Playing with repeating values in datawords using energy games

Diego Figueira and M. Praveen

Realizability games

Logic of reating values

Decidable fragment

Undecidability results

Future work

Outline

Realizability games

Logic of reating values

Decidable fragment

Undecidability results

Future work

Specifications for a coffee machine

- Whenever coffee button is pressed, coffee is produced in the next step.
- Whenever stop button is pressed, no coffee is produced in the next step.

Specifications for a coffee machine

- Whenever coffee button is pressed, coffee is produced in the next step.
- Whenever stop button is pressed, no coffee is produced in the next step.
- Specifications satisfiable:
 - coffee button \perp
 - stop button \perp
 - make coffee \perp

Specifications for a coffee machine

- Whenever coffee button is pressed, coffee is produced in the next step.
- Whenever stop button is pressed, no coffee is produced in the next step.
- Specifications satisfiable:
 - coffee button \bot \bot \bot \cdots stop button \bot \bot \bot \cdots make coffee \bot \bot \bot \cdots

Realizability of specifications

coffee button stop button

coffee button stop button make coffee

coffee button * stop button * make coffee

- coffee button *
- stop button *
- make coffee *

- coffee button * *
- stop button * *
- make coffee *

- coffee button * *
- stop button * *
- make coffee * *

coffee button	*	*	*
stop button	*	*	*
make coffee	*	*	

coffee button	*	*	*
stop button	*	*	*
make coffee	*	*	*

coffee button	*	*	*	•••
stop button	*	*	*	
make coffee	*	*	*	

coffee button	*	*	*	• • •
stop button	*	*	*	•••
make coffee	*	*	*	

coffee button	*	*	*	•••
stop button	*	*	*	•••
make coffee	*	*	*	• • •

The realizability problem:

coffee button	*	*	*	• • •
stop button	*	*	*	•••
make coffee	*	*	*	•••

The realizability problem: Input: A formula, a partition of the variables

coffee button	*	*	*	•••
stop button	*	*	*	•••
make coffee	*	*	*	•••

The realizability problem:

Input: A formula, a partition of the variables Question: Does the system have a winning strategy?

Outline

Realizability games

Logic of reating values

Decidable fragment

Undecidability results

Future work

$$\phi ::= x \approx X^{1}y \mid x \approx \langle \phi? \rangle y \mid x \not\approx \langle \phi? \rangle y \mid y \approx \langle \phi? \rangle^{-1}x \mid y \not\approx \langle \phi? \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\land \psi$$

 $\phi ::= \mathbf{x} \approx \mathsf{X}^{1} \mathbf{y} \mid \mathbf{x} \approx \langle \phi ? \rangle \mathbf{y} \mid \mathbf{x} \approx \langle \phi ? \rangle \mathbf{y} \mid \mathbf{y} \approx \langle \phi ? \rangle^{-1} \mathbf{x} \mid \mathbf{x} \in \langle \phi ? \rangle^{-1} \mathbf{x} \mid$

 $\phi ::= x \approx X^{1}y \mid x \approx \langle \phi? \rangle y \mid x \not\approx \langle \phi? \rangle y \mid y \approx \langle \phi? \rangle^{-1}x \mid y \not\approx \langle \phi? \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\land \phi$

 $\phi ::= x \approx X^{1}y \mid x \approx \langle \phi? \rangle y \mid x \not\approx \langle \phi? \rangle y \mid y \approx \langle \phi? \rangle^{-1}x \mid y \not\approx \langle \phi? \rangle^{-1}x \mid w \not\approx \langle \phi? \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\land \phi$

$$\phi ::= x \approx X^{1}y \mid x \approx \langle \phi? \rangle y \mid x \approx \langle \phi? \rangle y \mid y \approx \langle \phi? \rangle^{-1}x \mid y \not\approx \langle \phi? \rangle^{-1}x \mid w \neq \langle \phi? \rangle^{-1}x \mid y \neq \langle \phi$$

$$\phi ::= x \approx X^{1}y \mid x \approx \langle \phi? \rangle y \mid x \approx \langle \phi? \rangle y \mid y \approx \langle \phi? \rangle^{-1}x \mid y \not\approx \langle \phi? \rangle^{-1}x \mid w \neq \langle \phi? \rangle^{-1}x \mid y \neq \langle \phi$$

 Realizability of propositional LTL: parity games on finite graphs. Realizability of propositional LTL: parity games on finite graphs.

 Satisfiability of LRV: reachability in VASS [Demri, D'Souza, Gascon 2007]. Realizability of propositional LTL: parity games on finite graphs.

 Satisfiability of LRV: reachability in VASS [Demri, D'Souza, Gascon 2007].

Realizability of LRV: parity games on VASS.

Outline

Realizability games

Logic of reating values

Decidable fragment

Undecidability results

Future work

 [Raskin, Samuelides, Van Begin 2005] One of the palyers has transitions that are downward closed. Coverability games decidable.

- [Raskin, Samuelides, Van Begin 2005] One of the palyers has transitions that are downward closed. Coverability games decidable.
- [Abdulla, Bouajjani, D'orso 2008] One of the players has lossy transitions. Safety games are decidable.

- [Raskin, Samuelides, Van Begin 2005] One of the palyers has transitions that are downward closed. Coverability games decidable.
- [Abdulla, Bouajjani, D'orso 2008] One of the players has lossy transitions. Safety games are decidable.
- [Brázdil, Jančar, Kučera 2010] Transitions can add arbitrarily large numbers. Decidable to check if one of the players can make some counter zero.

- [Raskin, Samuelides, Van Begin 2005] One of the palyers has transitions that are downward closed. Coverability games decidable.
- [Abdulla, Bouajjani, D'orso 2008] One of the players has lossy transitions. Safety games are decidable.
- [Brázdil, Jančar, Kučera 2010] Transitions can add arbitrarily large numbers. Decidable to check if one of the players can make some counter zero.
- [Bérard, Haddad, Sassolas, Sznajder 2012] One palyer can only increment; the other player cannot test for zero.

Asymmetry in games on VASS

[Chatterjee, Randour, Raskin 2013] Energy games: if a player makes a counter to go below zero, the other player wins immediately. One of the players has to additionally satisfy a parity condition. [Chatterjee, Randour, Raskin 2013] Energy games: if a player makes a counter to go below zero, the other player wins immediately. One of the players has to additionally satisfy a parity condition.

[Abdulla, Mayr, Sangnier, Sproston 2013] Single-sided VASS games: transitions that make some counter to go below zero are disabled for both players. One of the players cannot change counters; the other player has to additionally satisfy a parity condition. ▶ No nested formulas: only $x \approx \langle \top ? \rangle^{-1} y$.

▶ No nested formulas: only $x \approx \langle \top ? \rangle^{-1} y$.

Environment player has only Boolean variables.

▶ No nested formulas: only $x \approx \langle \top ? \rangle^{-1} y$.

Environment player has only Boolean variables.

▶ No future obligations: $x \approx \langle \top ? \rangle y$ not allowed.

• No nested formulas: only $x \approx \langle \top ? \rangle^{-1} y$.

Environment player has only Boolean variables.

▶ No future obligations: $x \approx \langle \top ? \rangle y$ not allowed.

Realizability can be reduced to single-sided VASS games.

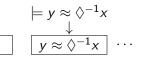
Single-sided LRV games — symbolic models

Concrete model

Single-sided LRV games — symbolic models

Concrete model

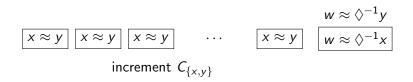
Symbolic model



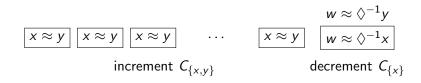
Single-sided LRV games — symbolic models

Concrete model

Symbolic model



$\phi ::= x \approx X^{1}y \mid x \approx \langle \phi? \rangle y \mid x \not\approx \langle \phi? \rangle y \mid y \approx \langle \phi? \rangle^{-1}x \mid y \not\approx \langle \phi? \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\approx \langle \phi? \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\land \phi \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\land \phi \rangle^{-1$


$\phi ::= x \approx X^{1}y \mid x \approx \langle \phi? \rangle y \mid x \not\approx \langle \phi? \rangle y \mid y \approx \langle \phi? \rangle^{-1}x \mid y \not\approx \langle \phi? \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\approx \langle \phi? \rangle^{-1}x \mid y \not\approx \langle \phi? \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\approx \langle \phi? \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\land \phi \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\land \phi \rangle^{-1$

$\phi ::= x \approx X^{1}y \mid x \approx \langle \phi? \rangle y \mid x \not\approx \langle \phi? \rangle y \mid y \approx \langle \phi? \rangle^{-1}x \mid y \not\approx \langle \phi? \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\approx \langle \phi? \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\land \phi \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\land \phi \rangle^{-1$

$\phi ::= x \approx X^{1}y \mid x \approx \langle \phi? \rangle y \mid x \not\approx \langle \phi? \rangle y \mid y \approx \langle \phi? \rangle^{-1}x \mid y \not\approx \langle \phi? \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\approx \langle \phi? \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\land \phi \rangle^{-1}x \mid y \not\Rightarrow \langle \phi? \rangle^{-1}x \mid y \not\land \phi \rangle^{-1$

Outline

Realizability games

Logic of reating values

Decidable fragment

Undecidability results

Future work

• No nested formulas: only $x \approx \langle \top ? \rangle^{-1} y$.

Environment player has only Boolean variables.

▶ No future obligations: $x \approx \langle \top ? \rangle y$ not allowed.

• No nested formulas: only $x \approx \langle \top ? \rangle^{-1} y$.

Environment player has only Boolean variables.

▶ No future obligations: $x \approx \langle \top ? \rangle y$ not allowed.

Increment

d doesn't repeat in the past in x or y

- d doesn't repeat in the past in x or y
- d' appears in the past in x and y

Decrement

Decrement

d should appear in the past in x but not in y

Decrement

d should appear in the past in x but not in y

► *d′* = *d*

Zero test

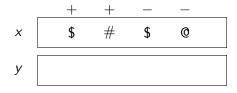
Zero test

▶ In case of no cheating, d = d' and no repetition in the past.

Zero test

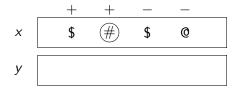
- In case of no cheating, d = d' and no repetition in the past.
- In case of cheating, second player can win immediately by ensuring d' repeats in the past in x but not in y.

• No nested formulas: only $x \approx \langle \top ? \rangle^{-1} y$.

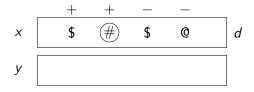

Environment player has only Boolean variables.

▶ No future obligations: $x \approx \langle \top ? \rangle y$ not allowed.

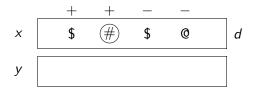
• No nested formulas: only $x \approx \langle \top ? \rangle^{-1} y$.


Environment player has only Boolean variables.

No future obligations: $x \approx \langle \top ? \rangle y$ not allowed.

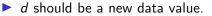

Ζ

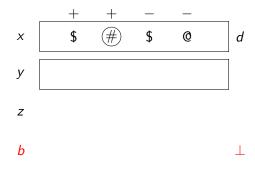
b


Ζ

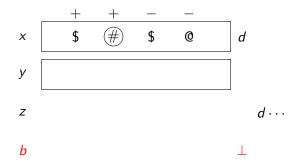
b

Ζ

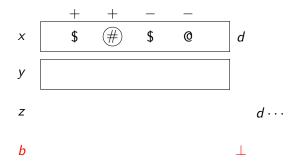

b

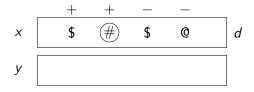


b

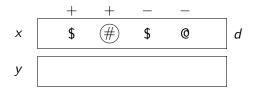

Ζ

b




- d should be a new data value.
- ▶ If not, second player can set *b* to false.

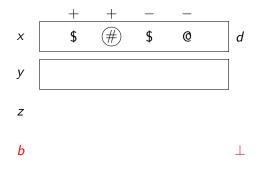
- d should be a new data value.
- ▶ If not, second player can set *b* to false.
- First player must repeat *d* in *z* from next round.



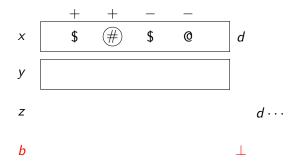
- d should be a new data value.
- If not, second player can set b to false.
- First player must repeat d in z from next round.
- If cheating on increment, $G(b \Rightarrow \neg(x \approx \Diamond z))$

Ζ

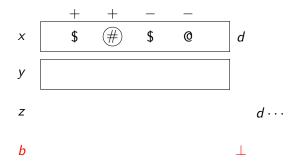
b

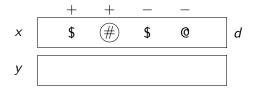


b

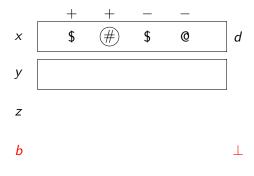

Ζ

Decrement

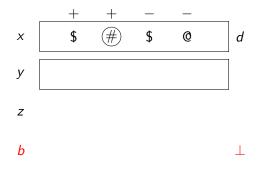

d must repeat in the past in an incrementing position.


- d must repeat in the past in an incrementing position.
- ▶ If not, second player can set *b* to false.

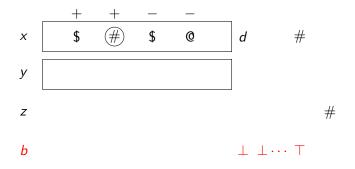
- d must repeat in the past in an incrementing position.
- ▶ If not, second player can set *b* to false.
- First player must repeat *d* in *z* from next round.



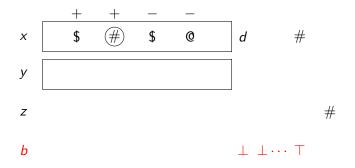
- d must repeat in the past in an incrementing position.
- If not, second player can set b to false.
- First player must repeat d in z from next round.
- If cheating on decrement, $F(b \land x \approx \Diamond z)$.


Ζ

b



Zero test


• Increment, no matching decrement \Rightarrow *b* set to false.

- lncrement, no matching decrement \Rightarrow *b* set to false.
- lncrement, future zero test $\Rightarrow x$ must repeat in x.

- lncrement, no matching decrement \Rightarrow *b* set to false.
- lncrement, future zero test $\Rightarrow x$ must repeat in x.
- Upon repetition, b is set to true again; first player must repeat # in z.

- lncrement, no matching decrement \Rightarrow *b* set to false.
- lncrement, future zero test $\Rightarrow x$ must repeat in x.
- Upon repetition, b is set to true again; first player must repeat # in z.
- If cheating on zero test Globally (b is true and incrementing ⇒ x doesn't repeat in z).

Outline

Realizability games

Logic of reating values

Decidable fragment

Undecidability results

Future work

• No nested formulas: only $x \approx \langle \top ? \rangle^{-1} y$.

Environment player has only Boolean variables.

▶ No future obligations: $x \approx \langle \top ? \rangle y$ not allowed.

Restrictions to get decidability

No nested formulas: only $x \approx \langle \top ? \rangle^{-1} y$.

Environment player has only Boolean variables.

▶ No future obligations: $x \approx \langle \top ? \rangle y$ not allowed.

Complexity bounds.

Synthesizing winning strategies.

Other decidable restrictions of VASS games.

Complexity bounds.

Synthesizing winning strategies.

Other decidable restrictions of VASS games.

Thank you