
Tree Transformations by means of visibly pushdown
transducers

Jean-Marc Talbot
Joint Work L. Dartois 1, E. Filiot 1,

P.-A. Reynier 2

1Université Libre de Bruxelles

2Université d’Aix-Marseille

CAALM - Jan 2019

Tree Transformations by means of VPT CAALM - Jan 2019 1 / 34

Outline

1 Trees as Well-nested Words
2 Tree to Word Transformations
3 Tree to Tree Transformations
4 A new Tool : (Two-way) Visibly Pushdown Parikh Automata

Tree Transformations by means of VPT CAALM - Jan 2019 2 / 34

Outline

1 Trees as Well-nested Words

Tree Transformations by means of VPT CAALM - Jan 2019 3 / 34

Well-nested words for trees : an example
Encoding

Linearizations of (unranked) trees ⊆ Well-nested words

family

person

birthname children

person

birthname

Marie Curie 1867

Irene 1897

⇒

< family >
< person>
< name >MarieCurie < \name >
< birth> 1867< \birth>
< children>
< name > Irene < \name >
< birth> 1897< \birth>
< \children>
< \person>
< \family >

Tree Transformations by means of VPT CAALM - Jan 2019 4 / 34

Well-nested words for trees

Definition (Structured Alphabet)

A structured alphabet Σ is a set Σ=Σc]Σr (call and return symbols resp.).

Definition (Well-nested Words)

A word is well-nested if it is generated by the following grammar

W → ε |WW | ciWrj ci ∈Σc ,rj ∈Σr

Σ∗
wn is the set of all well-nested words.

Induces a matching relation

c1 c2 r2 r1 c1 r2

Tree Transformations by means of VPT CAALM - Jan 2019 5 / 34

Well-nested words for trees

Definition (Structured Alphabet)

A structured alphabet Σ is a set Σ=Σc]Σr (call and return symbols resp.).

Definition (Well-nested Words)

A word is well-nested if it is generated by the following grammar

W → ε |WW | ciWrj ci ∈Σc ,rj ∈Σr

Σ∗
wn is the set of all well-nested words.

Induces a matching relation

c1 c2 r2 r1 c1 r2

Tree Transformations by means of VPT CAALM - Jan 2019 5 / 34

Visibly Pushdown Automata (VPAs) [Alur,Madhusudan,04]
VPAs = Pushdown Automata

running on on a structured alphabet Σ=Σc]Σr :
whose behavior is driven by the input

Ï push one stack symbol on call symbols Σc
Ï pop one stack symbol on return symbols Σr

accept on empty stack and final state (accepted ⊆Σ∗
wn) (in this talk)

q0 q1

c ,+γ1

c ,+γ2

r1,−γ1
r1,−γ1

r2,−γ2

L(A)= {cn · r1 · (r1+ r2)
n−1 | n> 0}.

Tree Transformations by means of VPT CAALM - Jan 2019 6 / 34

MSO for nested words

Logical Structure of Nested Words :

c1 c2 r2 r1 c1 r2succ succ succ succ succ

M
M M

MSOnw formulas :

laba(x) | succ(x ,y) |M(x ,y) | ∃x .ϕ | ∃X .ϕ |ϕ∨ϕ | ¬ϕ

Theorem [Alur,Madhusudan,04]

MSOnw definable languages ≡ VPA definable languages.

Tree Transformations by means of VPT CAALM - Jan 2019 7 / 34

Two-way VPA (2VPA) [Madhusudan,Viswanathan,09]

Main features :

directed states Q× {←,→} (→ : read the symbol on the right, ...)
Behaviour wrt the stack:

Ï Forward (→): just as VPA
Ï Backward (←): dually, pop on call and push on return

` c1

(q,→)

γ

c2

(q,→)

γγ

(q′′,→)

γγ′′

r2

(q′,←)

γ

(q′,→)

γ

r1 c1 r2 a •(q,→)
c2,+γ−→ (q,→)

•

(q,→)
r2,−γ−→ (q′,←)

•

(q′,←)
r2,+γ′′−→ (q′′,→)

•

(q′′,→)
r2,−γ′′−→ (q′,→)

Tree Transformations by means of VPT CAALM - Jan 2019 8 / 34

Two-way VPA (2VPA) [Madhusudan,Viswanathan,09]

Main features :

directed states Q× {←,→} (→ : read the symbol on the right, ...)
Behaviour wrt the stack:

Ï Forward (→): just as VPA
Ï Backward (←): dually, pop on call and push on return

` c1

(q,→)

γ

c2

(q,→)

γγ

(q′′,→)

γγ′′

r2

(q′,←)

γ

(q′,→)

γ

r1 c1 r2 a

•

(q,→)
c2,+γ−→ (q,→)

•(q,→)
r2,−γ−→ (q′,←)

•

(q′,←)
r2,+γ′′−→ (q′′,→)

•

(q′′,→)
r2,−γ′′−→ (q′,→)

Tree Transformations by means of VPT CAALM - Jan 2019 8 / 34

Two-way VPA (2VPA) [Madhusudan,Viswanathan,09]

Main features :

directed states Q× {←,→} (→ : read the symbol on the right, ...)
Behaviour wrt the stack:

Ï Forward (→): just as VPA
Ï Backward (←): dually, pop on call and push on return

` c1

(q,→)

γ

c2

(q,→)

γγ

(q′′,→)

γγ′′

r2

(q′,←)

γ

(q′,→)

γ

r1 c1 r2 a

•

(q,→)
c2,+γ−→ (q,→)

•

(q,→)
r2,−γ−→ (q′,←)

•(q′,←)
r2,+γ′′−→ (q′′,→)

•

(q′′,→)
r2,−γ′′−→ (q′,→)

Tree Transformations by means of VPT CAALM - Jan 2019 8 / 34

Two-way VPA (2VPA) [Madhusudan,Viswanathan,09]

Main features :

directed states Q× {←,→} (→ : read the symbol on the right, ...)
Behaviour wrt the stack:

Ï Forward (→): just as VPA
Ï Backward (←): dually, pop on call and push on return

` c1

(q,→)

γ

c2

(q,→)

γγ

(q′′,→)

γγ′′

r2

(q′,←)

γ

(q′,→)

γ

r1 c1 r2 a

•

(q,→)
c2,+γ−→ (q,→)

•

(q,→)
r2,−γ−→ (q′,←)

•

(q′,←)
r2,+γ′′−→ (q′′,→)

•(q′′,→)
r2,−γ′′−→ (q′,→)

Tree Transformations by means of VPT CAALM - Jan 2019 8 / 34

Two-way VPA (2VPA) [Madhusudan,Viswanathan,09]
Main features :

directed states Q× {←,→} (→ : read the symbol on the right, ...)
Behaviour wrt the stack:

Ï Forward (→): just as VPA
Ï Backward (←): dually, pop on call and push on return

` c1

(q,→)

γ

c2

(q,→)

γγ

(q′′,→)

γγ′′

r2

(q′,←)

γ

(q′,→)

γ

r1 c1 r2 a

•

(q,→)
c2,+γ−→ (q,→)

•

(q,→)
r2,−γ−→ (q′,←)

•

(q′,←)
r2,+γ′′−→ (q′′,→)

•

(q′′,→)
r2,−γ′′−→ (q′,→)

Theorem
2VPA are as expressive as VPA.

Tree Transformations by means of VPT CAALM - Jan 2019 8 / 34

Tree Transformations

Transformation : T , a function from Σ∗
wn to Γ∗

a transducer T = (A,O) extends automata A with an output
mechanism O mapping transitions of A to words from Γ∗.
MSO transformations (à la Courcelle) : a set of MSO formulas
interpreted on a fixed number of copies of the input structure defining
the predicates of some output structure.

Interesting properties :

Expressiveness
Type-checking problem : �T �(LI)⊆ LO

Closure by composition (when possible)

Tree Transformations by means of VPT CAALM - Jan 2019 9 / 34

Tree Transformations

Transformation : T , a function from Σ∗
wn to Γ∗

a transducer T = (A,O) extends automata A with an output
mechanism O mapping transitions of A to words from Γ∗.

MSO transformations (à la Courcelle) : a set of MSO formulas
interpreted on a fixed number of copies of the input structure defining
the predicates of some output structure.

Interesting properties :

Expressiveness
Type-checking problem : �T �(LI)⊆ LO

Closure by composition (when possible)

Tree Transformations by means of VPT CAALM - Jan 2019 9 / 34

Tree Transformations

Transformation : T , a function from Σ∗
wn to Γ∗

a transducer T = (A,O) extends automata A with an output
mechanism O mapping transitions of A to words from Γ∗.
MSO transformations (à la Courcelle) : a set of MSO formulas
interpreted on a fixed number of copies of the input structure defining
the predicates of some output structure.

Interesting properties :

Expressiveness
Type-checking problem : �T �(LI)⊆ LO

Closure by composition (when possible)

Tree Transformations by means of VPT CAALM - Jan 2019 9 / 34

Tree Transformations

Transformation : T , a function from Σ∗
wn to Γ∗

a transducer T = (A,O) extends automata A with an output
mechanism O mapping transitions of A to words from Γ∗.
MSO transformations (à la Courcelle) : a set of MSO formulas
interpreted on a fixed number of copies of the input structure defining
the predicates of some output structure.

Interesting properties :

Expressiveness
Type-checking problem : �T �(LI)⊆ LO

Closure by composition (when possible)

Tree Transformations by means of VPT CAALM - Jan 2019 9 / 34

Outline

2 Tree to word Transformations

Tree Transformations by means of VPT CAALM - Jan 2019 10 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→ 1,→

1,→

2,→

2,→

3,←

3,←

4,←

4,←

5,←

5,←

6,←

6,←

Acc

Acc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1 r1 c2 . . .r2 c3 r3

(0,→)

(1,→)(1,→)(1,→)(2,→)(2,→)(3,←)(4,←)(5,←)(5,←)(6,←)(0,→)(1,→)(1,→)

stack

⊥

1
0
0
1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→ 1,→

1,→

2,→

2,→

3,←

3,←

4,←

4,←

5,←

5,←

6,←

6,←

Acc

Acc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1 r1 c2 . . .r2 c3 r3

(0,→)

(1,→)(1,→)(1,→)(2,→)(2,→)(3,←)(4,←)(5,←)(5,←)(6,←)(0,→)(1,→)(1,→)

stack

⊥

1
0
0
1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→ 1,→

1,→ 2,→

2,→

3,←

3,←

4,←

4,←

5,←

5,←

6,←

6,←

Acc

Acc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1

r1 c2 . . .r2 c3 r3

(0,→)

(1,→)

(1,→)(1,→)(2,→)(2,→)(3,←)(4,←)(5,←)(5,←)(6,←)(0,→)(1,→)(1,→)

stack

⊥
1

0
0
1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→ 1,→

1,→ 2,→

2,→

3,←

3,←

4,←

4,←

5,←

5,←

6,←

6,←

Acc

Acc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1

r1 c2 . . .r2 c3 r3

(0,→)(1,→)

(1,→)

(1,→)(2,→)(2,→)(3,←)(4,←)(5,←)(5,←)(6,←)(0,→)(1,→)(1,→)

stack

⊥
1
0

0
1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→ 1,→

1,→ 2,→

2,→

3,←

3,←

4,←

4,←

5,←

5,←

6,←

6,←

Acc

Acc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1

r1 c2 . . .r2 c3 r3

(0,→)(1,→)(1,→)

(1,→)

(2,→)(2,→)(3,←)(4,←)(5,←)(5,←)(6,←)(0,→)(1,→)(1,→)

stack

⊥
1
0
0

1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→

1,→

1,→ 2,→

2,→

3,←

3,←

4,←

4,←

5,←

5,←

6,←

6,←

Acc

Acc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1

r1 c2 . . .r2 c3 r3

(0,→)(1,→)(1,→)(1,→)

(2,→)

(2,→)(3,←)(4,←)(5,←)(5,←)(6,←)(0,→)(1,→)(1,→)

stack

⊥
1
0

0
1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→

1,→

1,→ 2,→

2,→

3,←

3,←

4,←

4,←

5,←

5,←

6,←

6,←

Acc

Acc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1

r1 c2 . . .r2 c3 r3

(0,→)(1,→)(1,→)(1,→)(2,→)

(2,→)

(3,←)(4,←)(5,←)(5,←)(6,←)(0,→)(1,→)(1,→)

stack

⊥
1

0
0
1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→

1,→

1,→

2,→

2,→

3,←

3,←

4,←

4,←

5,←

5,←

6,←

6,←

Acc

Acc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1 r1

c2 . . .r2 c3 r3

(0,→)(1,→)(1,→)(1,→)(2,→)(2,→)

(3,←)

(4,←)(5,←)(5,←)(6,←)(0,→)(1,→)(1,→)

stack

⊥

1
0
0
1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→

1,→

1,→

2,→

2,→

3,←

3,←

4,←

4,←5,←

5,←

6,←

6,←

Acc

Acc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1 r1

c2 . . .r2 c3 r3

(0,→)(1,→)(1,→)(1,→)(2,→)(2,→)(3,←)

(4,←)

(5,←)(5,←)(6,←)(0,→)(1,→)(1,→)

stack

⊥
1

0
0
1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→

1,→

1,→

2,→

2,→

3,←

3,←

4,←

4,←5,←

5,←6,←

6,←

Acc

Acc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1 r1

c2 . . .r2 c3 r3

(0,→)(1,→)(1,→)(1,→)(2,→)(2,→)(3,←)(4,←)

(5,←)

(5,←)(6,←)(0,→)(1,→)(1,→)

stack

⊥
1

0
0

1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→

1,→

1,→

2,→

2,→

3,←

3,←

4,←

4,←5,←

5,←6,←

6,←

Acc

Acc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1 r1

c2 . . .r2 c3 r3

(0,→)(1,→)(1,→)(1,→)(2,→)(2,→)(3,←)(4,←)(5,←)

(5,←)

(6,←)(0,→)(1,→)(1,→)

stack

⊥
1

0

0
1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→

1,→

1,→

2,→

2,→

3,←

3,←

4,←

4,←

5,←

5,←6,←

6,←

Acc

Acc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1 r1

c2 . . .r2 c3 r3

(0,→)(1,→)(1,→)(1,→)(2,→)(2,→)(3,←)(4,←)(5,←)(5,←)

(6,←)

(0,→)(1,→)(1,→)

stack

⊥
1

0
0

1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→ 1,→

1,→

2,→

2,→

3,←

3,←

4,←

4,←

5,←

5,←

6,←

6,←

Acc

Acc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1 r1

c2 . . .r2 c3 r3

(0,→)(1,→)(1,→)(1,→)(2,→)(2,→)(3,←)(4,←)(5,←)(5,←)(6,←)

(0,→)

(1,→)(1,→)

stack

⊥
1

0
0
1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→ 1,→

1,→ 2,→

2,→

3,←

3,←

4,←

4,←

5,←

5,←

6,←

6,←

Acc

Acc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1 r1 c2

. . .r2 c3 r3

(0,→)(1,→)(1,→)(1,→)(2,→)(2,→)(3,←)(4,←)(5,←)(5,←)(6,←)(0,→)

(1,→)

(1,→)

stack

⊥
1

0
0

1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→ 1,→

1,→ 2,→

2,→

3,←

3,←

4,←

4,←

5,←

5,←

6,←

6,←

Acc

Acc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1 r1 c2 . . .

r2 c3 r3

(0,→)(1,→)(1,→)(1,→)(2,→)(2,→)(3,←)(4,←)(5,←)(5,←)(6,←)(0,→)(1,→)

(1,→)

stack

⊥
1

0

0
1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

2-way Visibly Pushdown Transducers (2VPT)

0,→

0,→

1,→

1,→

2,→

2,→

3,←

3,←

4,←

4,←

5,←

5,←

6,←

6,←

AccAcc

ci ,+1|ci

ci ,+0|ε

ri ,−0|ε

ri ,−0|ε

ri ,−1|ri

ri ,+1|ε
ri ,+1|ε

ri ,+0|ε

ci ,−0|ε
ci ,−0|ε

ci ,−1|ε
ri ,−1|ri

ci ,+1

ci ,+0

ri ,−0

ri ,−0

ri ,−1

ri ,+1
ri ,+1

ri ,+0

ci ,−0
ci ,−0

ci ,−1
ri ,−1

Input Tape:

Output Tape:

` c1 c2 c3 r3 r2 r1 a

c1 r1 c2

. . .

r2 c3 r3

(0,→)(1,→)(1,→)(1,→)(2,→)(2,→)(3,←)(4,←)(5,←)(5,←)(6,←)(0,→)(1,→)(1,→)

stack

⊥

1
0
0
1

Tree Transformations by means of VPT CAALM - Jan 2019 11 / 34

MSO[nw2w] transduction

c1

c1

c1 c2

c2 c3 r3 r2

r1

r1succ succ succ succ succ

M
M
M

succ

succ

succ

succ

succ

φlaba(x) ≡ laba(x)
φsucc(x ,y) ≡ ∨

i ,j(labci (x)∧M(x ,y))∨ (labrj (x)∧∃z M(z ,x)∧ succ(z ,y))

Tree Transformations by means of VPT CAALM - Jan 2019 12 / 34

MSO[nw2w] transduction

c1

c1c1 c2

c2 c3 r3 r2 r1

r1

succ succ succ succ succ

M
M
M

succ

succ

succ

succ

succ

φlaba(x) ≡ laba(x)
φsucc(x ,y) ≡ ∨

i ,j(labci (x)∧M(x ,y))∨ (labrj (x)∧∃z M(z ,x)∧ succ(z ,y))

Tree Transformations by means of VPT CAALM - Jan 2019 12 / 34

MSO[nw2w] transduction

c1c1

c1 c2

c2

c3 r3 r2 r1

r1

succ succ succ succ succ

M
M
M

succ

succ

succ

succ

succ

φlaba(x) ≡ laba(x)
φsucc(x ,y) ≡ ∨

i ,j(labci (x)∧M(x ,y))∨ (labrj (x)∧∃z M(z ,x)∧ succ(z ,y))

Tree Transformations by means of VPT CAALM - Jan 2019 12 / 34

MSO[nw2w] transduction

c1

c1

c1 c2

c2 c3 r3 r2

r1

r1succ succ succ succ succ

M
M
M

succ

succ

succ

succ

succ

φlaba(x) ≡ laba(x)
φsucc(x ,y) ≡ ∨

i ,j(labci (x)∧M(x ,y))∨ (labrj (x)∧∃z M(z ,x)∧ succ(z ,y))

Tree Transformations by means of VPT CAALM - Jan 2019 12 / 34

Comparing expressiveness
MSO[nw2w] transductions are linear size increase, as "a fixed
number of copies" of the input structure

but (deterministic) 2VPT (D2VPT) are not.

0,→ 1,→ 2,→

3,←

4,←5,←6,←

Acc

ci ,+1|a

ci ,+0|a

ri ,−0|a

ri ,−0|a

ri ,−1|a

ri ,+1|a
ri ,+1|a

ri ,+0|a

ci ,−0|a
ci ,−0|a

ci ,−1|a
ri ,−1|a

|T (cnrn)| =O(n2)

Tree Transformations by means of VPT CAALM - Jan 2019 13 / 34

Comparing expressiveness
MSO[nw2w] transductions are linear size increase, as "a fixed
number of copies" of the input structure

but (deterministic) 2VPT (D2VPT) are not.

0,→ 1,→ 2,→

3,←

4,←5,←6,←

Acc

ci ,+1|a

ci ,+0|a

ri ,−0|a

ri ,−0|a

ri ,−1|a

ri ,+1|a
ri ,+1|a

ri ,+0|a

ci ,−0|a
ci ,−0|a

ci ,−1|a
ri ,−1|a

|T (cnrn)| =O(n2)
Tree Transformations by means of VPT CAALM - Jan 2019 13 / 34

Single-use Property

Definition (Single-use restriction)

A D2VPT is single-use (D2VPTsu) if in any accepting run, any producing
transition occur at most once at a given position.

Proposition (Su decision)

Given a D2VPT, deciding if it satisfies the single-use property is
Exptime-complete.

Tree Transformations by means of VPT CAALM - Jan 2019 14 / 34

Single-use Property

Definition (Single-use restriction)

A D2VPT is single-use (D2VPTsu) if in any accepting run, any producing
transition occur at most once at a given position.

Proposition (Su decision)

Given a D2VPT, deciding if it satisfies the single-use property is
Exptime-complete.

Tree Transformations by means of VPT CAALM - Jan 2019 14 / 34

Some results ([Dartois, Filiot, Reynier, T. 16)

Expressiveness :
Ï D2VPTsu and MSO[nw2w] are equally expressive.

Ï functional VPT and order-preserving MSO[nw2w] are equally
expressive.

Type-checking problem against
Ï a regular language is Exptime-complete.
Ï a VPA language is undecidable even for deterministic (one-way) VPT
(followed from the undecidability of inclusion of CFL into VPA
languages)

Composition is not possible (even for deterministic (one-way) VPT)

Tree Transformations by means of VPT CAALM - Jan 2019 15 / 34

Some results ([Dartois, Filiot, Reynier, T. 16)

Expressiveness :
Ï D2VPTsu and MSO[nw2w] are equally expressive.
Ï functional VPT and order-preserving MSO[nw2w] are equally
expressive.

Type-checking problem against
Ï a regular language is Exptime-complete.
Ï a VPA language is undecidable even for deterministic (one-way) VPT
(followed from the undecidability of inclusion of CFL into VPA
languages)

Composition is not possible (even for deterministic (one-way) VPT)

Tree Transformations by means of VPT CAALM - Jan 2019 15 / 34

Some results ([Dartois, Filiot, Reynier, T. 16)

Expressiveness :
Ï D2VPTsu and MSO[nw2w] are equally expressive.
Ï functional VPT and order-preserving MSO[nw2w] are equally
expressive.

Type-checking problem against
Ï a regular language is Exptime-complete.
Ï a VPA language is undecidable even for deterministic (one-way) VPT
(followed from the undecidability of inclusion of CFL into VPA
languages)

Composition is not possible (even for deterministic (one-way) VPT)

Tree Transformations by means of VPT CAALM - Jan 2019 15 / 34

Some results ([Dartois, Filiot, Reynier, T. 16)

Expressiveness :
Ï D2VPTsu and MSO[nw2w] are equally expressive.
Ï functional VPT and order-preserving MSO[nw2w] are equally
expressive.

Type-checking problem against
Ï a regular language is Exptime-complete.
Ï a VPA language is undecidable even for deterministic (one-way) VPT
(followed from the undecidability of inclusion of CFL into VPA
languages)

Composition is not possible (even for deterministic (one-way) VPT)

Tree Transformations by means of VPT CAALM - Jan 2019 15 / 34

Outline

2 - Tree to Tree Transformations

Tree Transformations by means of VPT CAALM - Jan 2019 16 / 34

Tree to Tree Transformations with (2)VPT
Requires :

output on a structured alphabet
output range in Σ∗

wn

Definition [Filiot,Raskin,Reynier,Servais,T. - ’10]

A VPT is locally well-nested if
for all stack symbols γ and all transitions p1

c |w1,+γ−−−−−→ p2 and q2
r |w2,−γ−−−−−→ q1,

w1w2 ∈Σ∗
wn

syntactic restriction
locally well-nested VPTs produce well-nested words
closed under composition
typechecking against VPA is ExpTime-complete

Tree Transformations by means of VPT CAALM - Jan 2019 17 / 34

Tree to Tree Transformations with (2)VPT
Requires :

output on a structured alphabet
output range in Σ∗

wn

Definition [Filiot,Raskin,Reynier,Servais,T. - ’10]

A VPT is locally well-nested if
for all stack symbols γ and all transitions p1

c |w1,+γ−−−−−→ p2 and q2
r |w2,−γ−−−−−→ q1,

w1w2 ∈Σ∗
wn

syntactic restriction
locally well-nested VPTs produce well-nested words
closed under composition
typechecking against VPA is ExpTime-complete

Tree Transformations by means of VPT CAALM - Jan 2019 17 / 34

Tree to Tree Transformations with (2)VPT
Requires :

output on a structured alphabet
output range in Σ∗

wn

Definition [Filiot,Raskin,Reynier,Servais,T. - ’10]

A VPT is locally well-nested if
for all stack symbols γ and all transitions p1

c |w1,+γ−−−−−→ p2 and q2
r |w2,−γ−−−−−→ q1,

w1w2 ∈Σ∗
wn

syntactic restriction
locally well-nested VPTs produce well-nested words
closed under composition
typechecking against VPA is ExpTime-complete

Tree Transformations by means of VPT CAALM - Jan 2019 17 / 34

Well-Nested VPT

What about a semantical class {T ∈VPT | ∀L, �T �(L)⊆Σ∗
wn} ?

This is the class of well-nested VPT

can this class be decided ?
is this class closed by composition ? (and thus, has type-checking
against VPA is decidable)
how does it relate to locally well-nested VPT?

Tree Transformations by means of VPT CAALM - Jan 2019 18 / 34

Well-Nested VPT

What about a semantical class {T ∈VPT | ∀L, �T �(L)⊆Σ∗
wn} ?

This is the class of well-nested VPT

can this class be decided ?
is this class closed by composition ? (and thus, has type-checking
against VPA is decidable)
how does it relate to locally well-nested VPT?

Tree Transformations by means of VPT CAALM - Jan 2019 18 / 34

Locally Well-Nested vs Well-Nested VPT

q0 q1 q2 q3 q4
c ,+γ|ccc

c ,+γ′|cr

c ′,+γ0|r r ′,−γ0|r

r ,−γ′|cr

r ,−γ|r

�T � = {(cckc ′r ′rk r ,ccc(cr)k rr(cr)k r) | k ∈N}

cr

cr

cr

c’r’

7→

cr

crcrcr

cr

crcr

locally well-nested VPT (well-nested VPT

Tree Transformations by means of VPT CAALM - Jan 2019 19 / 34

Locally Well-Nested vs Well-Nested VPT

q0 q1 q2 q3 q4
c ,+γ|ccc

c ,+γ′|cr

c ′,+γ0|r r ′,−γ0|r

r ,−γ′|cr

r ,−γ|r

�T � = {(cckc ′r ′rk r ,ccc(cr)k rr(cr)k r) | k ∈N}

cr

cr

cr

c’r’

7→

cr

crcrcr

cr

crcr

locally well-nested VPT (well-nested VPT

Tree Transformations by means of VPT CAALM - Jan 2019 19 / 34

Locally Well-Nested vs Well-Nested VPT

q0 q1 q2 q3 q4
c ,+γ|ccc

c ,+γ′|cr

c ′,+γ0|r r ′,−γ0|r

r ,−γ′|cr

r ,−γ|r

�T � = {(cckc ′r ′rk r ,ccc(cr)k rr(cr)k r) | k ∈N}

cr

cr

cr

c’r’

7→

cr

crcrcr

cr

crcr

locally well-nested VPT (well-nested VPT
Tree Transformations by means of VPT CAALM - Jan 2019 19 / 34

Properties of Well-Nested VPT

Proposition (Reynier T. ’14)

The class of well-nested VPT:
can be decided in PTime
is effectively closed under composition
has a type-checking problem against VPA in 2-ExpTime.

Proposition
Well-nested fVPT ≡ fVPT∩ (Σ∗

wn →Σ∗
wn)

≡ order-preserving MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn)
≡ order-preserving MSO[nw2nw]

As, output matching is MSO-definable.

Can we decide local transformations amongst global ones ?

Tree Transformations by means of VPT CAALM - Jan 2019 20 / 34

Properties of Well-Nested VPT

Proposition (Reynier T. ’14)

The class of well-nested VPT:
can be decided in PTime
is effectively closed under composition
has a type-checking problem against VPA in 2-ExpTime.

Proposition
Well-nested fVPT ≡ fVPT∩ (Σ∗

wn →Σ∗
wn)

≡ order-preserving MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn)
≡ order-preserving MSO[nw2nw]

As, output matching is MSO-definable.

Can we decide local transformations amongst global ones ?

Tree Transformations by means of VPT CAALM - Jan 2019 20 / 34

Properties of Well-Nested VPT

Proposition (Reynier T. ’14)

The class of well-nested VPT:
can be decided in PTime
is effectively closed under composition
has a type-checking problem against VPA in 2-ExpTime.

Proposition
Well-nested fVPT ≡ fVPT∩ (Σ∗

wn →Σ∗
wn)

≡ order-preserving MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn)

≡ order-preserving MSO[nw2nw]

As, output matching is MSO-definable.

Can we decide local transformations amongst global ones ?

Tree Transformations by means of VPT CAALM - Jan 2019 20 / 34

Properties of Well-Nested VPT

Proposition (Reynier T. ’14)

The class of well-nested VPT:
can be decided in PTime
is effectively closed under composition
has a type-checking problem against VPA in 2-ExpTime.

Proposition
Well-nested fVPT ≡ fVPT∩ (Σ∗

wn →Σ∗
wn)

≡ order-preserving MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn)
≡ order-preserving MSO[nw2nw]

As, output matching is MSO-definable.

Can we decide local transformations amongst global ones ?

Tree Transformations by means of VPT CAALM - Jan 2019 20 / 34

Properties of Well-Nested VPT

Proposition (Reynier T. ’14)

The class of well-nested VPT:
can be decided in PTime
is effectively closed under composition
has a type-checking problem against VPA in 2-ExpTime.

Proposition
Well-nested fVPT ≡ fVPT∩ (Σ∗

wn →Σ∗
wn)

≡ order-preserving MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn)
≡ order-preserving MSO[nw2nw]

As, output matching is MSO-definable.

Can we decide local transformations amongst global ones ?

Tree Transformations by means of VPT CAALM - Jan 2019 20 / 34

D2VPT for tree to tree transformations

Tree restriction
D2VPTsu

∩(Σ∗
wn →Σ∗

wn)

≡ MSO[nw2w]

∩(Σ∗
wn →Σ∗

wn)

Tree Transformations by means of VPT CAALM - Jan 2019 21 / 34

D2VPT for tree to tree transformations

Tree restriction
D2VPTsu ∩(Σ∗

wn →Σ∗
wn) ≡ MSO[nw2w] ∩(Σ∗

wn →Σ∗
wn)

Tree Transformations by means of VPT CAALM - Jan 2019 21 / 34

D2VPT for tree to tree transformations

Tree restriction
D2VPTsu ∩(Σ∗

wn →Σ∗
wn) ≡ MSO[nw2w] ∩(Σ∗

wn →Σ∗
wn)

Some questions :
is D2VPTsu ⊆ (Σ∗

wn →Σ∗
wn) is decidable (when structured output

alphabet) ?
Instead of D2VPT, what about functional 2VPT? Is it a decidable
class ?

Tree Transformations by means of VPT CAALM - Jan 2019 21 / 34

D2VPT for tree to tree transformations

Tree restriction
D2VPTsu ∩(Σ∗

wn →Σ∗
wn) ≡ MSO[nw2w] ∩(Σ∗

wn →Σ∗
wn)

Some questions :
is D2VPTsu ⊆ (Σ∗

wn →Σ∗
wn) is decidable (when structured output

alphabet) ?
Instead of D2VPT, what about functional 2VPT? Is it a decidable
class ?

Several questions but a single tool :

Two-way Visibly Pushdown Parikh Automata (2VPPA)

Tree Transformations by means of VPT CAALM - Jan 2019 21 / 34

Outline

4 - A new Tool : (Two-way) Visibly Pushdown Parikh Automata

Tree Transformations by means of VPT CAALM - Jan 2019 22 / 34

Parikh Automata

Definition (Klaedtke, Rueß, 03)

A Parikh automaton P = (A,dim,λ,S) where A= (Σ,Q , I ,F ,∆) is an NFA,
dim is a natural number, λ :∆ 7→Ndim and S is a semi-linear subset of Ndim.

Here, S as a Presburger formula with dim free variables x1, . . . ,xdim

Tree Transformations by means of VPT CAALM - Jan 2019 23 / 34

Parikh Automata
Definition (Klaedtke, Rueß, 03)

A Parikh automaton P = (A,dim,λ,S) where A= (Σ,Q , I ,F ,∆) is an NFA,
dim is a natural number, λ :∆ 7→Ndim and S is a semi-linear subset of Ndim.

Here, S as a Presburger formula with dim free variables x1, . . . ,xdim

0 1 2

a,b,c ,

(
0
0

)
a,b,c ,

(
0
0

)
c ,

(
0
0

) a,

(
1
0

)

b,

(
0
1

)
c ,

(
0
0

)

ϕS(x1,x2)= (x1 = 2∗x2+1)
Words containing a factor cwc with w ∈ (a+b)∗ and |w |a = 2|w |b+1

Tree Transformations by means of VPT CAALM - Jan 2019 23 / 34

Parikh Automata

Definition (Klaedtke, Rueß, 03)

A Parikh automaton P = (A,dim,λ,S) where A= (Σ,Q , I ,F ,∆) is an NFA,
dim is a natural number, λ :∆ 7→Ndim and S is a semi-linear subset of Ndim.

Here, S as a Presburger formula with dim free variables x1, . . . ,xdim

Equi-expressive to (non-deterministic) reversal-bounded counter machines
[Ibarra,78] (weaker in the deterministic case [Cadilhac, Finkel,
McKenzie,11]).

In Parikh automata, counter values (and thus, updates) do not influence
the control state evolution.

Tree Transformations by means of VPT CAALM - Jan 2019 23 / 34

Two-way Visibly Pushdown Parikh Automata

Definition
A two-way Visibly Pushdown Parikh automaton P = (A,dim,λ,S) where
A= (Σ,Q , I ,F ,Γ,∆) is an 2VPA, dim is a natural number, λ :∆ 7→Ndim and
S is a semi-linear subset of Ndim.

Reducing (D)2VPT problems to emptiness of (D)2VPPA

Tree Transformations by means of VPT CAALM - Jan 2019 24 / 34

Two-way Visibly Pushdown Parikh Automata

Definition
A two-way Visibly Pushdown Parikh automaton P = (A,dim,λ,S) where
A= (Σ,Q , I ,F ,Γ,∆) is an 2VPA, dim is a natural number, λ :∆ 7→Ndim and
S is a semi-linear subset of Ndim.

Reducing (D)2VPT problems to emptiness of (D)2VPPA

Tree Transformations by means of VPT CAALM - Jan 2019 24 / 34

Well-nestedness of (D)2VPT

Globally as many calls as returns. Locally always more calls then returns.

dim= 4

q1
α,±γ|w−−−−−−−−−→ q2 :

q1
α,±γ,(|w |Σc ,|w |Σr ,|w |Σc ,|w |Σr)−−−−−−−−−−−−−−−−−−−−−−−−−→ q2

q1
α,±γ,(|w |Σc ,|w |Σr ,|w |Σc ,|w |Σr)−−−−−−−−−−−−−−−−−−−−−−−−−→ q′2

q′1
α,±γ,(0,0,|w |Σc ,|w |Σr)−−−−−−−−−−−−−−−−−−−→ q′2

ϕ= x3 6= x4∨x1 < x2

Not well-nested ⇔ Not empty

Tree Transformations by means of VPT CAALM - Jan 2019 25 / 34

Functionality of 2VPT
On the same input word, there exists an output position where two different letters are output in
two different computations (essentially).

dim= 2

Compute a position in the output

q1
α,±γ|w−−−−−−−−−−→ q2 ⇒ q1

α,±γ,(|w |,0)−−−−−−−−−−−−−−→ q2

Guess the (first half of the) mismatched

q1
α,±γ|w−−−−−−−−−−→ q2 ⇒ q1

α,±γ,(|w1|,0)−−−−−−−−−−−−−−−→ qa2 w =w1aw2

Rewind the input word and start reading again

q1
α,±γ|w−−−−−−−−−−→ q2 ⇒ qa1

α,±γ,(0,|w |)−−−−−−−−−−−−−−→ qa2

Guess the (second half of the) mismatched

q1
α,±γ|w−−−−−−−−−−→ q2 ⇒ qa1

α,±γ,(0,|w1|)−−−−−−−−−−−−−−−→ qF w =w1bw2 , a 6= b

ϕ= x1 = x2

Not functional ⇔ Not empty

Tree Transformations by means of VPT CAALM - Jan 2019 26 / 34

Some Existing Results about the emptiness problem

Emptiness for :
deterministic two-way counter machines with 2 counters and k (fixed)
counter-reversals is undecidable

(non-deterministic) two-way reversal-bounded counter machines
with finite crossing is decidable
(non-deterministic) two-way pushdown automata with finite crossing is
undecidable

Tree Transformations by means of VPT CAALM - Jan 2019 27 / 34

Some Existing Results about the emptiness problem

Emptiness for :
deterministic two-way counter machines with 2 counters and k (fixed)
counter-reversals is undecidable
(non-deterministic) two-way reversal-bounded counter machines
with finite crossing is decidable

(non-deterministic) two-way pushdown automata with finite crossing is
undecidable

Tree Transformations by means of VPT CAALM - Jan 2019 27 / 34

Some Existing Results about the emptiness problem

Emptiness for :
deterministic two-way counter machines with 2 counters and k (fixed)
counter-reversals is undecidable
(non-deterministic) two-way reversal-bounded counter machines
with finite crossing is decidable
(non-deterministic) two-way pushdown automata with finite crossing is
undecidable

Tree Transformations by means of VPT CAALM - Jan 2019 27 / 34

Some Bad News
Theorem
Emptiness for deterministic two-way visibly pushdown Parikh automata is
undecidable.

Proof Idea :
Reduction of solvability of Diophantine Eq. : P =Q with P ,Q ∈N[X], eg 2xy +zz = 4x +2xz +6

The automaton part encodes only of monomials; sums and equality test encoded in Presburger
accepting formula, a dimension for each monomial : 2x1+x2 = 4x3+2x4+6.

Input nested words represent valuations of variables

Encode(x ∗y ∗1, [x 7→ 3,y 7→ 2])= xcc
3Encode(y ∗1, [x 7→ 3,y 7→ 2])r3xr

Encode(1, [x 7→ 3,y 7→ 2])= 1

The automaton checks well-formedness
visibly pushdown "regular" sequence of monomials
one dimension for each variable occurence in P and Q : test via the Presburger accepting
formula that there are valuated the same way.

and evaluates monomials via counters :

The dimension updated as
�Encode(xcc3Encode(y ∗1, [x 7→ 3,y 7→ 2])r3xr)� = 3∗�Encode(y ∗1, [x 7→ 3,y 7→ 2])�

Tree Transformations by means of VPT CAALM - Jan 2019 28 / 34

Some Bad News
Theorem
Emptiness for deterministic two-way visibly pushdown Parikh automata is
undecidable.
Proof Idea :
Reduction of solvability of Diophantine Eq. : P =Q with P ,Q ∈N[X], eg 2xy +zz = 4x +2xz +6

The automaton part encodes only of monomials; sums and equality test encoded in Presburger
accepting formula, a dimension for each monomial : 2x1+x2 = 4x3+2x4+6.

Input nested words represent valuations of variables

Encode(x ∗y ∗1, [x 7→ 3,y 7→ 2])= xcc
3Encode(y ∗1, [x 7→ 3,y 7→ 2])r3xr

Encode(1, [x 7→ 3,y 7→ 2])= 1

The automaton checks well-formedness
visibly pushdown "regular" sequence of monomials
one dimension for each variable occurence in P and Q : test via the Presburger accepting
formula that there are valuated the same way.

and evaluates monomials via counters :

The dimension updated as
�Encode(xcc3Encode(y ∗1, [x 7→ 3,y 7→ 2])r3xr)� = 3∗�Encode(y ∗1, [x 7→ 3,y 7→ 2])�

Tree Transformations by means of VPT CAALM - Jan 2019 28 / 34

Some (Modest) Good News
Theorem
The non-emptiness problem for (one-way) VPPA and PPA is NP-complete.

Upperbound : let V be the values used for update in the PPA A

New alphabet Σ′ =Σ∪ (uiv) (update counter i by adding value v (v ∈V)).

Step 1 : Define a NPA B accepting words of the form
α1u

1
0u

2
1α2u

1
3u

2
2α3u

1
0u

2
0α4u

1
0u

2
1α5 . . . such that

Ï α1α2α3α4α5 . . . has a run in A from an initial to a final configuration
Ï each u1v1u

2
v2 corresponds to the update performed by the run at that

position : (v1,v2) ⇒ u1v1u
2
v2

Ï B is of polynomial size in A

Step 2 : There is an existential Presburger formula ψ((yσ)σ∈Σ′) of size
polynomial in B defining the Parikh image of L(B). [Verma, et al. 05]
Step 3 : In NP [Scarpellini84], satisfiability test of

ψ((yσ)σ∈Σ′)∧φ(x1, . . . ,xn)∧
∧

1≤i≤dim
xi =

∑
v∈V

v .yui
v

Tree Transformations by means of VPT CAALM - Jan 2019 29 / 34

Some (Modest) Good News
Theorem
The non-emptiness problem for (one-way) VPPA and PPA is NP-complete.

Upperbound : let V be the values used for update in the PPA A

New alphabet Σ′ =Σ∪ (uiv) (update counter i by adding value v (v ∈V)).

Step 1 : Define a NPA B accepting words of the form
α1u

1
0u

2
1α2u

1
3u

2
2α3u

1
0u

2
0α4u

1
0u

2
1α5 . . . such that

Ï α1α2α3α4α5 . . . has a run in A from an initial to a final configuration
Ï each u1v1u

2
v2 corresponds to the update performed by the run at that

position : (v1,v2) ⇒ u1v1u
2
v2

Ï B is of polynomial size in A

Step 2 : There is an existential Presburger formula ψ((yσ)σ∈Σ′) of size
polynomial in B defining the Parikh image of L(B). [Verma, et al. 05]
Step 3 : In NP [Scarpellini84], satisfiability test of

ψ((yσ)σ∈Σ′)∧φ(x1, . . . ,xn)∧
∧

1≤i≤dim
xi =

∑
v∈V

v .yui
v

Tree Transformations by means of VPT CAALM - Jan 2019 29 / 34

Some (Modest) Good News
Theorem
The non-emptiness problem for (one-way) VPPA and PPA is NP-complete.

Upperbound : let V be the values used for update in the PPA A

New alphabet Σ′ =Σ∪ (uiv) (update counter i by adding value v (v ∈V)).

Step 1 : Define a NPA B accepting words of the form
α1u

1
0u

2
1α2u

1
3u

2
2α3u

1
0u

2
0α4u

1
0u

2
1α5 . . . such that

Ï α1α2α3α4α5 . . . has a run in A from an initial to a final configuration
Ï each u1v1u

2
v2 corresponds to the update performed by the run at that

position : (v1,v2) ⇒ u1v1u
2
v2

Ï B is of polynomial size in A

Step 2 : There is an existential Presburger formula ψ((yσ)σ∈Σ′) of size
polynomial in B defining the Parikh image of L(B). [Verma, et al. 05]
Step 3 : In NP [Scarpellini84], satisfiability test of

ψ((yσ)σ∈Σ′)∧φ(x1, . . . ,xn)∧
∧

1≤i≤dim
xi =

∑
v∈V

v .yui
v

Tree Transformations by means of VPT CAALM - Jan 2019 29 / 34

Some (Modest) Good News
Theorem
The non-emptiness problem for (one-way) VPPA and PPA is NP-complete.

Upperbound : let V be the values used for update in the PPA A

New alphabet Σ′ =Σ∪ (uiv) (update counter i by adding value v (v ∈V)).

Step 1 : Define a NPA B accepting words of the form
α1u

1
0u

2
1α2u

1
3u

2
2α3u

1
0u

2
0α4u

1
0u

2
1α5 . . . such that

Ï α1α2α3α4α5 . . . has a run in A from an initial to a final configuration
Ï each u1v1u

2
v2 corresponds to the update performed by the run at that

position : (v1,v2) ⇒ u1v1u
2
v2

Ï B is of polynomial size in A

Step 2 : There is an existential Presburger formula ψ((yσ)σ∈Σ′) of size
polynomial in B defining the Parikh image of L(B). [Verma, et al. 05]

Step 3 : In NP [Scarpellini84], satisfiability test of

ψ((yσ)σ∈Σ′)∧φ(x1, . . . ,xn)∧
∧

1≤i≤dim
xi =

∑
v∈V

v .yui
v

Tree Transformations by means of VPT CAALM - Jan 2019 29 / 34

Some (Modest) Good News
Theorem
The non-emptiness problem for (one-way) VPPA and PPA is NP-complete.

Upperbound : let V be the values used for update in the PPA A

New alphabet Σ′ =Σ∪ (uiv) (update counter i by adding value v (v ∈V)).

Step 1 : Define a NPA B accepting words of the form
α1u

1
0u

2
1α2u

1
3u

2
2α3u

1
0u

2
0α4u

1
0u

2
1α5 . . . such that

Ï α1α2α3α4α5 . . . has a run in A from an initial to a final configuration
Ï each u1v1u

2
v2 corresponds to the update performed by the run at that

position : (v1,v2) ⇒ u1v1u
2
v2

Ï B is of polynomial size in A

Step 2 : There is an existential Presburger formula ψ((yσ)σ∈Σ′) of size
polynomial in B defining the Parikh image of L(B). [Verma, et al. 05]
Step 3 : In NP [Scarpellini84], satisfiability test of

ψ((yσ)σ∈Σ′)∧φ(x1, . . . ,xn)∧
∧

1≤i≤dim
xi =

∑
v∈V

v .yui
v

Tree Transformations by means of VPT CAALM - Jan 2019 29 / 34

Some (Modest) Good News

Lower bound : (hardness does not rely on the acceptance set, eg
Presburger satisfiability).

Tree Transformations by means of VPT CAALM - Jan 2019 30 / 34

Some (Modest) Good News

Lower bound : (hardness does not rely on the acceptance set, eg
Presburger satisfiability).
Reduction of the 2-partition problem :

I a finite set of natural numbers represented in binary.

Does there exists J ⊆ I such that ∑
e∈J

e = ∑
e∉J

e

Tree Transformations by means of VPT CAALM - Jan 2019 30 / 34

Some (Modest) Good News

Lower bound : (hardness does not rely on the acceptance set, eg
Presburger satisfiability).
Reduction of the 2-partition problem :

I a finite set of natural numbers represented in binary.

Does there exists J ⊆ I such that ∑
e∈J

e = ∑
e∉J

e

One dimension for J and one for I àJ.

Input words : T1v1L2v2T3v3T4v4L5v5 . . .

vk : representation of the unary encoding of the kth natural.

Ti : take the ith natural (in J) - Lj : leave the jth natural

vk is encoded as unun−1 . . .u1u0 where

uj = ε if the jth bit of vk is 0 and wj otherwise

recursively, w0 = 1 and wl = clwl−1rl clwl−1rl
and can be recognized by a small VPA.

Tree Transformations by means of VPT CAALM - Jan 2019 30 / 34

Some (Modest) Good News
Lower bound : (hardness does not rely on the acceptance set, eg
Presburger satisfiability).
Reduction of the 2-partition problem :

I a finite set of natural numbers represented in binary.

Does there exists J ⊆ I such that ∑
e∈J

e = ∑
e∉J

e

One dimension for J and one for I àJ.

Input words : T1v1L2v2T3v3T4v4L5v5 . . .

vk : representation of the unary encoding of the kth natural.

Ti : take the ith natural (in J) - Lj : leave the jth natural

vk is encoded as unun−1 . . .u1u0 where

uj = ε if the jth bit of vk is 0 and wj otherwise

recursively, w0 = 1 and wl = clwl−1rl clwl−1rl
and can be recognized by a small VPA.

Thus, holds even if the automata are deterministic, with a fixed dimension 2, tuples of values in
{0,1}2 and with a fixed Presburger formula (x1,x2)= x1 = x2

Tree Transformations by means of VPT CAALM - Jan 2019 30 / 34

Emptiness for single-use 2VPPA

Single-use 2VPPA : a position is visited only once per counter modifying
transition.

Tree Transformations by means of VPT CAALM - Jan 2019 31 / 34

Emptiness for single-use 2VPPA

Single-use 2VPPA : a position is visited only once per counter modifying
transition.

Proposition

For any single-use 2VPPA, there exists an equivalent VPPA of at most
exponential size.

Tree Transformations by means of VPT CAALM - Jan 2019 31 / 34

Emptiness for single-use 2VPPA
Single-use 2VPPA : a position is visited only once per counter modifying
transition.

Proposition

For any single-use 2VPPA, there exists an equivalent VPPA of at most
exponential size.

Proof Idea

Extends [Dartois, Filiot, Reynier, T. 16] following Sherpherson’s ideas (for FSA) on
traversals T.

((q,d)(q′,d ′)) ∈T (u) iff some run enters u by (q,d) and leaves it by (q′,d ′)

c u r

γ

γ

γ′
γ′

(q′,→)

(q′′,←)(q,→)

Tree Transformations by means of VPT CAALM - Jan 2019 31 / 34

Emptiness for single-use 2VPPA
Single-use 2VPPA : a position is visited only once per counter modifying
transition.

Proposition

For any single-use 2VPPA, there exists an equivalent VPPA of at most
exponential size.

Proof Idea

Extends [Dartois, Filiot, Reynier, T. 16] following Sherpherson’s ideas (for FSA) on
traversals T.

((q,d)(q′,d ′)) ∈T (u) iff some run enters u by (q,d) and leaves it by (q′,d ′)

Productive and Non-productive traversals form a finite algebra.

Consider possible decompositions of traversals ((q,→)(q′,←)) on c1rw2 into
productive traversals (finitely many as single-use) reachable from each other by
non-productive traversals.

Using commutativity of addition over Ndim, extract a VPA and a mapping λ

Tree Transformations by means of VPT CAALM - Jan 2019 31 / 34

Emptiness for single-use 2VPPA

Single-use 2VPPA : a position is visited only once per counter modifying
transition.

Proposition

For any single-use 2VPPA, there exists an equivalent VPPA of at most
exponential size.

Corollary

Emptiness for single-use 2VPPA is in NEXPtime.

Theorem
Emptiness for single-use 2VPPA is in NEXPtime-complete.

Tree Transformations by means of VPT CAALM - Jan 2019 31 / 34

Implied Results

For well-nestedness and functionality single-use 2VPT yields single-use
2VPPA

Proposition

For single-use 2VPT, well-nestedness and functionality are in NEXPtime.

Both known as EXPtime-hard.

Tree Transformations by means of VPT CAALM - Jan 2019 32 / 34

Back to tree-to-tree transformations
Consider the D2VPTsu defining the transformation with well-nested outputs

c1r1c2r2 . . .cnrn 7→ c1c2 . . .cnr1r2 . . .rn

ci and rn−i+1 match each other.

c1 r1 c2 r2 . . . cn−1 rn−1 cn rn

This matching relation is not MSO-definable

MSO[nw2nw] is strictly included into MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn)

MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn) is not closed by composition

A new question :

Decide MSO[nw2nw] amongst MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn) ?

Tree Transformations by means of VPT CAALM - Jan 2019 33 / 34

Back to tree-to-tree transformations
Consider the D2VPTsu defining the transformation with well-nested outputs

c1r1c2r2 . . .cnrn 7→ c1c2 . . .cnr1r2 . . .rn

ci and rn−i+1 match each other.

c1 r1 c2 r2 . . . cn−1 rn−1 cn rn

This matching relation is not MSO-definable

MSO[nw2nw] is strictly included into MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn)

MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn) is not closed by composition

A new question :

Decide MSO[nw2nw] amongst MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn) ?

Tree Transformations by means of VPT CAALM - Jan 2019 33 / 34

Back to tree-to-tree transformations
Consider the D2VPTsu defining the transformation with well-nested outputs

c1r1c2r2 . . .cnrn 7→ c1c2 . . .cnr1r2 . . .rn

ci and rn−i+1 match each other.

c1 r1 c2 r2 . . . cn−1 rn−1 cn rn

This matching relation is not MSO-definable

MSO[nw2nw] is strictly included into MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn)

MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn) is not closed by composition

A new question :

Decide MSO[nw2nw] amongst MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn) ?

Tree Transformations by means of VPT CAALM - Jan 2019 33 / 34

Back to tree-to-tree transformations
Consider the D2VPTsu defining the transformation with well-nested outputs

c1r1c2r2 . . .cnrn 7→ c1c2 . . .cnr1r2 . . .rn

ci and rn−i+1 match each other.

c1 r1 c2 r2 . . . cn−1 rn−1 cn rn

This matching relation is not MSO-definable

MSO[nw2nw] is strictly included into MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn)

MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn) is not closed by composition

A new question :

Decide MSO[nw2nw] amongst MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn) ?

Tree Transformations by means of VPT CAALM - Jan 2019 33 / 34

Back to tree-to-tree transformations
Consider the D2VPTsu defining the transformation with well-nested outputs

c1r1c2r2 . . .cnrn 7→ c1c2 . . .cnr1r2 . . .rn

ci and rn−i+1 match each other.

c1 r1 c2 r2 . . . cn−1 rn−1 cn rn

This matching relation is not MSO-definable

MSO[nw2nw] is strictly included into MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn)

MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn) is not closed by composition

A new question :

Decide MSO[nw2nw] amongst MSO[nw2w]∩ (Σ∗
wn →Σ∗

wn) ?
Tree Transformations by means of VPT CAALM - Jan 2019 33 / 34

Thank

you 7→

for

your attention

Tree Transformations by means of VPT CAALM - Jan 2019 34 / 34

