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Realizability of specifications

Coffee button and stop button are not under the control of the
system.
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The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?



Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?



Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?



Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗

∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?



Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?



Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗

∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?



Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?



Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗

∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?



Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?



Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·

· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?



Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?



Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:

Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?



Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables

Question: Does the system have a winning strategy?



Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?



Outline

Realizability games

Logic of reating values

Decidable fragment

Undecidability results

Future work



Model, syntax, semantics

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

|= |= φ|= φ |=|= φ |=|= φ

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ



Model, syntax, semantics

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

|= |= φ|= φ |=|= φ |=|= φ

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ



Model, syntax, semantics

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

|=

|= φ|= φ |=|= φ |=|= φ

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ



Model, syntax, semantics

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

|= |= φ

|= φ |=|= φ |=|= φ

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ



Model, syntax, semantics

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

|=

|= φ

|= φ

|=|= φ |=|= φ

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ



Model, syntax, semantics

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

|= |= φ|= φ

|=|= φ

|=|= φ

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ



Model, syntax, semantics

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

|= |= φ|= φ |=|= φ

|=|= φ

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ



Realizability of LRV formulas

I Realizability of propositional LTL: parity games on finite
graphs.

I Satisfiability of LRV: reachability in VASS [Demri, D’Souza,
Gascon 2007].

I Realizability of LRV: parity games on VASS.
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Asymmetry in games on VASS

I [Raskin, Samuelides, Van Begin 2005] One of the palyers has
transitions that are downward closed. Coverability games
decidable.

I [Abdulla, Bouajjani, D’orso 2008] One of the players has lossy
transitions. Safety games are decidable.

I [Brázdil, Janc̆ar, Kuc̆era 2010] Transitions can add arbitrarily
large numbers. Decidable to check if one of the players can
make some counter zero.

I [Bérard, Haddad, Sassolas, Sznajder 2012] One palyer can
only increment; the other player cannot test for zero.
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Asymmetry in games on VASS

I [Chatterjee, Randour, Raskin 2013] Energy games: if a player
makes a counter to go below zero, the other player wins
immediately. One of the players has to additionally satisfy a
parity condition.

I [Abdulla, Mayr, Sangnier, Sproston 2013] Single-sided VASS
games: transitions that make some counter to go below zero
are disabled for both players. One of the players cannot
change counters; the other player has to additionally satisfy a
parity condition.
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Single-sided LRV games

I No nested formulas: only x ≈ 〈>?〉−1y .

I Environment player has only Boolean variables.

I No future obligations: x ≈ 〈>?〉y not allowed.

I Realizability can be reduced to single-sided VASS games.
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I Environment player has only Boolean variables.

I No future obligations: x ≈ 〈>?〉y not allowed.
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