INPUT A (regular) language L.
» QUESTION Does L belong to C?

Examples of classes C:

» Languages definable in FO.

» Languages of SH k.

» Languages of GSH k > 1.

» Languages of GSH 0 (called star-free, denoted SF).

9/42

Capturing expressiveness: seminal result

Membership problem for a class C
> INPUT A (regular) language L.
» QUESTION Does L belong to C?

Examples of classes C:

» Languages definable in FO.

» Languages of SH k.

» Languages of GSH k > 1.

» Languages of GSH 0 (called star-free, denoted SF).

Schiitzenberger '65

For L a regular language, the following are equivalent:
1. L is star-free. semantic
2. The minimal automaton of L is counter-free. syntactic

9/42

Counter-free automata

Schiitzenberger '65
For L a regular language, the following are equivalent:
1. L is star-free. semantic

2. The minimal automaton of L is counter-free. syntactic

An automaton is counter-free if it has no pattern:

u

10/42

Counter-free automata

Schiitzenberger '65
For L a regular language, the following are equivalent:
1. L is star-free. semantic

2. The minimal automaton of L is counter-free. syntactic

An automaton is counter-free if it has no pattern:

u

Example

Minimal DFA of b* has no counter = Star-free
Minimal DFA of (a(bb)*a)* has a counter = Not star-free

10/42

Star-free expressions vs. first-order logic

First-order logic, with only the linear order ‘<.

abbcaaaca
123456789 J

Word = sequence of labeled positions.

11/42

Star-free expressions vs. first-order logic

First-order logic, with only the linear order ‘<.

abbcaaaca
123456789 J

Word = sequence of labeled positions.

» Positions can be quantified: Ixyp, Vxep.
» One binary predicate: the linear-order x < y.
» Unary predicates a(x), b(x), c(x) testing the label of position x.

11/42

Star-free expressions vs. first-order logic

First-order logic, with only the linear order ‘<.

abbcaaaca
123456789 J

Word = sequence of labeled positions.
» Positions can be quantified: Ixyp, Vxep.
» One binary predicate: the linear-order x < y.
» Unary predicates a(x), b(x), c(x) testing the label of position x.
» No quantification over sets of positions.

11/42

Star-free expressions vs. first-order logic

First-order logic, with only the linear order ‘<.

abbcaaaca
123456789 J

Word = sequence of labeled positions.

» Positions can be quantified: Ixyp, Vxep.

» One binary predicate: the linear-order x < y.

» Unary predicates a(x), b(x), c(x) testing the label of position x.
» No quantification over sets of positions.

Example: in the future of every ‘a’, there is a ‘b’

Vx (a(x) = dy ((y > x) A b()’)))

11/42

Why is Schiitzenberger’s theorem interesting?
1. Link with first-order logic FO.
Schiitzenberger '65, McNaughton, Papert '71
For L a regular language, the following are equivalent:
1. L is FO-definable. semantic

2. L is star-free. semantic

3. The minimal automaton of L is counter-free. syntactic

12/42

Why is Schiitzenberger’s theorem interesting?
1. Link with first-order logic FO.
Schiitzenberger '65, McNaughton, Papert '71

For L a regular language, the following are equivalent:

1. L is FO-definable. semantic
2. L is star-free. semantic
3. The minimal automaton of L is counter-free. syntactic)
SF FO
A* 0 True, False
U, A*\ V, =
Kal | 3x a(x) A o(x) A or*(x)

12/42

Why is Schiitzenberger’s theorem interesting?
1. Link with first-order logic FO.
Schiitzenberger '65, McNaughton, Papert '71

For L a regular language, the following are equivalent:

1. L is FO-definable. semantic
2. L is star-free. semantic
3. The minimal automaton of L is counter-free. syntactic)
SF FO
A* 0 True, False
U, A*\ V, =
Kal | 3x a(x) A o(x) A or*(x)

2. Provides an effective characterization of SF and FO.

12/42

Why is Schiitzenberger’s theorem interesting?
1. Link with first-order logic FO.
Schiitzenberger '65, McNaughton, Papert '71

For L a regular language, the following are equivalent:

1. L is FO-definable. semantic
2. L is star-free. semantic
3. The minimal automaton of L is counter-free. syntacticl
SF FO
A* 0 True, False
U, A*\ V, =
Kal | 3x a(x) A o(x) A or*(x)

2. Provides an effective characterization of SF and FO.

3. Constructive proof = normal forms for SF-expressions/FO. ,.,..

Recap

» Understanding fragment C = solving C-membership

» Successful methodology for SF = FO, reproduced
» For other logical classes on words (eg, several restrictions of FO).
» For other structures: infinite words, trees.

» Proof provides a canonical representation of languages in C.

13 /42

Recap

» Understanding fragment C = solving C-membership

» Successful methodology for SF = FO, reproduced

» For other logical classes on words (eg, several restrictions of FO).
» For other structures: infinite words, trees.

» Proof provides a canonical representation of languages in C.

» Still, the methodology seems to fail for some major classes.

13 /42

Concatenation Hierarchies

Concatenation hierarchies: Motivation

Definition of SF
» SF = smallest class such that:

» (O € SF and A* € SF.
» SF is closed under Boolean operations over A*.
» SF is closed under marked concatenation K, L — KalL.

14 /42

Concatenation hierarchies: Motivation

Definition of SF
» SF = smallest class such that:

» (O € SF and A* € SF.
» SF is closed under Boolean operations over A*.
» SF is closed under marked concatenation K, L — KalL.

Goal J

Classify SF languages according to some complexity measure.

14 /42

Complexity measures of SF/FO languages

What languages can be expressed by a simple expression/formula?

What does simple mean? Several possible choices, e.g.:

» For SF: number of alternations complement/concatenation.
» For FO: number of alternations between 3 and V.

15 /42

Two standard complexity hierarchies inside SF

Two classes built on top of C
» Boolean closure Bool(C).

» Polynomial closure Pol(C) = closure under marked concatenation + union

16 /42

Two standard complexity hierarchies inside SF

Two classes built on top of C
» Boolean closure Bool(C).

» Polynomial closure Pol(C) = closure under marked concatenation + union

How many needed alternations between Boolean operations and concatenations?

16 /42

Two standard complexity hierarchies inside SF

Two classes built on top of C
» Boolean closure Bool(C).

» Polynomial closure Pol(C) = closure under marked concatenation + union

How many needed alternations between Boolean operations and concatenations?

Straubing-Thérien hierarchy '81
> ST[0] = {0, A*}.

16 /42

Two standard complexity hierarchies inside SF

Two classes built on top of C
» Boolean closure Bool(C).

» Polynomial closure Pol(C) = closure under marked concatenation + union

How many needed alternations between Boolean operations and concatenations?

Straubing-Thérien hierarchy '81
> ST[0] = {0, A*}.
> ST [n+ 3] = Pol(ST [n]).

16 /42

Two standard complexity hierarchies inside SF

Two classes built on top of C
» Boolean closure Bool(C).

» Polynomial closure Pol(C) = closure under marked concatenation + union

How many needed alternations between Boolean operations and concatenations?

Straubing-Thérien hierarchy '81
> ST[0] = {0, A*}.
> ST [n+ 3] = Pol(ST [n]).
» ST [n+1] = Bool(ST [n+ 1]).

16 /42

Two standard complexity hierarchies inside SF

Two classes built on top of C
» Boolean closure Bool(C).

» Polynomial closure Pol(C) = closure under marked concatenation + union

How many needed alternations between Boolean operations and concatenations?

Straubing-Thérien hierarchy '81 Brzozowski-Cohen hierarchy '71

> ST[0] = {0, A*}. > BC[0] = {0, {e} AT, A*}.
> ST [n+ 1] = Pol(ST [n]). » BC [n+ 3] = Pol(BC[n]).
» ST[n+ 1] = Bool(ST [n+ 1]). » BC[n+ 1] = Bool(BC [n+ 3]).

16 /42

Two standard complexity hierarchies inside SF

Two classes built on top of C
» Boolean closure Bool(C).

» Polynomial closure Pol(C) = closure under marked concatenation + union

How many needed alternations between Boolean operations and concatenations?

Straubing-Thérien hierarchy '81 Brzozowski-Cohen hierarchy '71

> ST[0] = {0, A*}. > BC[0] = {0, {e} AT, A*}.
> ST [n+ 1] = Pol(ST [n]). » BC [n+ 3] = Pol(BC[n]).
» ST[n+ 1] = Bool(ST [n+ 1]). » BC[n+ 1] = Bool(BC [n+ 3]).
0 Pol, 1 \ Pol, 3 \ Pol 5.
"2 Boof "2 Boof T2

16 /42

Brzozowski-Cohen and Straubing-Thérien hierarchies

Natural questions
» Are the hierarchies strict?
» Logical description of each level?
» What is known about membership?

17 /42

Brzozowski-Cohen and Straubing-Thérien hierarchies

Natural questions
» Are the hierarchies strict?
» Logical description of each level?
» What is known about membership?

What is known
1. Both are strict (Brzozowski-Knast 1978 + interleaving),

(a. ..(a(ab)*b)*...b)*

2. Natural logical description wihin FO.
3. Membership for BC reduces to membership for ST.
4. Membership solved for only few levels.

17 /42

Logical counterpart: quantifier alternation hierarchies
Intuition: marked concatenation corresponds to 3.
> Y = VY. ®, (¢ quantifier free).

at most i blocks 3* or V*

» BY; = Finite Boolean combinations of ¥;.

18 /42

Logical counterpart: quantifier alternation hierarchies
Intuition: marked concatenation corresponds to 3.
> Y = VY. ®, (¢ quantifier free).

at most i blocks 3* or V*

» BY; = Finite Boolean combinations of ¥;.

Quantifier Alternation Hierarchies

21—©—BZ1—©—22—©—322—©—23—©—BZ3_©_Z4 g FO

18 /42

Logical counterpart: quantifier alternation hierarchies
Intuition: marked concatenation corresponds to 3.
> Y = VY. ®, (¢ quantifier free).

at most i blocks 3* or V*

» BY; = Finite Boolean combinations of ¥;.

Quantifier Alternation Hierarchies

21—©—BZ1—©—22—©—322—©—23—©—BZ3_©_Z4 g FO

Two versions
» Order signature: < and a().
» Enriched signature: <, a(), +1, min(), max() and ¢.

18 /42

Logical counterpart: quantifier alternation hierarchies
Intuition: marked concatenation corresponds to 3.
> Y = VY. ®, (¢ quantifier free).

at most i blocks 3* or V*

» BY; = Finite Boolean combinations of ¥;.

Quantifier Alternation Hierarchies

Zl—©—821—©—22—©—822—©—23—©—323—©—24 """" g """" FO
1 3 5 7
2 1 2 2 bl 3)

Two versions
» Order signature: < and a().

» Enriched signature: <, a(), +1, min(), max() and ¢.

Logical Correspondence Theorem (Thomas '82, Perrin-Pin '86)

» Straubing-Thérien hierarchy = order quantifier alternation hierarchy.

» Brzozowski-Cohen hierarchy = enriched quantifier alternation hierarchy.

.
18742

The membership problem for BC and ST hierarchies

Arfi’87 Schiitzenberger'65
Pin, Weil'95 McNaughton-Papert'71

Sian'75 Place,Z."'14 Place'15

1
i
1
AL
1
1
1
1

19/42

The membership problem for BC and ST hierarchies

Arfi’87 Schiitzenberger'65
Pin, Weil'95 McNaughton-Papert'71

Sian'75 Place,Z."'14 Place'15

=
1
1
1
|
1
1

Enrichment Theorem for membership (Straubing, 1985 — Pin, Weil 1997)

Membership for a level in the enriched hierarchy (ie, BC)
reduces to
Membership for the same level in the order hierarchy (ie, ST).

19/42

Generalizations in two directions

1. Proofs are ad hoc for BC and ST: obtain generic theorems.
For given C, what about Pol(C), Bool(Pol(C)),. ..

2. Recent results via generalizations of membership:

P separation,
» covering.

20/ 42

Generic concatenation hierarchies

Generic pattern parametrized by the basis
» C[0] (basis) Boolean algebra in REG closed under left/right quotients.

21/42

Generic concatenation hierarchies

Generic pattern parametrized by the basis

» C[0] (basis) Boolean algebra in REG closed under left/right quotients.

» C[n+ 3]: close C[n] under K, L — KalL and U.

» C[n+1]: close C[n+] under Boolean operations.

\ PO/\ 3
2

Boof !

Pol
0 >

N [—=

Boof

21/42

Generic concatenation hierarchies

Generic pattern parametrized by the basis
» C[0] (basis) Boolean algebra in REG closed under left/right quotients.
» C[n+ 3]: close C[n] under K, L — KalL and U.
» C[n+1]: close C[n+] under Boolean operations.

Pol
0 >

\

Boof

Pol, 3 Pol, s
r2 Boof -

N [—=

Examples
» Straubing-Thérien: C[0] = {0, A*}.
» Brzozowski-Cohen: C[0] = {0, {e}, A*, AT}.
» Pin-Margolis: C[0] = group languages.

21/42

Generic Hierarchies

Natural questions
» Are the hierarchies strict?
» Logical description of each level?
» What is known about membership?

22 /42

Strictness of generic hierarchies

Strictness Theorem (Place, Z. '17) J

Any hierarchy whose basis is finite is strict.

23 /42

Generic logical correspondence

Logical Correspondence Theorem (Place, Z. '17)

For any basis C, there is a natural set S of first order predicates, st.

Concatenation hierarchy of basis C

Quantifier alternation hierarchy over signature S

Generalizes the correspondences discovered for BC and ST hierarchies.

24 /42

Generic logical correspondence

Logical Correspondence Theorem (Place, Z. '17)

For any basis C, there is a natural set S of first order predicates, st.

Concatenation hierarchy of basis C

Quantifier alternation hierarchy over signature S

Generalizes the correspondences discovered for BC and ST hierarchies.

Intuition
For each L € C, add 4 predicates in addition to < and a(), b(), . ..
» w kI (x,y) when x <yand w]x,y[€L (Infix).

24 /42

Generic logical correspondence

Logical Correspondence Theorem (Place, Z. '17)

For any basis C, there is a natural set S of first order predicates, st.

Concatenation hierarchy of basis C

Quantifier alternation hierarchy over signature S

Generalizes the correspondences discovered for BC and ST hierarchies.

Intuition

For each L € C, add 4 predicates in addition to < and a(), b(), . ..
» w kI (x,y) when x <yand w]x,y[€L (Infix).
» wk= P (y) whenw[ly[el (Prefix).

> wE S (x) when wlx,n] €L (Suffix).

24 /42

Generic logical correspondence

Logical Correspondence Theorem (Place, Z. '17)

For any basis C, there is a natural set S of first order predicates, st.

Concatenation hierarchy of basis C

Quantifier alternation hierarchy over signature S

Generalizes the correspondences discovered for BC and ST hierarchies.

Intuition

For each L € C, add 4 predicates in addition to < and a(), b(), . ..
» w kI (x,y) when x <yand w]x,y[€L (Infix).
» wk= P (y) whenw[ly[el (Prefix).
> wE S (x) when wlx,n] €L (Suffix).
> wEW, when w € L (Whole word).)

24 /42

Generic membership theorem

Generic membership Theorem (Place, Z. '17, Place '15)

For any finite basis C, levels % 1, % g have decidable membership.

25 /42

Generic membership theorem

Generic membership Theorem (Place, Z. '17, Place '15)

1 3

For any finite basis C, levels 5135, g have decidable membership.

Remember: state of the art went up to level % for ST and BC hierarchies.

25 /42

Generic membership theorem

Generic membership Theorem (Place, Z. '17, Place '15)

1 3

For any finite basis C, levels 5135, g have decidable membership.

Remember: state of the art went up to level % for ST and BC hierarchies.

The alphabet trick...

Languages in ST [2] (Pin and Straubing '85)

Languages of level ST B] are unions of languages of the form Bga;Bf ---a,B;,
ST [2] = level § with basis {B* | B C A}.

ST[q] is also level (g — 1) in another hierarchy with finite basis.

25 /42

Generic membership theorem

Generic membership Theorem (Place, Z. '17, Place '15)

113

For any finite basis C, levels = g have decidable membership.

Remember: state of the art went up to level % for ST and BC hierarchies.

The alphabet trick...

Languages in ST [2] (Pin and Straubing '85)

Languages of level ST B] are unions of languages of the form Bga;Bf ---a,B;,
ST [2] = level § with basis {B* | B C A}.

ST[q] is also level (g — 1) in another hierarchy with finite basis.

Corollary (by Alphabet trick)

In ST hierarchy, levels ,1,2,2, 2, I have decidable membership

25 /42

Generic membership theorem

Generic membership Theorem (Place, Z. '17, Place '15)

113

For any finite basis C, levels = g have decidable membership.

Remember: state of the art went up to level % for ST and BC hierarchies.

The alphabet trick...

Languages in ST [2] (Pin and Straubing '85)

Languages of level ST B] are unions of languages of the form Bga;Bf ---a,B;,
ST [2] = level § with basis {B* | B C A}.

ST[q] is also level (g — 1) in another hierarchy with finite basis.

Corollary (by Alphabet trick)

In ST and BC hierarchy, levels ,1,2,2,2, I have decidable membership

25 /42

Recap

» Generic construction process for concatenation hierarchies.
» Generic logical correspondence.

» Generic strictness theorem.

» Generic membership theorem.

26 /42

Recap

» Generic construction process for concatenation hierarchies.
» Generic logical correspondence.

» Generic strictness theorem.

» Generic membership theorem.

Recent results required solving harder problems than membership.

26 /42

Beyond Membership: Separation

Beyond membership: Separation

Recent results required solving harder problems than membership.

Motivation:

» Classe C with decidable membership.
» Class Op(C) built on top of C with undecidable membership.

27 /42

Beyond membership: Separation

Recent results required solving harder problems than membership.

Motivation:

» Classe C with decidable membership.
» Class Op(C) built on top of C with undecidable membership.

Nice idea, Henckell and Rhodes '88 J

Prove more on C to recover membership decidability for Op(C).

Nice statement, Almeida '96
Almeida’96: a problem introduced by Henckell can be formulated as separation. J

27 /42

Beyond membership: Separation

Decide the following problem:

Take 2 regular languages Ly, L,

28 /42

Beyond membership: Separation

Decide the following problem:

Take 2 regular languages Ly, L, \[Can L, be separated from L,

/| with a language from C?7

Ly @ A

28 /42

Beyond membership: Separation

Decide the following problem:

Take 2 regular languages Ly, L, \ [Can L; be separated from L,

/| with a language from C?7

28 /42

Beyond membership: Separation

Decide the following problem:

Take 2 regular languages Ly, L, \ [Can L; be separated from L,

/| with a language from C?7

L =0 20— A*

Ly=A*\L;

C-separable from complement
&
in C
Membership can be formally reduced to separation

28 /42

Separation for classical hierarchies

Arfi'87 Schiitzenberger'65
Simon'75 Pin, Weil'95 Place,Z.'14 McNaughton-Papert'71
Place'15

2
<
n
[4
84
£
s

<

(XA C)=B. 523_@24

| 2200000570004

o| 2200000000000

B 10000000000000

o] 0000000000000

SN U0000000000007

@ 2122727277777 7]

o Ny

S| 2200000000000

0| 0000000000000

1933230000000

Almeida, Z.'97 Place,Z."17 Henckell'88
Czerwinski,Martens,Masopust'13 Henckell, ';:"Ode; izemberg 10
Place,Van Rooijen,Z.'13 ace,z.

29 /42

Separation for classical hierarchies

Arfi'87 Schiitzenberger'65
Simon'75 Pin, Weil'95 Place,Z.'14 McNaughton-Papert'71

Place'15

o

<

n

4

v

01

]

= h
XA C)=BIAC s A LB A C)= A C B~ C =ryc -

N s AL A
o ey

of| 20000000000000800000000

Bl B
5000000500000080000000000,

N{ s77777772777777fr77777777

- 2772222772222 2 7777277777

@\ 200000000000008000000007

al 272000000000008000000007

bl A

N R v
1005000000000080005000%
A Y Y

Almeida,Z.'97 Place, 217 Henckell'88
Czerwinski,Martens,Masopust'13 Henckell, Rhodes, Steinberg’10
Place,Van Rooijen,Z.'13 Place,Z.'14

Some membership algorithms come from separation algorithms for simpler levels

29 /42

Separation results for generic hierarchies

1 3

Generic Separation Theorem (Place, Z. '17, Place '15)
In any hierarchy of finite basis, separation is decidable for levels 3,1, 5. J

30/42

Separation results for generic hierarchies

Generic Separation Theorem (Place, Z. '17, Place '15)

In any hierarchy of finite basis, separation is decidable for levels % 1, g

Jump Theorem (Place, Z. '15)

Membership for level n+ I reduces to separation for level n— 1.

30/ 42

Separation results for generic hierarchies

Generic Separation Theorem (Place, Z. '17, Place '15)

In any hierarchy of finite basis, separation is decidable for levels 3,1, 3.

Jump Theorem (Place, Z. '15)

Membership for level n+ I reduces to separation for level n— 1.

Enrichment Theorem (Place, Z. '15)

Separation for a level in the enriched hierarchy (ie, BC)
reduces to
Separation for the same level in the order hierarchy (ie, ST).

30/42

Separation results for generic hierarchies

Generic Separation Theorem (Place, Z. '17, Place '15)

In any hierarchy of finite basis, separation is decidable for levels 3,1, 3.

Jump Theorem (Place, Z. '15)

Membership for level n+ I reduces to separation for level n— 1.

Enrichment Theorem (Place, Z. '15)

Separation for a level in the enriched hierarchy (ie, BC)
reduces to
Separation for the same level in the order hierarchy (ie, ST).

Corollary (by Alphabet trick + Enrichment)

Levels 1,1, 2, 2 and 3 have decidable separation in ST and BC hierarchies.

30/42

The Jump Theorem

Membership for level n + % reduces to separation for level n — 1.

Jump Theorem for quotienting lattices (Place, Z. '15)
2 J

31/42

The Jump Theorem

Jump Theorem for quotienting lattices (Place, Z. '15)

Membership for level n + % reduces to separation for level n — %

The Jump Theorem on Automata

A regular language is in C [n + %] iff its minimal automaton has no pattern:

® @

31/42

The Jump Theorem

Jump Theorem for quotienting lattices (Place, Z. '15)

Membership for level n + % reduces to separation for level n — %

The Jump Theorem on Automata

A regular language is in C 5 |fF its minimal automaton has no pattern:

not final final

31/42

The Jump Theorem

Jump Theorem for quotienting lattices (Place, Z. '15)

Membership for level n + % reduces to separation for level n — %

The Jump Theorem on Automata

A regular language is in C 5 |fF its minimal automaton has no pattern:
not final 2 I final
where L, 4 is not C [n — 3|-separable from L, , N Lgq

Lp,q:{W|PL>q}

31/42

Recap

Current knowledge is captured by these 3 generic results:

1. Separation theorem
C finite = separation decidable for Pol/(C), BPol(C), and Pol(BPol(C)).

In particular, unable to deal with 2 levels of complement.

2. Jump theorem
C-separation decidable = Pol/(C)-membership decidable.

3. Enrichment theorem.

32/42

Generalizing separation

Beyond Separation: Covering

» If A is the minimal DFA for L
LeC iff vp, q, Lp,geC

Comes from reasonable closure properties of usual classes.

33/42

Beyond Separation: Covering

» If A is the minimal DFA for L
LecC iff Vp,q, LpgeC

» We should actually consider a set of languages as input.
— natural to extend separation to several input languages.

33/42

The Covering Problem
» Recall: Lq, L, C-separable if
dK € C, LiCKand L,NnK =10

34 /42

The Covering Problem
» Recall: L, L, C-separable if
IK e, LiCKand [LbNK=0
» If C is closed under complement, same as:
dKi, K, €C

% i K2:A*\K€C

34 /42

The Covering Problem
» Recall: L, L, C-separable if
IK e, LiCKand [LbNK=0
» If C is closed under complement, same as:
dKi, K, €C
LiUL, C KiUK,

K; does not intersect both L; and L,
K, does not intersect both L; and L,

A*

N\
AN

% i K2:A*\K€C

34 /42

The Covering Problem
» Recall: L, L, C-separable if
IK e, LiCKand [LbNK=0
» If C is closed under complement, same as:
dKi, K, €C
LiULy, C Ki UK, K1, K>} covers {Ly, L,}...

K; does not intersect both L; and L,
K, does not intersect both L; and L,

A*

N\
AN

% i K2:A*\K€C

34 /42

The Covering Problem
» Recall: L, L, C-separable if
IK e, LiCKand [LbNK=0
» If C is closed under complement, same as:
dKi, K, €C
LiULy, C Ki UK, K1, K>} covers {Ly, L,}...

K; does not intersect both L; and L,

: ...optimally wrt separation
K, does not intersect both L; and L, } P y P

A*

N\
AN

% i K2:A*\K€C

34 /42

C-Covers

» L={Ly,...,L,} = set of languages.

» C-cover of L = finite set of languages K = {K3, ..., Ky} from C
st.
LLU---UL, CKiU---UK,

35/42

C-Covers

» L={Ly,...,L,} = set of languages.

» C-cover of L = finite set of languages K = {K3, ..., Ky} from C
st.
LLU---UL, CKiU---UK,

» Note: When A* € C: {A*} is always a C-cover of {L;, ..., L,}.

35/42

C-Covers

» L={Ly,...,L,} = set of languages.

» C-cover of L = finite set of languages K = {K3, ..., Ky} from C
st.
LLU---UL, CKiU---UK,

» Note: When A* € C: {A*} is always a C-cover of {L;, ..., Lp}.

» Goal: Measure how good a cover is at “separating” input set L.
We define the imprint of K on L for this.

35/42

Imprint = Quality of a C-Cover — Example 1

C-Cover K = {Ky, K2}

Imprint Z[L|(K) = {aII subsets of {L1, Lo, L3}}

36 /42

Imprint = Quality of a C-Cover — Example 2
(better)

C-Cover K’ = {K, Kb, K4}

Imprint Z[L|(K') = {all subsets of {L1, Ly, L3} but {L;, L, L3}}

37 /42

Imprint = Quality of a C-Cover — Example 3
(even better)

oo

"
K2

()

C-Cover K" = {K", K/

Imprint Z[L](K") = {all subsets of {L1, L, L3} but {Ly, Lo, L3} and {Lo, L3}}

38/42

Recap: Quality of a C-Cover

» Goal: Measure how good a cover is at “separating” an input set.

» Captured by imprint of K on L.
» The smaller the imprint, the better.

30/42

Optimal C-covers

» A C-cover K is optimal if it has minimal imprint.

40 /42

Optimal C-covers

» A C-cover K is optimal if it has minimal imprint.

Example
» C = Boolean algebra generated by languages A*aA* for a € A.
» What is a C-optimal imprint of L = {(ab)™, (ba)*, (ac)*}7?

40 /42

Optimal C-covers

» A C-cover K is optimal if it has minimal imprint.

Example
» C = Boolean algebra generated by languages A*aA* for a € A.
» What is a C-optimal imprint of L = {(ab)™, (ba)*, (ac)*}7?

Existence Lemma

If C is closed under finite intersection, there exists an optimal cover.

v

» Trivial, but non-constructive proof.

40 /42

Optimal C-covers

» A C-cover K is optimal if it has minimal imprint.

Example
» C = Boolean algebra generated by languages A*aA* for a € A.
» What is a C-optimal imprint of L = {(ab)™, (ba)*, (ac)*}7?

Existence Lemma

If C is closed under finite intersection, there exists an optimal cover.

v

» Trivial, but non-constructive proof.
» Optimal cover not unique, but optimal imprint wrt. C is unique.

40 /42

Optimal C-covers

» A C-cover K is optimal if it has minimal imprint.

Example
» C = Boolean algebra generated by languages A*aA* for a € A.
» What is a C-optimal imprint of L = {(ab)™, (ba)*, (ac)*}7?

Existence Lemma

If C is closed under finite intersection, there exists an optimal cover.

v

» Trivial, but non-constructive proof.
» Optimal cover not unique, but optimal imprint wrt. C is unique.
» C-Optimal imprints capture more information than C-separation.

40 /42

The C-Covering Problem

C-Optimal imprint: Z¢[L] & Z[L)(K) for any optimal C-cover K of L.

Theorem (Place Z.'16)

Let C be a Boolean algebra and L be a finite set of languages.
Given L1, L, € L, TFAE:

1. Ly and L, are C-separable.
2. {Ly, Lo} & Tc]L].

What did we gain?
Contrary to separation information alone, Z¢[L],
» has nice, generic properties,

» can be computed for all classes where separation is known decidable.

41 /42

Conclusion

» Overview of membership and separation for concatenation hierarchies.
» Membership is a natural problem, but too rigid as a setting.
» Separation more flexible, easier to cope with for low levels.

» Often requires solving even more general problems.

42 /42

Thanks!

	The Membership Problem
	Concatenation Hierarchies
	Beyond Membership: Separation
	Generalizing Separation

