
Playing with repeating values in datawords using
energy games

Diego Figueira and M. Praveen

Outline

Realizability games

Logic of reating values

Decidable fragment

Undecidability results

Future work

Outline

Realizability games

Logic of reating values

Decidable fragment

Undecidability results

Future work

Specifications for a coffee machine

I Whenever coffee button is pressed, coffee is produced in the
next step.

I Whenever stop button is pressed, no coffee is produced in the
next step.

I Specifications satisfiable:

coffee button
stop button

make coffee

⊥
⊥
⊥

⊥
⊥
⊥

⊥
⊥
⊥

· · ·
· · ·
· · ·

Specifications for a coffee machine

I Whenever coffee button is pressed, coffee is produced in the
next step.

I Whenever stop button is pressed, no coffee is produced in the
next step.

I Specifications satisfiable:

coffee button
stop button

make coffee

⊥
⊥
⊥

⊥
⊥
⊥

⊥
⊥
⊥

· · ·
· · ·
· · ·

Specifications for a coffee machine

I Whenever coffee button is pressed, coffee is produced in the
next step.

I Whenever stop button is pressed, no coffee is produced in the
next step.

I Specifications satisfiable:

coffee button
stop button

make coffee

⊥
⊥
⊥

⊥
⊥
⊥

⊥
⊥
⊥

· · ·
· · ·
· · ·

Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?

Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?

Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?

Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗

∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?

Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?

Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗

∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?

Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?

Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗

∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?

Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?

Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·

· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?

Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?

Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:

Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?

Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables

Question: Does the system have a winning strategy?

Realizability of specifications

Coffee button and stop button are not under the control of the
system.

coffee button
stop button

make coffee

∗
∗
∗

∗
∗
∗

∗
∗
∗

· · ·
· · ·
· · ·

The realizability problem:
Input: A formula, a partition of the variables
Question: Does the system have a winning strategy?

Outline

Realizability games

Logic of reating values

Decidable fragment

Undecidability results

Future work

Model, syntax, semantics

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

|= |= φ|= φ |=|= φ |=|= φ

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ

Model, syntax, semantics

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

|= |= φ|= φ |=|= φ |=|= φ

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ

Model, syntax, semantics

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

|=

|= φ|= φ |=|= φ |=|= φ

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ

Model, syntax, semantics

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

|= |= φ

|= φ |=|= φ |=|= φ

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ

Model, syntax, semantics

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

|=

|= φ

|= φ

|=|= φ |=|= φ

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ

Model, syntax, semantics

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

|= |= φ|= φ

|=|= φ

|=|= φ

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ

Model, syntax, semantics

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

|= |= φ|= φ |=|= φ

|=|= φ

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ

Realizability of LRV formulas

I Realizability of propositional LTL: parity games on finite
graphs.

I Satisfiability of LRV: reachability in VASS [Demri, D’Souza,
Gascon 2007].

I Realizability of LRV: parity games on VASS.

Realizability of LRV formulas

I Realizability of propositional LTL: parity games on finite
graphs.

I Satisfiability of LRV: reachability in VASS [Demri, D’Souza,
Gascon 2007].

I Realizability of LRV: parity games on VASS.

Realizability of LRV formulas

I Realizability of propositional LTL: parity games on finite
graphs.

I Satisfiability of LRV: reachability in VASS [Demri, D’Souza,
Gascon 2007].

I Realizability of LRV: parity games on VASS.

Outline

Realizability games

Logic of reating values

Decidable fragment

Undecidability results

Future work

Asymmetry in games on VASS

I [Raskin, Samuelides, Van Begin 2005] One of the palyers has
transitions that are downward closed. Coverability games
decidable.

I [Abdulla, Bouajjani, D’orso 2008] One of the players has lossy
transitions. Safety games are decidable.

I [Brázdil, Janc̆ar, Kuc̆era 2010] Transitions can add arbitrarily
large numbers. Decidable to check if one of the players can
make some counter zero.

I [Bérard, Haddad, Sassolas, Sznajder 2012] One palyer can
only increment; the other player cannot test for zero.

Asymmetry in games on VASS

I [Raskin, Samuelides, Van Begin 2005] One of the palyers has
transitions that are downward closed. Coverability games
decidable.

I [Abdulla, Bouajjani, D’orso 2008] One of the players has lossy
transitions. Safety games are decidable.

I [Brázdil, Janc̆ar, Kuc̆era 2010] Transitions can add arbitrarily
large numbers. Decidable to check if one of the players can
make some counter zero.

I [Bérard, Haddad, Sassolas, Sznajder 2012] One palyer can
only increment; the other player cannot test for zero.

Asymmetry in games on VASS

I [Raskin, Samuelides, Van Begin 2005] One of the palyers has
transitions that are downward closed. Coverability games
decidable.

I [Abdulla, Bouajjani, D’orso 2008] One of the players has lossy
transitions. Safety games are decidable.

I [Brázdil, Janc̆ar, Kuc̆era 2010] Transitions can add arbitrarily
large numbers. Decidable to check if one of the players can
make some counter zero.

I [Bérard, Haddad, Sassolas, Sznajder 2012] One palyer can
only increment; the other player cannot test for zero.

Asymmetry in games on VASS

I [Raskin, Samuelides, Van Begin 2005] One of the palyers has
transitions that are downward closed. Coverability games
decidable.

I [Abdulla, Bouajjani, D’orso 2008] One of the players has lossy
transitions. Safety games are decidable.

I [Brázdil, Janc̆ar, Kuc̆era 2010] Transitions can add arbitrarily
large numbers. Decidable to check if one of the players can
make some counter zero.

I [Bérard, Haddad, Sassolas, Sznajder 2012] One palyer can
only increment; the other player cannot test for zero.

Asymmetry in games on VASS

I [Chatterjee, Randour, Raskin 2013] Energy games: if a player
makes a counter to go below zero, the other player wins
immediately. One of the players has to additionally satisfy a
parity condition.

I [Abdulla, Mayr, Sangnier, Sproston 2013] Single-sided VASS
games: transitions that make some counter to go below zero
are disabled for both players. One of the players cannot
change counters; the other player has to additionally satisfy a
parity condition.

Asymmetry in games on VASS

I [Chatterjee, Randour, Raskin 2013] Energy games: if a player
makes a counter to go below zero, the other player wins
immediately. One of the players has to additionally satisfy a
parity condition.

I [Abdulla, Mayr, Sangnier, Sproston 2013] Single-sided VASS
games: transitions that make some counter to go below zero
are disabled for both players. One of the players cannot
change counters; the other player has to additionally satisfy a
parity condition.

Single-sided LRV games

I No nested formulas: only x ≈ 〈>?〉−1y .

I Environment player has only Boolean variables.

I No future obligations: x ≈ 〈>?〉y not allowed.

I Realizability can be reduced to single-sided VASS games.

Single-sided LRV games

I No nested formulas: only x ≈ 〈>?〉−1y .

I Environment player has only Boolean variables.

I No future obligations: x ≈ 〈>?〉y not allowed.

I Realizability can be reduced to single-sided VASS games.

Single-sided LRV games

I No nested formulas: only x ≈ 〈>?〉−1y .

I Environment player has only Boolean variables.

I No future obligations: x ≈ 〈>?〉y not allowed.

I Realizability can be reduced to single-sided VASS games.

Single-sided LRV games

I No nested formulas: only x ≈ 〈>?〉−1y .

I Environment player has only Boolean variables.

I No future obligations: x ≈ 〈>?〉y not allowed.

I Realizability can be reduced to single-sided VASS games.

Single-sided LRV games — symbolic models

Concrete model

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

↓
|= y ≈ ♦−1x

Symbolic model

· · ·
↓

6|= y ≈ ♦−1x|= y ≈ ♦−1x

y ≈ ♦−1x

Single-sided LRV games — symbolic models

Concrete model

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

↓
|= y ≈ ♦−1x

Symbolic model

· · ·
↓

6|= y ≈ ♦−1x

|= y ≈ ♦−1x

y ≈ ♦−1x

Single-sided LRV games — symbolic models

Concrete model

x :

y :

w :

d1

d2

>

$

∗

⊥

∗

$

>

· · ·

· · ·

· · ·

∗

#

∗

∗

$

∗

· · ·

· · ·

· · ·

↓
|= y ≈ ♦−1x

Symbolic model

· · ·
↓

6|= y ≈ ♦−1x

|= y ≈ ♦−1x

y ≈ ♦−1x

Symbolic models

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ

x ≈ y x ≈ y x ≈ y · · · x ≈ y w ≈ ♦−1x

w ≈ ♦−1y

increment C{x ,y} decrement C{x}

Symbolic models

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ

x ≈ y x ≈ y x ≈ y · · · x ≈ y w ≈ ♦−1x

w ≈ ♦−1y

increment C{x ,y} decrement C{x}

Symbolic models

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ

x ≈ y x ≈ y x ≈ y · · · x ≈ y w ≈ ♦−1x

w ≈ ♦−1y

increment C{x ,y}

decrement C{x}

Symbolic models

φ ::=x ≈ X1y | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | y ≈ 〈φ?〉−1x | y 6≈ 〈φ?〉−1x |
w | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ

x ≈ y x ≈ y x ≈ y · · · x ≈ y w ≈ ♦−1x

w ≈ ♦−1y

increment C{x ,y} decrement C{x}

Outline

Realizability games

Logic of reating values

Decidable fragment

Undecidability results

Future work

Restrictions to get decidability

I No nested formulas: only x ≈ 〈>?〉−1y .

I Environment player has only Boolean variables.

I No future obligations: x ≈ 〈>?〉y not allowed.

Restrictions to get decidability

I No nested formulas: only x ≈ 〈>?〉−1y .

I Environment player has only Boolean variables.

I No future obligations: x ≈ 〈>?〉y not allowed.

Simulating counter machines

x

y

$ # @

$

d

d ′

Simulating counter machines

x

y

$ # @

$

d

d ′

Simulating counter machines

x

y

$ # @

$

d

d ′

Increment

I d doesn’t repeat in the past in x or y

I d ′ appears in the past in x and y

Simulating counter machines

x

y

$ # @

$

d

d ′

Increment

I d doesn’t repeat in the past in x or y

I d ′ appears in the past in x and y

Simulating counter machines

x

y

$ # @

$

d

d ′

Increment

I d doesn’t repeat in the past in x or y

I d ′ appears in the past in x and y

Simulating counter machines

x

y

$ # @

$

d

d ′

Decrement

I d should appear in the past in x but not in y

I d ′ = d

Simulating counter machines

x

y

$ # @

$

d

d ′

Decrement

I d should appear in the past in x but not in y

I d ′ = d

Simulating counter machines

x

y

$ # @

$

d

d ′

Decrement

I d should appear in the past in x but not in y

I d ′ = d

Simulating counter machines

x

y

$ # @

$

d

d ′

Zero test

I In case of no cheating, d = d ′ and no repetition in the
past.

I In case of cheating, second player can win immediately
by ensuring d ′ repeats in the past in x but not in y .

Simulating counter machines

x

y

$ # @

$

d

d ′

Zero test

I In case of no cheating, d = d ′ and no repetition in the
past.

I In case of cheating, second player can win immediately
by ensuring d ′ repeats in the past in x but not in y .

Simulating counter machines

x

y

$ # @

$

d

d ′

Zero test

I In case of no cheating, d = d ′ and no repetition in the
past.

I In case of cheating, second player can win immediately
by ensuring d ′ repeats in the past in x but not in y .

Restrictions to get decidability

I No nested formulas: only x ≈ 〈>?〉−1y .

I Environment player has only Boolean variables.

I No future obligations: x ≈ 〈>?〉y not allowed.

Restrictions to get decidability

I No nested formulas: only x ≈ 〈>?〉−1y .

I Environment player has only Boolean variables.

I No future obligations: x ≈ 〈>?〉y not allowed.

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −

d

⊥ ⊥ · · ·

#

>

#d · · ·

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −

d

⊥ ⊥ · · ·

#

>

#d · · ·

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −
d

⊥ ⊥ · · ·

#

>

#d · · ·

Increment

I d should be a new data value.

I If not, second player can set b to false.

I First player must repeat d in z from next round.

I If cheating on increment, G (b ⇒ ¬(x ≈ ♦z))

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −
d

⊥ ⊥ · · ·

#

>

#d · · ·

Increment

I d should be a new data value.

I If not, second player can set b to false.

I First player must repeat d in z from next round.

I If cheating on increment, G (b ⇒ ¬(x ≈ ♦z))

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −
d

⊥

⊥ · · ·

#

>

#d · · ·

Increment

I d should be a new data value.

I If not, second player can set b to false.

I First player must repeat d in z from next round.

I If cheating on increment, G (b ⇒ ¬(x ≈ ♦z))

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −
d

⊥

⊥ · · ·

#

>

#

d · · ·

Increment

I d should be a new data value.

I If not, second player can set b to false.

I First player must repeat d in z from next round.

I If cheating on increment, G (b ⇒ ¬(x ≈ ♦z))

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −
d

⊥

⊥ · · ·

#

>

#

d · · ·

Increment

I d should be a new data value.

I If not, second player can set b to false.

I First player must repeat d in z from next round.

I If cheating on increment, G (b ⇒ ¬(x ≈ ♦z))

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −
d

⊥ ⊥ · · ·

#

>

#d · · ·

Decrement

I d must repeat in the past in an incrementing position.

I If not, second player can set b to false.

I First player must repeat d in z from next round.

I If cheating on decrement, F (b ∧ x ≈ ♦z).

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −
d

⊥ ⊥ · · ·

#

>

#d · · ·

Decrement

I d must repeat in the past in an incrementing position.

I If not, second player can set b to false.

I First player must repeat d in z from next round.

I If cheating on decrement, F (b ∧ x ≈ ♦z).

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −
d

⊥

⊥ · · ·

#

>

#d · · ·

Decrement

I d must repeat in the past in an incrementing position.

I If not, second player can set b to false.

I First player must repeat d in z from next round.

I If cheating on decrement, F (b ∧ x ≈ ♦z).

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −
d

⊥

⊥ · · ·

#

>

#

d · · ·

Decrement

I d must repeat in the past in an incrementing position.

I If not, second player can set b to false.

I First player must repeat d in z from next round.

I If cheating on decrement, F (b ∧ x ≈ ♦z).

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −
d

⊥

⊥ · · ·

#

>

#

d · · ·

Decrement

I d must repeat in the past in an incrementing position.

I If not, second player can set b to false.

I First player must repeat d in z from next round.

I If cheating on decrement, F (b ∧ x ≈ ♦z).

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −
d

⊥ ⊥ · · ·

#

>

#d · · ·

Zero test

I Increment, no matching decrement ⇒ b set to false.

I Increment, future zero test ⇒ x must repeat in x .

I Upon repetition, b is set to true again; first player must repeat
in z .

I If cheating on zero test Globally (b is true and incrementing ⇒
x doesn’t repeat in z).

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −
d

⊥

⊥ · · ·

#

>

#d · · ·

Zero test

I Increment, no matching decrement ⇒ b set to false.

I Increment, future zero test ⇒ x must repeat in x .

I Upon repetition, b is set to true again; first player must repeat
in z .

I If cheating on zero test Globally (b is true and incrementing ⇒
x doesn’t repeat in z).

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −
d

⊥

⊥ · · ·

#

>

#d · · ·

Zero test

I Increment, no matching decrement ⇒ b set to false.

I Increment, future zero test ⇒ x must repeat in x .

I Upon repetition, b is set to true again; first player must repeat
in z .

I If cheating on zero test Globally (b is true and incrementing ⇒
x doesn’t repeat in z).

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −
d

⊥ ⊥ · · ·

#

>

#

d · · ·

Zero test

I Increment, no matching decrement ⇒ b set to false.

I Increment, future zero test ⇒ x must repeat in x .

I Upon repetition, b is set to true again; first player must repeat
in z .

I If cheating on zero test Globally (b is true and incrementing ⇒
x doesn’t repeat in z).

Simulating counter machines

x

y

z

b

$ # $ @

+ + − −
d

⊥ ⊥ · · ·

#

>

#

d · · ·

Zero test

I Increment, no matching decrement ⇒ b set to false.

I Increment, future zero test ⇒ x must repeat in x .

I Upon repetition, b is set to true again; first player must repeat
in z .

I If cheating on zero test Globally (b is true and incrementing ⇒
x doesn’t repeat in z).

Outline

Realizability games

Logic of reating values

Decidable fragment

Undecidability results

Future work

Restrictions to get decidability

I No nested formulas: only x ≈ 〈>?〉−1y .

I Environment player has only Boolean variables.

I No future obligations: x ≈ 〈>?〉y not allowed.

Restrictions to get decidability

I No nested formulas: only x ≈ 〈>?〉−1y .

I Environment player has only Boolean variables.

I No future obligations: x ≈ 〈>?〉y not allowed.

Future work

I Complexity bounds.

I Synthesizing winning strategies.

I Other decidable restrictions of VASS games.

Thank you

Future work

I Complexity bounds.

I Synthesizing winning strategies.

I Other decidable restrictions of VASS games.

Thank you

	Realizability games
	Logic of reating values
	Decidable fragment
	Undecidability results
	Future work

