
Concatenation hierarchies and separation

Marc Zeitoun

LaBRI, Bordeaux University

Caalm ’19, CMI Chennai

23/1/2019

Based on joint work with Thomas Place

Regular Languages, Concatenation, Separation

Regular Languages, Concatenation, Separation

Regular expressions for describing languages

Regular language = set of words built from:

∅, {"}, {a} ∅, ", a
Union L1 + L2

Concatenation L1L2

Iteration (star) L∗

L1L2 = {u1 · u2 | u1 ∈ L1 and u2 ∈ L2}
L∗ = {"} ∪ L ∪ L2 ∪ L3 · · ·

Example“
(aa)∗ + b

”∗
= Words over {a; b} with even blocks of a’s

1 / 42

Regular expressions for describing languages

Regular language = set of words built from:

∅, {"}, {a} ∅, ", a
Union L1 + L2

Concatenation L1L2

Iteration (star) L∗

L1L2 = {u1 · u2 | u1 ∈ L1 and u2 ∈ L2}
L∗ = {"} ∪ L ∪ L2 ∪ L3 · · ·

Example“
(aa)∗ + b

”∗
= Words over {a; b} with even blocks of a’s

1 / 42

Regularity is robust (1): words containing an ‘a’

(a + b)∗a(a + b)∗

a

a; b a; b

f : (a + b)∗ → ({0; 1};×)

f (bab) = f (b)f (a)f (b)

a 7→ 0 b 7→ 1

∃x a(x)

a b a b

2 / 42

Regularity is robust (1): words containing an ‘a’

(a + b)∗a(a + b)∗

a

a; b a; b

f : (a + b)∗ → ({0; 1};×)

f (bab) = f (b)f (a)f (b)

a 7→ 0 b 7→ 1

∃x a(x)

a b a b

2 / 42

Regularity is robust (1): words containing an ‘a’

(a + b)∗a(a + b)∗

a

a; b a; b

f : (a + b)∗ → ({0; 1};×)

f (bab) = f (b)f (a)f (b)

a 7→ 0 b 7→ 1

∃x a(x)

a b a b

2 / 42

Regularity is robust (1): words containing an ‘a’

(a + b)∗a(a + b)∗

a

b a; b

f : (a + b)∗ → ({0; 1};×)

f (bab) = f (b)f (a)f (b)

a 7→ 0 b 7→ 1

∃x a(x)

a b a b

2 / 42

Regularity is robust (1): words containing an ‘a’

(a + b)∗a(a + b)∗

a

b a; b

f : (a + b)∗ → ({0; 1};×)

f (bab) = f (b)f (a)f (b)

a 7→ 0 b 7→ 1

∃x a(x)

a b a b

2 / 42

Regularity is robust (1): words containing an ‘a’

(a + b)∗a(a + b)∗

a

b a; b

f : (a + b)∗ → ({0; 1};×)

f (bab) = f (b)f (a)f (b)

a 7→ 0 b 7→ 1

∃x a(x)

a b a b

2 / 42

Regularity, robustness (2): words of even length

(aa)∗

a

a

f : a∗ → (Z=2Z;+)

a 7→ 1

∀X ∀Y“
min ∈ X ∧ Alternate(X;Y)

”
⇒ max ∈ Y

X Y X Y X Y X Y

a a a a a a a a

3 / 42

Robustness Theorem for Regular Word Languages

Kleene, Büchi, Elgot, Trakhtenbrot (60s)

For a language of finite words L, TFAE:
1. L is described by a regular expression (∪; •; ?).
2. L is recognized by an NFA.

3. L is recognized by a DFA.
4. L is described by an MSO sentence.
5. L is recognized by a morphism into a finite monoid.

6. L is described by a generalized regular expression

.

Built-in
complement

Generalized regular expression:

I Built from singletons, using ∪; •; ? and complement.

4 / 42

Robustness Theorem for Regular Word Languages

Kleene, Büchi, Elgot, Trakhtenbrot (60s)

For a language of finite words L, TFAE:
1. L is described by a regular expression (∪; •; ?).
2. L is recognized by an NFA.

3. L is recognized by a DFA.
4. L is described by an MSO sentence.
5. L is recognized by a morphism into a finite monoid.

6. L is described by a generalized regular expression

.

Built-in
complement

Generalized regular expression:

I Built from singletons, using ∪; •; ? and complement.

4 / 42

Robustness Theorem for Regular Word Languages

Kleene, Büchi, Elgot, Trakhtenbrot (60s)

For a language of finite words L, TFAE:
1. L is described by a regular expression (∪; •; ?).
2. L is recognized by an NFA.

3. L is recognized by a DFA.
4. L is described by an MSO sentence.
5. L is recognized by a morphism into a finite monoid.
6. L is described by a generalized regular expression.

Built-in
complement

Generalized regular expression:

I Built from singletons, using ∪; •; ? and complement.

4 / 42

Goal: Understanding expressiveness of fragments

Restricted expressions

Fragments of MSO

. . .

Restricted expressions

Fragments of MSO

. . .

StructuresDescriptive Formalisms

acbacbca
Words

ababcbaa
Words

Express Properties

SemanticsSyntax

We want to understand what a formalism can express

What does “understand” mean?

5 / 42

Meaningful fragments of regular languages

What languages can be expressed by a simple expression/formula?

What does simple mean? Several possible choices, e.g.:
I For (generalized) expressions: number of nested stars.
I For formulas: number of alternations between ∃ and ∀.

Star height problems (Eggan, 1963)
For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

E.g., over alphabet {a; b}: (a∗b∗)∗ = (a + b)∗ = ∅.

6 / 42

Meaningful fragments of regular languages

What languages can be expressed by a simple expression/formula?

What does simple mean? Several possible choices, e.g.:
I For (generalized) expressions: number of nested stars.
I For formulas: number of alternations between ∃ and ∀.

Star height problems (Eggan, 1963)
For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

E.g., over alphabet {a; b}: (a∗b∗)∗ = (a + b)∗ = ∅.

6 / 42

Meaningful fragments of regular languages

What languages can be expressed by a simple expression/formula?

What does simple mean? Several possible choices, e.g.:
I For (generalized) expressions: number of nested stars.
I For formulas: number of alternations between ∃ and ∀.

Star height problems (Eggan, 1963)
For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

E.g., over alphabet {a; b}: (a∗b∗)∗ = (a + b)∗

= ∅.

6 / 42

Meaningful fragments of regular languages

What languages can be expressed by a simple expression/formula?

What does simple mean? Several possible choices, e.g.:
I For (generalized) expressions: number of nested stars.
I For formulas: number of alternations between ∃ and ∀.

Star height problems (Eggan, 1963)
For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

E.g., over alphabet {a; b}: (a∗b∗)∗ = (a + b)∗ = ∅.

6 / 42

Star height problems

Star height problems (Eggan, 1963)
For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

What is the GSH of b∗ over A = {a; b}?
I GSH at most 1: b∗ = (a + b)∗a(a + b)∗.

I Can we do better?

Yes: ∅ a ∅.

7 / 42

Star height problems

Star height problems (Eggan, 1963)
For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

What is the GSH of b∗ over A = {a; b}?
I GSH at most 1: b∗ = (a + b)∗a(a + b)∗.

I Can we do better? Yes: ∅ a ∅.

7 / 42

Star height problems

Star height problems (Eggan, 1963)
For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

What is the GSH of (a(bb)∗a)∗ over A = {a; b}?

7 / 42

Star height problems

Star height problems (Eggan, 1963)
For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

What is the GSH of (a(bb)∗a)∗ over A = {a; b}?
I GSH at most 1:

" + aA∗ ∩ A∗a ∩ A∗ab(bb)∗aA∗

I Can we do better?

" + a∅ ∩ ∅a ∩ ∅ab(bb)∗a∅

7 / 42

Star height problems

Star height problems (Eggan, 1963)
For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

What is the GSH of (a(bb)∗a)∗ over A = {a; b}?
I GSH at most 1:

" + aA∗ ∩ A∗a ∩ A∗ab(bb)∗aA∗

I Can we do better?

" + a∅ ∩ ∅a ∩ ∅ab(bb)∗a∅

7 / 42

Star height problems

Star height problems (Eggan, 1963)
For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

Natural problems, but turned out to be difficult:
I Problem 1 solved in 1988 by Hashiguchi and 2005 by Kirsten.
I Problem 2 open: no language of GSH 2 is known!

=⇒ “restrict the generalization”: what about languages of GSH 0?

Notation. GSH0 = Star-free = SF

7 / 42

Star height problems

Star height problems (Eggan, 1963)
For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

Natural problems, but turned out to be difficult:
I Problem 1 solved in 1988 by Hashiguchi and 2005 by Kirsten.
I Problem 2 open: no language of GSH 2 is known!

=⇒ “restrict the generalization”: what about languages of GSH 0?

Notation. GSH0 = Star-free = SF

7 / 42

Star height problems

Star height problems (Eggan, 1963)
For a regular language L, compute for it:
1. A regular expression with the minimum number of nested stars
2. A generalized expression

Natural problems, but turned out to be difficult:
I Problem 1 solved in 1988 by Hashiguchi and 2005 by Kirsten.
I Problem 2 open: no language of GSH 2 is known!

=⇒ “restrict the generalization”: what about languages of GSH 0?

Notation. GSH0 = Star-free = SF

7 / 42

Temporary conclusion

I Regular languages are easy, but complement is hard.

I Understanding a class = designing algorithms testing membership

8 / 42

Outline

1. The Membership Problem

2. Concatenation Hierarchies

3. Beyond Membership: Separation

4. Generalizing Separation

The Membership Problem

Capturing expressiveness: seminal result

Membership problem for a class C
I INPUT A (regular) language L.
I QUESTION Does L belong to C?

Examples of classes C:
I Languages definable in FO.
I Languages of SH k .
I Languages of GSH k ≥ 1.
I Languages of GSH 0 (called star-free, denoted SF).

a

a

b
b

c
a

a

c

aa

b

b

b
b

c
a

a

c

a Does it belong to C?

Schützenberger ’65
For L a regular language, the following are equivalent:
1. L is star-free.

semantic

2. The minimal automaton of L is counter-free.

syntactic

9 / 42

Capturing expressiveness: seminal result

Membership problem for a class C
I INPUT A (regular) language L.
I QUESTION Does L belong to C?

Examples of classes C:
I Languages definable in FO.
I Languages of SH k .
I Languages of GSH k ≥ 1.
I Languages of GSH 0 (called star-free, denoted SF).

a

a

b
b

c
a

a

c

aa

b

b

b
b

c
a

a

c

a Does it belong to C?

Schützenberger ’65
For L a regular language, the following are equivalent:
1. L is star-free.

semantic

2. The minimal automaton of L is counter-free.

syntactic

9 / 42

Capturing expressiveness: seminal result

Membership problem for a class C
I INPUT A (regular) language L.
I QUESTION Does L belong to C?

Examples of classes C:
I Languages definable in FO.
I Languages of SH k .
I Languages of GSH k ≥ 1.
I Languages of GSH 0 (called star-free, denoted SF).

a

a

b
b

c
a

a

c

aa

b

b

b
b

c
a

a

c

a Does it belong to C?

Schützenberger ’65
For L a regular language, the following are equivalent:
1. L is star-free. semantic
2. The minimal automaton of L is counter-free. syntactic

9 / 42

Counter-free automata

Schützenberger ’65
For L a regular language, the following are equivalent:
1. L is star-free. semantic
2. The minimal automaton of L is counter-free. syntactic

An automaton is counter-free if it has no pattern:

1 2 3 n n ≥ 2· · ·u u

u

Example
Minimal DFA of b∗ has no counter ⇒ Star-free
Minimal DFA of (a(bb)∗a)∗ has a counter ⇒ Not star-free

10 / 42

Counter-free automata

Schützenberger ’65
For L a regular language, the following are equivalent:
1. L is star-free. semantic
2. The minimal automaton of L is counter-free. syntactic

An automaton is counter-free if it has no pattern:

1 2 3 n n ≥ 2· · ·u u

u

Example
Minimal DFA of b∗ has no counter ⇒ Star-free
Minimal DFA of (a(bb)∗a)∗ has a counter ⇒ Not star-free

10 / 42

Star-free expressions vs. first-order logic

First-order logic, with only the linear order ‘<’.

a b b c a a a c a
1 2 3 4 5 6 7 8 9

Word = sequence of labeled positions.

I Positions can be quantified: ∃x’, ∀x’.
I One binary predicate: the linear-order x < y .
I Unary predicates a(x); b(x); c(x) testing the label of position x .
I No quantification over sets of positions.

Example: in the future of every ‘a’, there is a ‘b’

∀x
„
a(x) ⇒ ∃y

“
(y > x) ∧ b(y)

”«

11 / 42

Star-free expressions vs. first-order logic

First-order logic, with only the linear order ‘<’.

a b b c a a a c a
1 2 3 4 5 6 7 8 9

Word = sequence of labeled positions.
I Positions can be quantified: ∃x’, ∀x’.
I One binary predicate: the linear-order x < y .
I Unary predicates a(x); b(x); c(x) testing the label of position x .

I No quantification over sets of positions.

Example: in the future of every ‘a’, there is a ‘b’

∀x
„
a(x) ⇒ ∃y

“
(y > x) ∧ b(y)

”«

11 / 42

Star-free expressions vs. first-order logic

First-order logic, with only the linear order ‘<’.

a b b c a a a c a
1 2 3 4 5 6 7 8 9

Word = sequence of labeled positions.
I Positions can be quantified: ∃x’, ∀x’.
I One binary predicate: the linear-order x < y .
I Unary predicates a(x); b(x); c(x) testing the label of position x .
I No quantification over sets of positions.

Example: in the future of every ‘a’, there is a ‘b’

∀x
„
a(x) ⇒ ∃y

“
(y > x) ∧ b(y)

”«

11 / 42

Star-free expressions vs. first-order logic

First-order logic, with only the linear order ‘<’.

a b b c a a a c a
1 2 3 4 5 6 7 8 9

Word = sequence of labeled positions.
I Positions can be quantified: ∃x’, ∀x’.
I One binary predicate: the linear-order x < y .
I Unary predicates a(x); b(x); c(x) testing the label of position x .
I No quantification over sets of positions.

Example: in the future of every ‘a’, there is a ‘b’

∀x
„
a(x) ⇒ ∃y

“
(y > x) ∧ b(y)

”«
11 / 42

Why is Schützenberger’s theorem interesting?
1. Link with first-order logic FO.

Schützenberger ’65, McNaughton, Papert ’71
For L a regular language, the following are equivalent:
1. L is FO-definable. semantic
2. L is star-free. semantic
3. The minimal automaton of L is counter-free. syntactic

SF FO
A∗; ∅ True;False

∪; A∗\ ∨; ¬
KaL ∃x a(x) ∧ ’<x

K (x) ∧ ’>x
L (x)

2. Provides an effective characterization of SF and FO.

3. Constructive proof ⇒ normal forms for SF-expressions/FO.

12 / 42

Why is Schützenberger’s theorem interesting?
1. Link with first-order logic FO.

Schützenberger ’65, McNaughton, Papert ’71
For L a regular language, the following are equivalent:
1. L is FO-definable. semantic
2. L is star-free. semantic
3. The minimal automaton of L is counter-free. syntactic

SF FO
A∗; ∅ True;False

∪; A∗\ ∨; ¬
KaL ∃x a(x) ∧ ’<x

K (x) ∧ ’>x
L (x)

2. Provides an effective characterization of SF and FO.

3. Constructive proof ⇒ normal forms for SF-expressions/FO.

12 / 42

Why is Schützenberger’s theorem interesting?
1. Link with first-order logic FO.

Schützenberger ’65, McNaughton, Papert ’71
For L a regular language, the following are equivalent:
1. L is FO-definable. semantic
2. L is star-free. semantic
3. The minimal automaton of L is counter-free. syntactic

SF FO
A∗; ∅ True;False

∪; A∗\ ∨; ¬
KaL ∃x a(x) ∧ ’<x

K (x) ∧ ’>x
L (x)

2. Provides an effective characterization of SF and FO.

3. Constructive proof ⇒ normal forms for SF-expressions/FO.

12 / 42

Why is Schützenberger’s theorem interesting?
1. Link with first-order logic FO.

Schützenberger ’65, McNaughton, Papert ’71
For L a regular language, the following are equivalent:
1. L is FO-definable. semantic
2. L is star-free. semantic
3. The minimal automaton of L is counter-free. syntactic

SF FO
A∗; ∅ True;False

∪; A∗\ ∨; ¬
KaL ∃x a(x) ∧ ’<x

K (x) ∧ ’>x
L (x)

2. Provides an effective characterization of SF and FO.

3. Constructive proof ⇒ normal forms for SF-expressions/FO. 12 / 42

Recap

I Understanding fragment C = solving C-membership

I Successful methodology for SF = FO, reproduced
I For other logical classes on words (eg, several restrictions of FO).
I For other structures: infinite words, trees.

I Proof provides a canonical representation of languages in C.

I Still, the methodology seems to fail for some major classes.

13 / 42

Recap

I Understanding fragment C = solving C-membership

I Successful methodology for SF = FO, reproduced
I For other logical classes on words (eg, several restrictions of FO).
I For other structures: infinite words, trees.

I Proof provides a canonical representation of languages in C.

I Still, the methodology seems to fail for some major classes.

13 / 42

Concatenation Hierarchies

Concatenation hierarchies: Motivation

Definition of SF
I SF = smallest class such that:

I ∅ ∈ SF and A∗ ∈ SF.
I SF is closed under Boolean operations over A∗.
I SF is closed under marked concatenation K;L 7→ KaL.

Goal
Classify SF languages according to some complexity measure.

14 / 42

Concatenation hierarchies: Motivation

Definition of SF
I SF = smallest class such that:

I ∅ ∈ SF and A∗ ∈ SF.
I SF is closed under Boolean operations over A∗.
I SF is closed under marked concatenation K;L 7→ KaL.

Goal
Classify SF languages according to some complexity measure.

14 / 42

Complexity measures of SF/FO languages

What languages can be expressed by a simple expression/formula?

What does simple mean? Several possible choices, e.g.:
I For SF: number of alternations complement/concatenation.
I For FO: number of alternations between ∃ and ∀.

15 / 42

Two standard complexity hierarchies inside SF

Two classes built on top of C
I Boolean closure Bool(C).
I Polynomial closure Pol(C) = closure under marked concatenation + union

How many needed alternations between Boolean operations and concatenations?

Straubing-Thérien hierarchy ’81
I ST [0] = {∅; A∗}.
I ST

ˆ
n + 1

2

˜
= Pol(ST [n]).

I ST [n + 1] = Bool(ST
ˆ
n + 1

2

˜
).

Brzozowski-Cohen hierarchy ’71
I BC [0] = {∅; {"}; A+; A∗}.
I BC

ˆ
n + 1

2

˜
= Pol(BC [n]).

I BC [n + 1] = Bool(BC
ˆ
n + 1

2

˜
).

0 1
2 1 3

2 2 5
2

Pol
Bool

Pol
Bool

Pol

16 / 42

Two standard complexity hierarchies inside SF

Two classes built on top of C
I Boolean closure Bool(C).
I Polynomial closure Pol(C) = closure under marked concatenation + union

How many needed alternations between Boolean operations and concatenations?

Straubing-Thérien hierarchy ’81
I ST [0] = {∅; A∗}.
I ST

ˆ
n + 1

2

˜
= Pol(ST [n]).

I ST [n + 1] = Bool(ST
ˆ
n + 1

2

˜
).

Brzozowski-Cohen hierarchy ’71
I BC [0] = {∅; {"}; A+; A∗}.
I BC

ˆ
n + 1

2

˜
= Pol(BC [n]).

I BC [n + 1] = Bool(BC
ˆ
n + 1

2

˜
).

0 1
2 1 3

2 2 5
2

Pol
Bool

Pol
Bool

Pol

16 / 42

Two standard complexity hierarchies inside SF

Two classes built on top of C
I Boolean closure Bool(C).
I Polynomial closure Pol(C) = closure under marked concatenation + union

How many needed alternations between Boolean operations and concatenations?

Straubing-Thérien hierarchy ’81
I ST [0] = {∅; A∗}.

I ST
ˆ
n + 1

2

˜
= Pol(ST [n]).

I ST [n + 1] = Bool(ST
ˆ
n + 1

2

˜
).

Brzozowski-Cohen hierarchy ’71
I BC [0] = {∅; {"}; A+; A∗}.
I BC

ˆ
n + 1

2

˜
= Pol(BC [n]).

I BC [n + 1] = Bool(BC
ˆ
n + 1

2

˜
).

0 1
2 1 3

2 2 5
2

Pol
Bool

Pol
Bool

Pol

16 / 42

Two standard complexity hierarchies inside SF

Two classes built on top of C
I Boolean closure Bool(C).
I Polynomial closure Pol(C) = closure under marked concatenation + union

How many needed alternations between Boolean operations and concatenations?

Straubing-Thérien hierarchy ’81
I ST [0] = {∅; A∗}.
I ST

ˆ
n + 1

2

˜
= Pol(ST [n]).

I ST [n + 1] = Bool(ST
ˆ
n + 1

2

˜
).

Brzozowski-Cohen hierarchy ’71
I BC [0] = {∅; {"}; A+; A∗}.
I BC

ˆ
n + 1

2

˜
= Pol(BC [n]).

I BC [n + 1] = Bool(BC
ˆ
n + 1

2

˜
).

0 1
2 1 3

2 2 5
2

Pol
Bool

Pol
Bool

Pol

16 / 42

Two standard complexity hierarchies inside SF

Two classes built on top of C
I Boolean closure Bool(C).
I Polynomial closure Pol(C) = closure under marked concatenation + union

How many needed alternations between Boolean operations and concatenations?

Straubing-Thérien hierarchy ’81
I ST [0] = {∅; A∗}.
I ST

ˆ
n + 1

2

˜
= Pol(ST [n]).

I ST [n + 1] = Bool(ST
ˆ
n + 1

2

˜
).

Brzozowski-Cohen hierarchy ’71
I BC [0] = {∅; {"}; A+; A∗}.
I BC

ˆ
n + 1

2

˜
= Pol(BC [n]).

I BC [n + 1] = Bool(BC
ˆ
n + 1

2

˜
).

0 1
2 1 3

2 2 5
2

Pol
Bool

Pol
Bool

Pol

16 / 42

Two standard complexity hierarchies inside SF

Two classes built on top of C
I Boolean closure Bool(C).
I Polynomial closure Pol(C) = closure under marked concatenation + union

How many needed alternations between Boolean operations and concatenations?

Straubing-Thérien hierarchy ’81
I ST [0] = {∅; A∗}.
I ST

ˆ
n + 1

2

˜
= Pol(ST [n]).

I ST [n + 1] = Bool(ST
ˆ
n + 1

2

˜
).

Brzozowski-Cohen hierarchy ’71
I BC [0] = {∅; {"}; A+; A∗}.
I BC

ˆ
n + 1

2

˜
= Pol(BC [n]).

I BC [n + 1] = Bool(BC
ˆ
n + 1

2

˜
).

0 1
2 1 3

2 2 5
2

Pol
Bool

Pol
Bool

Pol

16 / 42

Two standard complexity hierarchies inside SF

Two classes built on top of C
I Boolean closure Bool(C).
I Polynomial closure Pol(C) = closure under marked concatenation + union

How many needed alternations between Boolean operations and concatenations?

Straubing-Thérien hierarchy ’81
I ST [0] = {∅; A∗}.
I ST

ˆ
n + 1

2

˜
= Pol(ST [n]).

I ST [n + 1] = Bool(ST
ˆ
n + 1

2

˜
).

Brzozowski-Cohen hierarchy ’71
I BC [0] = {∅; {"}; A+; A∗}.
I BC

ˆ
n + 1

2

˜
= Pol(BC [n]).

I BC [n + 1] = Bool(BC
ˆ
n + 1

2

˜
).

0 1
2 1 3

2 2 5
2

Pol
Bool

Pol
Bool

Pol

16 / 42

Brzozowski-Cohen and Straubing-Thérien hierarchies

Natural questions
I Are the hierarchies strict?
I Logical description of each level?
I What is known about membership?

What is known
1. Both are strict (Brzozowski-Knast 1978 + interleaving),

(a · · · (a(ab)∗b)∗ · · · b)∗

2. Natural logical description wihin FO.
3. Membership for BC reduces to membership for ST.
4. Membership solved for only few levels.

17 / 42

Brzozowski-Cohen and Straubing-Thérien hierarchies

Natural questions
I Are the hierarchies strict?
I Logical description of each level?
I What is known about membership?

What is known
1. Both are strict (Brzozowski-Knast 1978 + interleaving),

(a · · · (a(ab)∗b)∗ · · · b)∗

2. Natural logical description wihin FO.
3. Membership for BC reduces to membership for ST.
4. Membership solved for only few levels.

17 / 42

Logical counterpart: quantifier alternation hierarchies

Intuition: marked concatenation corresponds to ∃.
I Σi = ∃∗∀∗∃∗∀∗∃∗ · · ·| {z }

at most i blocks ∃∗ or ∀∗
’, (’ quantifier free).

I BΣi = Finite Boolean combinations of Σi .

Quantifier Alternation Hierarchies

Σ1 BΣ1

1
2 1

Σ2 BΣ2

3
2 2

Σ3 BΣ3

5
2 3

Σ4

7
2

FO(((((((

Two versions
I Order signature: < and a().
I Enriched signature: <, a(), +1, min(), max() and ".

Logical Correspondence Theorem (Thomas ’82, Perrin-Pin ’86)
I Straubing-Thérien hierarchy = order quantifier alternation hierarchy.
I Brzozowski-Cohen hierarchy = enriched quantifier alternation hierarchy.

18 / 42

Logical counterpart: quantifier alternation hierarchies

Intuition: marked concatenation corresponds to ∃.
I Σi = ∃∗∀∗∃∗∀∗∃∗ · · ·| {z }

at most i blocks ∃∗ or ∀∗
’, (’ quantifier free).

I BΣi = Finite Boolean combinations of Σi .

Quantifier Alternation Hierarchies

Σ1 BΣ1

1
2 1

Σ2 BΣ2

3
2 2

Σ3 BΣ3

5
2 3

Σ4

7
2

FO(((((((

Two versions
I Order signature: < and a().
I Enriched signature: <, a(), +1, min(), max() and ".

Logical Correspondence Theorem (Thomas ’82, Perrin-Pin ’86)
I Straubing-Thérien hierarchy = order quantifier alternation hierarchy.
I Brzozowski-Cohen hierarchy = enriched quantifier alternation hierarchy.

18 / 42

Logical counterpart: quantifier alternation hierarchies

Intuition: marked concatenation corresponds to ∃.
I Σi = ∃∗∀∗∃∗∀∗∃∗ · · ·| {z }

at most i blocks ∃∗ or ∀∗
’, (’ quantifier free).

I BΣi = Finite Boolean combinations of Σi .

Quantifier Alternation Hierarchies

Σ1 BΣ1

1
2 1

Σ2 BΣ2

3
2 2

Σ3 BΣ3

5
2 3

Σ4

7
2

FO(((((((

Two versions
I Order signature: < and a().
I Enriched signature: <, a(), +1, min(), max() and ".

Logical Correspondence Theorem (Thomas ’82, Perrin-Pin ’86)
I Straubing-Thérien hierarchy = order quantifier alternation hierarchy.
I Brzozowski-Cohen hierarchy = enriched quantifier alternation hierarchy.

18 / 42

Logical counterpart: quantifier alternation hierarchies

Intuition: marked concatenation corresponds to ∃.
I Σi = ∃∗∀∗∃∗∀∗∃∗ · · ·| {z }

at most i blocks ∃∗ or ∀∗
’, (’ quantifier free).

I BΣi = Finite Boolean combinations of Σi .

Quantifier Alternation Hierarchies

Σ1 BΣ1

1
2 1

Σ2 BΣ2

3
2 2

Σ3 BΣ3

5
2 3

Σ4

7
2

FO(((((((

Two versions
I Order signature: < and a().
I Enriched signature: <, a(), +1, min(), max() and ".

Logical Correspondence Theorem (Thomas ’82, Perrin-Pin ’86)
I Straubing-Thérien hierarchy = order quantifier alternation hierarchy.
I Brzozowski-Cohen hierarchy = enriched quantifier alternation hierarchy.

18 / 42

The membership problem for BC and ST hierarchies

Σ1 BΣ1 Σ2 BΣ2 Σ3 BΣ3 Σ4 FO(((((((

Schützenberger’65
McNaughton-Papert’71

Simon’75 Place,Z.’14

Arfi’87
Pin, Weil’95

Place’15

Enrichment Theorem for membership (Straubing, 1985 – Pin, Weil 1997)

Membership for a level in the enriched hierarchy (ie, BC)
reduces to

Membership for the same level in the order hierarchy (ie, ST).

19 / 42

The membership problem for BC and ST hierarchies

Σ1 BΣ1 Σ2 BΣ2 Σ3 BΣ3 Σ4 FO(((((((

Schützenberger’65
McNaughton-Papert’71

Simon’75 Place,Z.’14

Arfi’87
Pin, Weil’95

Place’15

Enrichment Theorem for membership (Straubing, 1985 – Pin, Weil 1997)

Membership for a level in the enriched hierarchy (ie, BC)
reduces to

Membership for the same level in the order hierarchy (ie, ST).

19 / 42

Generalizations in two directions

1. Proofs are ad hoc for BC and ST: obtain generic theorems.
For given C, what about Pol(C), Bool(Pol(C)),. . .

2. Recent results via generalizations of membership:
I separation,
I covering.

20 / 42

Generic concatenation hierarchies

Generic pattern parametrized by the basis
I C[0] (basis) Boolean algebra in REG closed under left/right quotients.

I C[n + 1
2]: close C[n] under K;L 7→ KaL and ∪.

I C[n + 1]: close C[n + 1
2] under Boolean operations.

0 1
2 1 3

2 2 5
2

Pol
Bool

Pol
Bool

Pol

Examples

I Straubing-Thérien: C[0] = {∅; A∗}.
I Brzozowski-Cohen: C[0] = {∅; {"}; A∗; A+}.
I Pin-Margolis: C[0] = group languages.

21 / 42

Generic concatenation hierarchies

Generic pattern parametrized by the basis
I C[0] (basis) Boolean algebra in REG closed under left/right quotients.
I C[n + 1

2]: close C[n] under K; L 7→ KaL and ∪.
I C[n + 1]: close C[n + 1

2] under Boolean operations.

0 1
2 1 3

2 2 5
2

Pol
Bool

Pol
Bool

Pol

Examples

I Straubing-Thérien: C[0] = {∅; A∗}.
I Brzozowski-Cohen: C[0] = {∅; {"}; A∗; A+}.
I Pin-Margolis: C[0] = group languages.

21 / 42

Generic concatenation hierarchies

Generic pattern parametrized by the basis
I C[0] (basis) Boolean algebra in REG closed under left/right quotients.
I C[n + 1

2]: close C[n] under K; L 7→ KaL and ∪.
I C[n + 1]: close C[n + 1

2] under Boolean operations.

0 1
2 1 3

2 2 5
2

Pol
Bool

Pol
Bool

Pol

Examples

I Straubing-Thérien: C[0] = {∅; A∗}.
I Brzozowski-Cohen: C[0] = {∅; {"}; A∗; A+}.
I Pin-Margolis: C[0] = group languages.

21 / 42

Generic Hierarchies

Natural questions
I Are the hierarchies strict?
I Logical description of each level?
I What is known about membership?

22 / 42

Strictness of generic hierarchies

Strictness Theorem (Place, Z. ’17)

Any hierarchy whose basis is finite is strict.

23 / 42

Generic logical correspondence
Logical Correspondence Theorem (Place, Z. ’17)

For any basis C, there is a natural set S of first order predicates, st.

Concatenation hierarchy of basis C
=

Quantifier alternation hierarchy over signature S

Generalizes the correspondences discovered for BC and ST hierarchies.

Intuition

For each L ∈ C, add 4 predicates in addition to < and a(); b(); : : :

I w |= IL(x; y) when x < y and w]x; y [∈ L (Infix).
I w |= PL(y) when w [1; y [∈ L (Prefix).
I w |= SL(x) when w]x; n] ∈ L (Suffix).
I w |= WL when w ∈ L (Whole word).

24 / 42

Generic logical correspondence
Logical Correspondence Theorem (Place, Z. ’17)

For any basis C, there is a natural set S of first order predicates, st.

Concatenation hierarchy of basis C
=

Quantifier alternation hierarchy over signature S

Generalizes the correspondences discovered for BC and ST hierarchies.

Intuition

For each L ∈ C, add 4 predicates in addition to < and a(); b(); : : :

I w |= IL(x; y) when x < y and w]x; y [∈ L (Infix).

I w |= PL(y) when w [1; y [∈ L (Prefix).
I w |= SL(x) when w]x; n] ∈ L (Suffix).
I w |= WL when w ∈ L (Whole word).

24 / 42

Generic logical correspondence
Logical Correspondence Theorem (Place, Z. ’17)

For any basis C, there is a natural set S of first order predicates, st.

Concatenation hierarchy of basis C
=

Quantifier alternation hierarchy over signature S

Generalizes the correspondences discovered for BC and ST hierarchies.

Intuition

For each L ∈ C, add 4 predicates in addition to < and a(); b(); : : :

I w |= IL(x; y) when x < y and w]x; y [∈ L (Infix).
I w |= PL(y) when w [1; y [∈ L (Prefix).
I w |= SL(x) when w]x; n] ∈ L (Suffix).

I w |= WL when w ∈ L (Whole word).

24 / 42

Generic logical correspondence
Logical Correspondence Theorem (Place, Z. ’17)

For any basis C, there is a natural set S of first order predicates, st.

Concatenation hierarchy of basis C
=

Quantifier alternation hierarchy over signature S

Generalizes the correspondences discovered for BC and ST hierarchies.

Intuition

For each L ∈ C, add 4 predicates in addition to < and a(); b(); : : :

I w |= IL(x; y) when x < y and w]x; y [∈ L (Infix).
I w |= PL(y) when w [1; y [∈ L (Prefix).
I w |= SL(x) when w]x; n] ∈ L (Suffix).
I w |= WL when w ∈ L (Whole word).

24 / 42

Generic membership theorem

Generic membership Theorem (Place, Z. ’17, Place ’15)

For any finite basis C, levels 1
2
; 1; 3

2
; 5

2
have decidable membership.

Remember: state of the art went up to level 7
2

for ST and BC hierarchies.

The alphabet trick...

Languages in ST
ˆ
3
2

˜
(Pin and Straubing ’85)

Languages of level ST
ˆ
3
2

˜
are unions of languages of the form B∗

0a1B
∗
1 · · · anB∗

n

ST
ˆ
3
2

˜
= level 1

2 with basis {B∗ | B ⊆ A}.

ST[q] is also level (q − 1) in another hierarchy with finite basis.

Corollary (by Alphabet trick)

In ST

and BC

hierarchy, levels 1
2 ; 1;

3
2 ; 2;

5
2 ;

7
2 have decidable membership

25 / 42

Generic membership theorem

Generic membership Theorem (Place, Z. ’17, Place ’15)

For any finite basis C, levels 1
2
; 1; 3

2
; 5

2
have decidable membership.

Remember: state of the art went up to level 7
2

for ST and BC hierarchies.

The alphabet trick...

Languages in ST
ˆ
3
2

˜
(Pin and Straubing ’85)

Languages of level ST
ˆ
3
2

˜
are unions of languages of the form B∗

0a1B
∗
1 · · · anB∗

n

ST
ˆ
3
2

˜
= level 1

2 with basis {B∗ | B ⊆ A}.

ST[q] is also level (q − 1) in another hierarchy with finite basis.

Corollary (by Alphabet trick)

In ST

and BC

hierarchy, levels 1
2 ; 1;

3
2 ; 2;

5
2 ;

7
2 have decidable membership

25 / 42

Generic membership theorem

Generic membership Theorem (Place, Z. ’17, Place ’15)

For any finite basis C, levels 1
2
; 1; 3

2
; 5

2
have decidable membership.

Remember: state of the art went up to level 7
2

for ST and BC hierarchies.

The alphabet trick...

Languages in ST
ˆ
3
2

˜
(Pin and Straubing ’85)

Languages of level ST
ˆ
3
2

˜
are unions of languages of the form B∗

0a1B
∗
1 · · · anB∗

n

ST
ˆ
3
2

˜
= level 1

2 with basis {B∗ | B ⊆ A}.

ST[q] is also level (q − 1) in another hierarchy with finite basis.

Corollary (by Alphabet trick)

In ST

and BC

hierarchy, levels 1
2 ; 1;

3
2 ; 2;

5
2 ;

7
2 have decidable membership

25 / 42

Generic membership theorem

Generic membership Theorem (Place, Z. ’17, Place ’15)

For any finite basis C, levels 1
2
; 1; 3

2
; 5

2
have decidable membership.

Remember: state of the art went up to level 7
2

for ST and BC hierarchies.

The alphabet trick...

Languages in ST
ˆ
3
2

˜
(Pin and Straubing ’85)

Languages of level ST
ˆ
3
2

˜
are unions of languages of the form B∗

0a1B
∗
1 · · · anB∗

n

ST
ˆ
3
2

˜
= level 1

2 with basis {B∗ | B ⊆ A}.

ST[q] is also level (q − 1) in another hierarchy with finite basis.

Corollary (by Alphabet trick)

In ST

and BC

hierarchy, levels 1
2 ; 1;

3
2 ; 2;

5
2 ;

7
2 have decidable membership

25 / 42

Generic membership theorem

Generic membership Theorem (Place, Z. ’17, Place ’15)

For any finite basis C, levels 1
2
; 1; 3

2
; 5

2
have decidable membership.

Remember: state of the art went up to level 7
2

for ST and BC hierarchies.

The alphabet trick...

Languages in ST
ˆ
3
2

˜
(Pin and Straubing ’85)

Languages of level ST
ˆ
3
2

˜
are unions of languages of the form B∗

0a1B
∗
1 · · · anB∗

n

ST
ˆ
3
2

˜
= level 1

2 with basis {B∗ | B ⊆ A}.

ST[q] is also level (q − 1) in another hierarchy with finite basis.

Corollary (by Alphabet trick)

In ST and BC hierarchy, levels 1
2 ; 1;

3
2 ; 2;

5
2 ;

7
2 have decidable membership

25 / 42

Recap

I Generic construction process for concatenation hierarchies.
I Generic logical correspondence.
I Generic strictness theorem.
I Generic membership theorem.

Recent results required solving harder problems than membership.

26 / 42

Recap

I Generic construction process for concatenation hierarchies.
I Generic logical correspondence.
I Generic strictness theorem.
I Generic membership theorem.

Recent results required solving harder problems than membership.

26 / 42

Beyond Membership: Separation

Beyond membership: Separation

Recent results required solving harder problems than membership.

Motivation:

I Classe C with decidable membership.
I Class Op(C) built on top of C with undecidable membership.

Nice idea, Henckell and Rhodes ’88

Prove more on C to recover membership decidability for Op(C).

Nice statement, Almeida ’96
Almeida’96: a problem introduced by Henckell can be formulated as separation.

27 / 42

Beyond membership: Separation

Recent results required solving harder problems than membership.

Motivation:

I Classe C with decidable membership.
I Class Op(C) built on top of C with undecidable membership.

Nice idea, Henckell and Rhodes ’88

Prove more on C to recover membership decidability for Op(C).

Nice statement, Almeida ’96
Almeida’96: a problem introduced by Henckell can be formulated as separation.

27 / 42

Beyond membership: Separation

Decide the following problem:

Take 2 regular languages L1; L2

a

a

a

a b b b

a

Take 2 regular languages L1; L2

a

a

L1

L2

a

b a b b

b

a

a

Can L1 be separated from L2

with a language from C?

L1L2

A∗

in C

Can L1 be separated from L2

with a language from C?

L1

L2

A∗

in CC-separable from complement
⇔
in C

Membership can be formally reduced to separation

28 / 42

Beyond membership: Separation

Decide the following problem:

Take 2 regular languages L1; L2

a

a

a

a b b b

a

Take 2 regular languages L1; L2

a

a

L1

L2

a

b a b b

b

a

a

Can L1 be separated from L2

with a language from C?

L1L2

A∗

in C

Can L1 be separated from L2

with a language from C?

L1L2

A∗

in CC-separable from complement
⇔
in C

Membership can be formally reduced to separation

28 / 42

Beyond membership: Separation

Decide the following problem:

Take 2 regular languages L1; L2

a

a

a

a b b b

a

Take 2 regular languages L1; L2

a

a

L1

L2

a

b a b b

b

a

a

Can L1 be separated from L2

with a language from C?

L1L2

A∗

in C

Can L1 be separated from L2

with a language from C?

L1L2

A∗

in C

C-separable from complement
⇔
in C

Membership can be formally reduced to separation

28 / 42

Beyond membership: Separation

Decide the following problem:

Take 2 regular languages L1; L2

a

a

a

a b b b

a

Take 2 regular languages L1; L2

a

a

L1

L2

a

b a b b

b

a

a

Can L1 be separated from L2

with a language from C?

L1L2

A∗

in C

Can L1 be separated from L2

with a language from C?

L2 = A∗ \ L1 L1

L2

A∗

in C

C-separable from complement
⇔
in C

Membership can be formally reduced to separation
28 / 42

Separation for classical hierarchies
Se

pa
ra

ti
on

M
em

be
rs

hi
p

Σ1 BΣ1 Σ2 BΣ2 Σ3 BΣ3 Σ4 FO(((((((

Schützenberger’65
McNaughton-Papert’71

Henckell’88
Henckell, Rhodes, Steinberg’10

Place,Z.’14

Simon’75

Almeida,Z.’97
Czerwinski,Martens,Masopust’13

Place,Van Rooijen,Z.’13

Place,Z.’14
Arfi’87

Pin, Weil’95

Place,Z.’14

Place,Z.’17

Place’15

Place’15

Some membership algorithms come from separation algorithms for simpler levels

29 / 42

Separation for classical hierarchies
Se

pa
ra

ti
on

M
em

be
rs

hi
p

Σ1 BΣ1 Σ2 BΣ2 Σ3 BΣ3 Σ4 FO(((((((

Schützenberger’65
McNaughton-Papert’71

Henckell’88
Henckell, Rhodes, Steinberg’10

Place,Z.’14

Simon’75

Almeida,Z.’97
Czerwinski,Martens,Masopust’13

Place,Van Rooijen,Z.’13

Place,Z.’14
Arfi’87

Pin, Weil’95

Place,Z.’14

Place,Z.’17

Place’15

Place’15

Some membership algorithms come from separation algorithms for simpler levels

29 / 42

Separation results for generic hierarchies

Generic Separation Theorem (Place, Z. ’17, Place ’15)

In any hierarchy of finite basis, separation is decidable for levels 1
2 ; 1;

3
2 .

Jump Theorem (Place, Z. ’15)

Membership for level n + 1
2 reduces to separation for level n − 1

2 .

Enrichment Theorem (Place, Z. ’15)

Separation for a level in the enriched hierarchy (ie, BC)
reduces to

Separation for the same level in the order hierarchy (ie, ST).

Corollary (by Alphabet trick + Enrichment)

Levels 1
2 ; 1,

3
2 , 2 and 5

2 have decidable separation in ST and BC hierarchies.

30 / 42

Separation results for generic hierarchies

Generic Separation Theorem (Place, Z. ’17, Place ’15)

In any hierarchy of finite basis, separation is decidable for levels 1
2 ; 1;

3
2 .

Jump Theorem (Place, Z. ’15)

Membership for level n + 1
2 reduces to separation for level n − 1

2 .

Enrichment Theorem (Place, Z. ’15)

Separation for a level in the enriched hierarchy (ie, BC)
reduces to

Separation for the same level in the order hierarchy (ie, ST).

Corollary (by Alphabet trick + Enrichment)

Levels 1
2 ; 1,

3
2 , 2 and 5

2 have decidable separation in ST and BC hierarchies.

30 / 42

Separation results for generic hierarchies

Generic Separation Theorem (Place, Z. ’17, Place ’15)

In any hierarchy of finite basis, separation is decidable for levels 1
2 ; 1;

3
2 .

Jump Theorem (Place, Z. ’15)

Membership for level n + 1
2 reduces to separation for level n − 1

2 .

Enrichment Theorem (Place, Z. ’15)

Separation for a level in the enriched hierarchy (ie, BC)
reduces to

Separation for the same level in the order hierarchy (ie, ST).

Corollary (by Alphabet trick + Enrichment)

Levels 1
2 ; 1,

3
2 , 2 and 5

2 have decidable separation in ST and BC hierarchies.

30 / 42

Separation results for generic hierarchies

Generic Separation Theorem (Place, Z. ’17, Place ’15)

In any hierarchy of finite basis, separation is decidable for levels 1
2 ; 1;

3
2 .

Jump Theorem (Place, Z. ’15)

Membership for level n + 1
2 reduces to separation for level n − 1

2 .

Enrichment Theorem (Place, Z. ’15)

Separation for a level in the enriched hierarchy (ie, BC)
reduces to

Separation for the same level in the order hierarchy (ie, ST).

Corollary (by Alphabet trick + Enrichment)

Levels 1
2 ; 1,

3
2 , 2 and 5

2 have decidable separation in ST and BC hierarchies.

30 / 42

The Jump Theorem

Jump Theorem for quotienting lattices (Place, Z. ’15)

Membership for level n + 1
2 reduces to separation for level n − 1

2 .

The Jump Theorem on Automata

A regular language is in C
ˆ
n+ 1

2

˜
iff its minimal automaton has no pattern:

p q

not final final

w w

where Lp;q is not C
ˆ
n− 1

2

˜
-separable from Lp;p ∩ Lq;q

Lp;q = {w | p w−−−−→ q}

31 / 42

The Jump Theorem

Jump Theorem for quotienting lattices (Place, Z. ’15)

Membership for level n + 1
2 reduces to separation for level n − 1

2 .

The Jump Theorem on Automata

A regular language is in C
ˆ
n+ 1

2

˜
iff its minimal automaton has no pattern:

p q

not final final

w w

where Lp;q is not C
ˆ
n− 1

2

˜
-separable from Lp;p ∩ Lq;q

Lp;q = {w | p w−−−−→ q}

31 / 42

The Jump Theorem

Jump Theorem for quotienting lattices (Place, Z. ’15)

Membership for level n + 1
2 reduces to separation for level n − 1

2 .

The Jump Theorem on Automata

A regular language is in C
ˆ
n+ 1

2

˜
iff its minimal automaton has no pattern:

p q

not final final

w w

where Lp;q is not C
ˆ
n− 1

2

˜
-separable from Lp;p ∩ Lq;q

Lp;q = {w | p w−−−−→ q}

31 / 42

The Jump Theorem

Jump Theorem for quotienting lattices (Place, Z. ’15)

Membership for level n + 1
2 reduces to separation for level n − 1

2 .

The Jump Theorem on Automata

A regular language is in C
ˆ
n+ 1

2

˜
iff its minimal automaton has no pattern:

p q

not final final

w w

where Lp;q is not C
ˆ
n− 1

2

˜
-separable from Lp;p ∩ Lq;q

Lp;q = {w | p w−−−−→ q}

31 / 42

Recap

Current knowledge is captured by these 3 generic results:

1. Separation theorem
C finite ⇒ separation decidable for Pol(C), BPol(C), and Pol(BPol(C)).
In particular, unable to deal with 2 levels of complement.

2. Jump theorem
C-separation decidable ⇒ Pol(C)-membership decidable.

3. Enrichment theorem.

32 / 42

Generalizing separation

Beyond Separation: Covering

I If A is the minimal DFA for L

L ∈ C iff ∀p; q; Lp;q ∈ C

Comes from reasonable closure properties of usual classes.

I We should actually consider a set of languages as input.
=⇒ natural to extend separation to several input languages.

33 / 42

Beyond Separation: Covering

I If A is the minimal DFA for L

L ∈ C iff ∀p; q; Lp;q ∈ C

Comes from reasonable closure properties of usual classes.

I We should actually consider a set of languages as input.
=⇒ natural to extend separation to several input languages.

33 / 42

The Covering Problem
I Recall: L1; L2 C-separable if

∃K ∈ C; L1 ⊆ K and L2 ∩K = ∅

I If C is closed under complement, same as:

∃K1; K2 ∈ C
L1 ∪ L2 ⊆ K1 ∪K2

K1 does not intersect both L1 and L2
K2 does not intersect both L1 and L2

{K1; K2} covers {L1; L2}...

...optimally wrt separation

L1L2

A∗

K ∈ C

L1

K1 = K ∈ C

K2 = A∗ \K ∈ C

34 / 42

The Covering Problem
I Recall: L1; L2 C-separable if

∃K ∈ C; L1 ⊆ K and L2 ∩K = ∅
I If C is closed under complement, same as:

∃K1; K2 ∈ C

L1 ∪ L2 ⊆ K1 ∪K2

K1 does not intersect both L1 and L2
K2 does not intersect both L1 and L2

{K1; K2} covers {L1; L2}...

...optimally wrt separation

L1L2

A∗

K ∈ C

L1

K1 = K ∈ C

K2 = A∗ \K ∈ C

34 / 42

The Covering Problem
I Recall: L1; L2 C-separable if

∃K ∈ C; L1 ⊆ K and L2 ∩K = ∅
I If C is closed under complement, same as:

∃K1; K2 ∈ C
L1 ∪ L2 ⊆ K1 ∪K2

K1 does not intersect both L1 and L2
K2 does not intersect both L1 and L2

{K1; K2} covers {L1; L2}...

...optimally wrt separation

L1L2

A∗

K ∈ C

L1

K1 = K ∈ C

K2 = A∗ \K ∈ C

34 / 42

The Covering Problem
I Recall: L1; L2 C-separable if

∃K ∈ C; L1 ⊆ K and L2 ∩K = ∅
I If C is closed under complement, same as:

∃K1; K2 ∈ C
L1 ∪ L2 ⊆ K1 ∪K2

K1 does not intersect both L1 and L2
K2 does not intersect both L1 and L2

{K1; K2} covers {L1; L2}...

...optimally wrt separation

L1L2

A∗

K ∈ C

L1

K1 = K ∈ C

K2 = A∗ \K ∈ C

34 / 42

The Covering Problem
I Recall: L1; L2 C-separable if

∃K ∈ C; L1 ⊆ K and L2 ∩K = ∅
I If C is closed under complement, same as:

∃K1; K2 ∈ C
L1 ∪ L2 ⊆ K1 ∪K2

K1 does not intersect both L1 and L2
K2 does not intersect both L1 and L2

{K1; K2} covers {L1; L2}...

...optimally wrt separation

L1L2

A∗

K ∈ C

L1

K1 = K ∈ C

K2 = A∗ \K ∈ C

34 / 42

C-Covers

I L = {L1; : : : ; Ln} = set of languages.
I C-cover of L = finite set of languages K = {K1; : : : ; Km} from C

st.
L1 ∪ · · · ∪ Ln ⊆ K1 ∪ · · · ∪Km

I Note: When A∗ ∈ C: {A∗} is always a C-cover of {L1; : : : ; Ln}.

I Goal: Measure how good a cover is at “separating” input set L.
We define the imprint of K on L for this.

35 / 42

C-Covers

I L = {L1; : : : ; Ln} = set of languages.
I C-cover of L = finite set of languages K = {K1; : : : ; Km} from C

st.
L1 ∪ · · · ∪ Ln ⊆ K1 ∪ · · · ∪Km

I Note: When A∗ ∈ C: {A∗} is always a C-cover of {L1; : : : ; Ln}.

I Goal: Measure how good a cover is at “separating” input set L.
We define the imprint of K on L for this.

35 / 42

C-Covers

I L = {L1; : : : ; Ln} = set of languages.
I C-cover of L = finite set of languages K = {K1; : : : ; Km} from C

st.
L1 ∪ · · · ∪ Ln ⊆ K1 ∪ · · · ∪Km

I Note: When A∗ ∈ C: {A∗} is always a C-cover of {L1; : : : ; Ln}.

I Goal: Measure how good a cover is at “separating” input set L.
We define the imprint of K on L for this.

35 / 42

Imprint = Quality of a C-Cover — Example 1

K1

K2

C-Cover K = {K1; K2}

Imprint I[L](K) =
n

all subsets of {L1; L2; L3}
o

L1 L2

L3

36 / 42

Imprint = Quality of a C-Cover — Example 2
(better)

K′
1

K′
2 K′

3

L1 L2

L3

C-Cover K′ = {K′
1; K

′
2; K

′
3}

Imprint I[L](K′) =
n

all subsets of {L1; L2; L3} but {L1; L2; L3}
o

37 / 42

Imprint = Quality of a C-Cover — Example 3
(even better)

K′′
1

K′′
2

L1 L2

L3

C-Cover K′′ = {K′′
1 ; K

′′
2}

Imprint I[L](K′′) =
n

all subsets of {L1; L2; L3} but {L1; L2; L3} and {L2; L3}
o

38 / 42

Recap: Quality of a C-Cover

I Goal: Measure how good a cover is at “separating” an input set.

I Captured by imprint of K on L.
I The smaller the imprint, the better.

39 / 42

Optimal C-covers

I A C-cover K is optimal if it has minimal imprint.

Example

I C = Boolean algebra generated by languages A∗aA∗ for a ∈ A.
I What is a C-optimal imprint of L = {(ab)+; (ba)+; (ac)+}?

Existence Lemma

If C is closed under finite intersection, there exists an optimal cover.

I Trivial, but non-constructive proof.
I Optimal cover not unique, but optimal imprint wrt. C is unique.
I C-Optimal imprints capture more information than C-separation.

40 / 42

Optimal C-covers

I A C-cover K is optimal if it has minimal imprint.

Example

I C = Boolean algebra generated by languages A∗aA∗ for a ∈ A.
I What is a C-optimal imprint of L = {(ab)+; (ba)+; (ac)+}?

Existence Lemma

If C is closed under finite intersection, there exists an optimal cover.

I Trivial, but non-constructive proof.
I Optimal cover not unique, but optimal imprint wrt. C is unique.
I C-Optimal imprints capture more information than C-separation.

40 / 42

Optimal C-covers

I A C-cover K is optimal if it has minimal imprint.

Example

I C = Boolean algebra generated by languages A∗aA∗ for a ∈ A.
I What is a C-optimal imprint of L = {(ab)+; (ba)+; (ac)+}?

Existence Lemma

If C is closed under finite intersection, there exists an optimal cover.

I Trivial, but non-constructive proof.

I Optimal cover not unique, but optimal imprint wrt. C is unique.
I C-Optimal imprints capture more information than C-separation.

40 / 42

Optimal C-covers

I A C-cover K is optimal if it has minimal imprint.

Example

I C = Boolean algebra generated by languages A∗aA∗ for a ∈ A.
I What is a C-optimal imprint of L = {(ab)+; (ba)+; (ac)+}?

Existence Lemma

If C is closed under finite intersection, there exists an optimal cover.

I Trivial, but non-constructive proof.
I Optimal cover not unique, but optimal imprint wrt. C is unique.

I C-Optimal imprints capture more information than C-separation.

40 / 42

Optimal C-covers

I A C-cover K is optimal if it has minimal imprint.

Example

I C = Boolean algebra generated by languages A∗aA∗ for a ∈ A.
I What is a C-optimal imprint of L = {(ab)+; (ba)+; (ac)+}?

Existence Lemma

If C is closed under finite intersection, there exists an optimal cover.

I Trivial, but non-constructive proof.
I Optimal cover not unique, but optimal imprint wrt. C is unique.
I C-Optimal imprints capture more information than C-separation.

40 / 42

The C-Covering Problem

C-Optimal imprint: IC[L]
def
= I[L](K) for any optimal C-cover K of L:

Theorem (Place Z.’16)

Let C be a Boolean algebra and L be a finite set of languages.
Given L1; L2 ∈ L, TFAE:

1. L1 and L2 are C-separable.

2. {L1; L2} 6∈ IC[L].

What did we gain?
Contrary to separation information alone, IC[L],
I has nice, generic properties,
I can be computed for all classes where separation is known decidable.

41 / 42

Conclusion

I Overview of membership and separation for concatenation hierarchies.
I Membership is a natural problem, but too rigid as a setting.
I Separation more flexible, easier to cope with for low levels.
I Often requires solving even more general problems.

42 / 42

Thanks!

	The Membership Problem
	Concatenation Hierarchies
	Beyond Membership: Separation
	Generalizing Separation

