
Connected treewidth and
connected cops-and-robber game

–
Obstructions and algorithms

Christophe PAUL
(CNRS – Univ. Montpellier, LIRMM, France)

Joint work with I. Adler (University of Leeds, UK)
G. Mescoff (ENS Rennes, France)

D. Thilikos (CNRS – Univ. Montpellier, LIRMM, France)

CAALM Workshop, Chennai, January 25, 2019

A node search strategy

A search strategy is defined by a sequence of moves, each of these

I either add a searcher

I or remove a searcher

a b c

d e

f g

A node search strategy

A search strategy is defined by a sequence of moves, each of these

I either add a searcher

I or remove a searcher

a b c

d e

f g

〈{a}, . . . 〉

A node search strategy

A search strategy is defined by a sequence of moves, each of these

I either add a searcher

I or remove a searcher

a b c

d e

f g

〈{a}, {a, b}, . . . 〉

A node search strategy

A search strategy is defined by a sequence of moves, each of these

I either add a searcher

I or remove a searcher

a b c

d e

f g

〈{a}, {a, b}, {b}, . . . 〉

More formally, we define S = 〈S1, . . .Sr 〉 such that

I for all i ∈ [r], Si ⊆ V (G); (set of occupied positions)

I |S1| = 1;

I for all i ∈ [r − 1], |Si M Si−1| = 1.

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

???

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I

Lazy robber Agile robber

We define the set of free locations in the case of a lazy robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \Si)∪{v ∈ ccG−Si (u) | u ∈ Fi ∩ (Si \Si−1)}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

Lazy robber Agile robber

???

We define the set of free locations in the case of a agile robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \ Si) ∪ {v ∈ ccG−Si (u) | u ∈ Fi}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

Lazy robber Agile robber

We define the set of free locations in the case of a agile robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \ Si) ∪ {v ∈ ccG−Si (u) | u ∈ Fi}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

Lazy robber Agile robber

We define the set of free locations in the case of a agile robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \ Si) ∪ {v ∈ ccG−Si (u) | u ∈ Fi}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

Lazy robber Agile robber

We define the set of free locations in the case of a agile robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \ Si) ∪ {v ∈ ccG−Si (u) | u ∈ Fi}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

Lazy robber Agile robber

We define the set of free locations in the case of a agile robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \ Si) ∪ {v ∈ ccG−Si (u) | u ∈ Fi}

Node search against. . .

. . . an invisible robber, that can be

I lazy : he escapes (if possible) if a searcher is landing at his position

I agile : he can move (if possible) at any time

Lazy robber Agile robber

We define the set of free locations in the case of a agile robber :

I F1 = V (G) \ S1
I for all i > 2, Fi = (Fi−1 \ Si) ∪ {v ∈ ccG−Si (u) | u ∈ Fi}

Properties and cost of a node search strategy

A node search strategy S = 〈S1, . . .Sr 〉 is

I complete if Fr = ∅;
I monotone if for every i ∈ [r − 1], Fi+1 ⊂ Fi .

(there is no recontamination of a vertex)

Properties and cost of a node search strategy

A node search strategy S = 〈S1, . . .Sr 〉 is

I complete if Fr = ∅;
I monotone if for every i ∈ [r − 1], Fi+1 ⊂ Fi .

(there is no recontamination of a vertex)

We define

ans(G) = min{cost(S) | S is a complete strategy against an agile robber}

mans(G) = min{cost(S) | S is a complete monotone . . . agile robber}

lns(G) = min{cost(S) | S is a complete strategy against a lazy robber}

mlns(G) = min{cost(S) | S is a complete monotone . . . lazy robber}

Known relationship between parameters

Theorem.

I treewidth corresponds to lazy strategies [DKT97]

tw(G) = tvs(G) = mlns(G)− 1 = lns(G)− 1

I pathwidth corresponds to agile strategies [Kin92, KP95]

pw(G) = pvs(G) = mans(G)− 1 = ans(G)− 1

σ
i

S
(t)
σ (i) = {x ∈ V | σ(x) < i ∧ ∃(x , σi)-path with internal vertices in σ>i}

Known relationship between parameters

Theorem.

I treewidth corresponds to lazy strategies [DKT97]

tw(G) = tvs(G) = mlns(G)− 1 = lns(G)− 1

I pathwidth corresponds to agile strategies [Kin92, KP95]

pw(G) = pvs(G) = mans(G)− 1 = ans(G)− 1

σ
i

S
(t)
σ (i) = {x ∈ V | σ(x) < i ∧ ∃(x , σi)-path with internal vertices in σ>i}

tvs(G) = minσ maxi∈[n] |S (t)
σ (i)|

Known relationship between parameters

Theorem.

I treewidth corresponds to lazy strategies [DKT97]

tw(G) = tvs(G) = mlns(G)− 1 = lns(G)− 1

I pathwidth corresponds to agile strategies [Kin92, KP95]

pw(G) = pvs(G) = mans(G)− 1 = ans(G)− 1

σ
i

S
(p)
σ (i) = NG (σ>i)

pvs(G) = minσ maxi∈[n] |S (p)
σ (i)|

What about connected node search strategy ?

Hints : force to search the graph in a connected manner
 the guarded space Gi = Fi has to be connected

a b

c d

e f

What about connected node search strategy ?

Hints : force to search the graph in a connected manner
 the guarded space Gi = Fi has to be connected

a b

c d

e f

What about connected node search strategy ?

Hints : force to search the graph in a connected manner
 the guarded space Gi = Fi has to be connected

a b

c d

e f
This is not a connected search !

A node search strategy S = 〈S1, . . .Sr 〉 is

I connected if for every i ∈ [r], Gi is connected.

What about connected node search strategy ?

Hints : force to search the graph in a connected manner
 the guarded space Gi = Fi has to be connected

a b

c d

e f
This is not a connected search !

A node search strategy S = 〈S1, . . .Sr 〉 is

I connected if for every i ∈ [r], Gi is connected.

Why connected search ?

I from the theoretical view point very natural constraint

I from the application view point:

I cave exploration
I maintenance of communications between searcher
I . . .

What about connected node search strategy ?

Questions

I What is the price of connectivity ?

I Can the mclns(.) parameter be expressed in terms of a layout
parameter or a width parameter ?

I Can we characterize the set of graphs such that mclns(G) 6 k ?

I What is the complexity of deciding whether mclns(G) 6 k?

Results (1) – Parameter equivalence

Theorem 1 [Adler, P., Thilikos (grasta’17)]

ctw(G) = ctvs(G) = mclns(G)− 1

Results (1) – Parameter equivalence

Theorem 1 [Adler, P., Thilikos (grasta’17)]

ctw(G) = ctvs(G) = mclns(G)− 1

r

v

In a connected tree decomposition (T ,F),
there exists a root r such that for every node v ,
G [∪{Xu | u ∈ rTv}] is connected

In a connected path decomposition, r is an extremity of the path:
r v

Results (1) – Parameter equivalence

Theorem 1 [Adler, P., Thilikos (grasta’17)]

ctw(G) = ctvs(G) = mclns(G)− 1

Connected layout : for every i , there exists j < i such that σj ∈ N(σi)

σ
ij

Results (1) – Parameter equivalence

Theorem 1 [Adler, P., Thilikos (grasta’17)]

ctw(G) = ctvs(G) = mclns(G)− 1

Connected layout : for every i , there exists j < i such that σj ∈ N(σi)

σ
ij

ctvs(G) = minσ maxi∈[n] |S (t)
σ (i)|, with σ a connected layout

σ
i

S
(t)
σ (i) = {x ∈ V | σ(x) < i ∧ ∃(x , σi)-path with internal vertices in σ>i}

Results (1) – Parameter equivalence

Theorem 1 [Adler, P., Thilikos, grasta’17]

ctw(G) = ctvs(G) = mclns(G)− 1

Sketch of proof:

I ctvs(G) 6 mclns(G)− 1: search strategy S = 〈S1, . . .Sr 〉 layout σ

σ = vertices ordered by the first date they are occupied by a cops.

Results (1) – Parameter equivalence

Theorem 1 [Adler, P., Thilikos, grasta’17]

ctw(G) = ctvs(G) = mclns(G)− 1

Sketch of proof:

I ctvs(G) 6 mclns(G)− 1: search strategy S = 〈S1, . . .Sr 〉 layout σ

σ = vertices ordered by the first date they are occupied by a cops.

I ctw(G) 6 ctvs(G): connected layout σ tree-decomposition (T ,F)

F =
{
S
(t)
σ (i) ∪ {σi} | i ∈ [n]

}

σ
i

Results (1) – Parameter equivalence

Theorem 1 [Adler, P., Thilikos, grasta’17]

ctw(G) = ctvs(G) = mclns(G)− 1

Sketch of proof:

I ctvs(G) 6 mclns(G)− 1: search strategy S = 〈S1, . . .Sr 〉 layout σ

σ = vertices ordered by the first date they are occupied by a cops.

I ctw(G) 6 ctvs(G): connected layout σ tree-decomposition (T ,F)

F =
{
S
(t)
σ (i) ∪ {σi} | i ∈ [n]

}

σ
i

I mclns(G) 6 ctw(G) + 1: connected tree-decomposition (T ,F) σ

σ = vertex ordering resulting from a traversal of (T ,F) starting at the root

Contraction obstruction sets

Observation. The mclns parameter is closed under edge-contraction.

σ
i j

e

σ/e
i

ve

h

h

i ∈ S(t)
σ (h)

i ∈ S(t)
σ/e

(h)

Contraction obstruction sets

Observation. The mclns parameter is closed under edge-contraction.

σ
i j

e

σ/e
i

ve

h

h

i ∈ S(t)
σ (h)

i ∈ S(t)
σ/e

(h)

We define

I Ck =
{
G | mclns(G) 6 k

}
I obs(Ck) =

{
G | mclns(G) > k and ∀H,H ≺c G ,mclns(H) 6 k

}

Results (2) – Obstruction set for C2

Theorem 2 [Adler, P., Thilikos (grasta’17)]
The set of obstructions for C2 is obs(C2) = {K4} ∪ H1 ∪H2 ∪R where

H1 H2K4

I graphs of H1 ∪H2 are obtained by replacing thick subdivided edges
by multiple subdivided edges;

I graphs of R are obtained by gluing two graphs of R on their root
vertex.

Results (2) – Obstruction set for C2

Theorem 2 [Adler, P., Thilikos (grasta’17)]
The set of obstructions for C2 is obs(C2) = {K4} ∪ H1 ∪H2 ∪R where

H1 H2K4

I graphs of H1 ∪H2 are obtained by replacing thick subdivided edges
by multiple subdivided edges;

I graphs of R are obtained by gluing two graphs of R on their root
vertex.

Results (2) – Obstruction set for C2

Theorem 2 [Adler, P., Thilikos (grasta’17)]
The set of obstructions for C2 is obs(C2) = {K4} ∪ H1 ∪H2 ∪R where

H1 H2K4

R2
1 R3

1 R`
1

r r

R1

r r

R

I graphs of H1 ∪H2 are obtained by replacing thick subdivided edges
by multiple subdivided edges;

I graphs of R are obtained by gluing two graphs of R on their root
vertex.

Obstruction set for C2 – some lemmas

Lemma. Let G ∈ obs(Ck).

I If x is a cut-vertex, then G − x contains two connected components;

I G contains at most one cut-vertex.

xC1 C2

C3

C1 C2 C3

x y

Obstruction set for C2 – some lemmas

Lemma. Let G ∈ obs(Ck).

I If x is a cut-vertex, then G − x contains two connected components;

I G contains at most one cut-vertex.

xC1 C2

C3

C1 C2 C3

x y

Sketch of proof: Suppose G − x contains 3 connected components

As G/C1
, G/C2

, G/C3
are contractions:

1. ctvs(C1, x) 6 k or ctvs(C2, x) 6 k ;
2. ctvs(C2, x) 6 k or ctvs(C3, x) 6 k ;
3. ctvs(C3, x) 6 k or ctvs(C1, x) 6 k .

⇒ there exists σ such that ctvs(G , σ) 6 k : contradiction.

Obstruction set for C2 – some lemmas

Lemma. Let G ∈ obs(Ck).

I If x is a cut-vertex, then G − x contains two connected components;

I G contains at most one cut-vertex.

xC1 C2

C3

C1 C2 C3

x y

Twin-expansion Lemma.
Let x and y are two twin-vertices of degree 2 of a graph
G and G+ be the graph obtained from G by adding an
arbitrary number of twins of x and y . Then

G ∈ obs(Ck) if and only if G+ ∈ obs(Ck).

Obstruction set for C2 – some lemmas

Lemma. Let G ∈ obs(Ck).

I If x is a cut-vertex, then G − x contains two connected components;

I G contains at most one cut-vertex.

xC1 C2

C3

C1 C2 C3

x y

Lemma. For every k ≥ 1 and every connected graph G , G ∈ Ok is not a
biconnected graph iff G ∈ {A⊕ B | A,B ∈ R}.

R2
1 R3

1 R`
1

r r

R1

r r

R

Results (3) – Price of connectivity

Theorem [Derenioswki’12]
pw(G) 6 cpw(G) 6 2 · pw(G) + 1

r v

Results (3) – Price of connectivity

Theorem [Derenioswki’12]
pw(G) 6 cpw(G) 6 2 · pw(G) + 1

r v

Theorem [Adler, P., Thilikos, (grasta 2017)]
∀n ∈ N, ∃Gn such that mlns(Gn) = 3 and mclns(Gn) = 3 + n

and |V (Gn)| = O(2n). [Fraigniaud, Nisee’08]

a b

c

G1

a b

c

G1

G1 G1

G1

G1

G1

G1

G1

G2

G1

G1

G1

tw ctw # of levels # of parallel edges in highest level
G1 2 3 1 4
G2 2 4 2 5
G3 2 5 3 6
G4 2 6 4 7

Results (3) – Price of connectivity

Theorem [Derenioswki’12]
pw(G) 6 cpw(G) 6 2 · pw(G) + 1

r v

Theorem [Adler, P., Thilikos, (grasta 2017)]
∀n ∈ N, ∃Gn such that mlns(Gn) = 3 and mclns(Gn) = 3 + n

and |V (Gn)| = O(2n). [Fraigniaud, Nisee’08]

a b

c

G1

a b

c

G1

G1 G1

G1

G1

G1

G1

G1

G2

G1

G1

G1

tw ctw # of levels # of parallel edges in highest level
G1 2 3 1 4
G2 2 4 2 5
G3 2 5 3 6
G4 2 6 4 7

Computing the connected treewidth

 A graph H is a contraction of a graph G , denoted H 6c G ,
if H is obtained from G by a series of contractions.

 A graph H is a minor of a graph G , denoted H 6m G ,
if H is obtained from a subgraph G ′ of G by a series of contractions.

Computing the connected treewidth

 A graph H is a contraction of a graph G , denoted H 6c G ,
if H is obtained from G by a series of contractions.

 A graph H is a minor of a graph G , denoted H 6m G ,
if H is obtained from a subgraph G ′ of G by a series of contractions.

Theorem [Roberston & Seymour’84-04, Bodlaender’96]
There is an algorithm that, given a graph G and an integer k, decide
whether tw(G) 6 k in f (k) · nO(1) steps.

 tw(.) is a parameter closed under minor.
 graphs are well-quasi-ordered by the minor relation.
 minor testing can be performed in FPT-time.

Computing the connected treewidth

 A graph H is a contraction of a graph G , denoted H 6c G ,
if H is obtained from G by a series of contractions.

 A graph H is a minor of a graph G , denoted H 6m G ,
if H is obtained from a subgraph G ′ of G by a series of contractions.

Observation: Ck is closed under contraction not under minor !

I Can we decide whether ctw(G) 6 k in time

f (k) · nO(1) (FPT) or nf (k) (XP) ?

Theorem [Dereniowski, Osula, Rzazweski’18]
There is an algorithm that, given a graph G and an integer k, decides
whether cpw(G) 6 k in nO(k2) steps.

Computing the connected treewidth

 A graph H is a contraction of a graph G , denoted H 6c G ,
if H is obtained from G by a series of contractions.

 A graph H is a minor of a graph G , denoted H 6m G ,
if H is obtained from a subgraph G ′ of G by a series of contractions.

Observation: Ck is closed under contraction not under minor !

I Can we decide whether ctw(G) 6 k in time

f (k) · nO(1) (FPT) or nf (k) (XP) ?

Theorem [Dereniowski, Osula, Rzazweski’18]
There is an algorithm that, given a graph G and an integer k, decides
whether cpw(G) 6 k in nO(k2) steps.

Theorem [Kante, P., Thilikos (grasta 2018)]
There is an algorithm that, given a graph G and an integer k, decides
whether cpw(G) 6 k in f (k) · nO(1) steps.

(Connected) path-decomposition and pathwidth

A path-decomposition of a graph G is a sequence B = [B1, . . .Br] st.

I for every i ∈ [r], Bi ⊆ V (G);

I for every v ∈ V (G), ∃i , j ∈ [r] st. ∀i 6 k 6 j , v ∈ Bk .

r v

The path-decomposition B is connected if

I for every i ∈ [r], the subgraph G [∪j6iBj] is connected.

(Connected) path-decomposition and pathwidth

A path-decomposition of a graph G is a sequence B = [B1, . . .Br] st.

I for every i ∈ [r], Bi ⊆ V (G);

I for every v ∈ V (G), ∃i , j ∈ [r] st. ∀i 6 k 6 j , v ∈ Bk .

r v

The path-decomposition B is connected if

I for every i ∈ [r], the subgraph G [∪j6iBj] is connected.

Theorem [Derenioswki’12] pw(G) 6 cpw(G) 6 2 · pw(G) + 1

 we may assume that

I pw(G) 6 2k + 1.

I B = [B1, . . .Br] is a nice path-decomposition of with at most 2k + 1.

DP algorithm – connected path-decomposition of rooted
graphs

B1 B2 Bi Br

At step i , we aim at computing a connected path-decomposition
A = [A1, . . .Aq] of the rooted graph (Gi ,Bi) where Gi = G [∪j6iBj].

Observation: The graph Gi may not be connected.

DP algorithm – connected path-decomposition of rooted
graphs

B1 B2 Bi Br

At step i , we aim at computing a connected path-decomposition
A = [A1, . . .Aq] of the rooted graph (Gi ,Bi) where Gi = G [∪j6iBj].

Observation: The graph Gi may not be connected.

A path-decomposition Ai = [A1
i , . . .A

`
i] of a rooted graph (Gi ,Bi) is

connected if

I for every j ∈ [`], every connected

component of G j
i = G [∪k6jA

j
i]

intersects Bi .

A1
i A2

i Aj
i A`

i

C1

C2

C3

C4
Gj

i

DP algorithm – encoding

Ai = [A1
i , . . .A

j
i , . . .A

`
i] is a connected path-decomposition of (Gi ,Bi)

A1
i A2

i Bi
A`

i

Gi

Aj
i

DP algorithm – encoding

Ai = [A1
i , . . .A

j
i , . . .A

`
i] is a connected path-decomposition of (Gi ,Bi)

A1
i A2

i Bi
A`

i

Gi

Aj
i

B̃1
i

B̃2
i

B̃j
i

Each bag Aj
i is represented by a basic triple

t̃ ji = (B̃ j
i = Bi ∩ Aj

i , C̃ji , z ji = |Aj
i \ Bi |)

DP algorithm – encoding

Ai = [A1
i , . . .A

j
i , . . .A

`
i] is a connected path-decomposition of (Gi ,Bi)

A1
i A2

i Bi
A`

i

Gi

Aj
i

B̃1
i

B̃2
i

B̃j
i

Gj
i

Each bag Aj
i is represented by a basic triple

t̃ ji = (B̃ j
i = Bi ∩ Aj

i , C̃ji , z ji = |Aj
i \ Bi |)

where C̃ j
i is a partition of V j

i such that every part X is the intersection of

Bi with a connected component of G j
i .

DP algorithm – encoding

Observation: The size of a basic triple is O(pw(G)).
But ` can be arbitrarily large.

DP algorithm – encoding

Observation: The size of a basic triple is O(pw(G)).
But ` can be arbitrarily large.

 we need to compress the sequence of basic triples [t̃1i , . . . , t̃
`
i].

z4 z5 z6

(B4
i , C

4
i , Z

4
i = 〈z4, z5, z6〉)

DP algorithm – encoding

Observation: The size of a basic triple is O(pw(G)).
But ` can be arbitrarily large.

 we need to compress the sequence of basic triples [t̃1i , . . . , t̃
`
i].

z4 z5 z6

(B4
i , C

4
i , Z

4
i = 〈z4, z5, z6〉)

 Each sequence Z j
i of integers in [1, k] will be represented by its

characteristic sequence of size O(k). [Bodlaender & Kloks, 1996]

DP algorithm – encoding

z4 z5 z6

(B4
i , C

4
i , Z

4
i = 〈z4, z5, z6〉)

Lemma [Representative sequence]
The size of the representative sequence for the path-decomposition
[A1

i , . . .A
`
i] of (Gi ,Bi) is O(pw(G)2).

DP algorithm – encoding

z4 z5 z6

(B4
i , C

4
i , Z

4
i = 〈z4, z5, z6〉)

Lemma [Representative sequence]
The size of the representative sequence for the path-decomposition
[A1

i , . . .A
`
i] of (Gi ,Bi) is O(pw(G)2).

Lemma [Congruency]
If two boundaried graphs (G1,B) and (G2,B) have the same
representative sequence, then for every boundaried graph (H,B)

cpw((G1,B)⊕ (H,B)) 6 k ⇔ cpw((G2,B)⊕ (H,B)) 6 k

DP algorithm

 Build the set of characteristic sequence for (Gi+1,Bi+1) using the one
of (Gi ,Bi)

I Introduce node Bi+1 = Bi ∪ {vinsert}
I Forget node Bi = Bi+1 ∪ {vforget}

DP algorithm

 Build the set of characteristic sequence for (Gi+1,Bi+1) using the one
of (Gi ,Bi)

I Introduce node Bi+1 = Bi ∪ {vinsert}
I Forget node Bi = Bi+1 ∪ {vforget}

Theorem [Kanté, P. Thilikos]

Given a graph G , we can decide if cpw(G) 6 k in time 2O(k2) · n.

Conclusion

Open problems

I What is the complexity of deciding whether ctw(G) 6 k ?

 Can it be solved in FPT time, or even XP time ?
 Or provide an hardness proof.

I What is the complexity of deciding whether ctw(G) 6 k when
parameterized by tw(G) ? (assuming a positive answer to the
previous question)

 Can it be solved in FPT time, or even XP time ?
 Or provide an hardness proof.

I Identify problems that are hard with respect to tw(.) but not with
respect to ctw(.).

I Describe the set of obstructions for k > 3.

Conclusion

Open problems

I What is the complexity of deciding whether ctw(G) 6 k ?

 Can it be solved in FPT time, or even XP time ?
 Or provide an hardness proof.

I What is the complexity of deciding whether ctw(G) 6 k when
parameterized by tw(G) ? (assuming a positive answer to the
previous question)

 Can it be solved in FPT time, or even XP time ?
 Or provide an hardness proof.

Theorem [Mescoff, P., Thilikos (grasta 2018)]
If G is a series-parallel graph (i.e. tw(G) = 2),

then we can decide if ctw(G) 6 k in time nO(1).

I Identify problems that are hard with respect to tw(.) but not with
respect to ctw(.).

I Describe the set of obstructions for k > 3.

Conclusion

Open problems

I What is the complexity of deciding whether ctw(G) 6 k ?

 Can it be solved in FPT time, or even XP time ?
 Or provide an hardness proof.

I What is the complexity of deciding whether ctw(G) 6 k when
parameterized by tw(G) ? (assuming a positive answer to the
previous question)

 Can it be solved in FPT time, or even XP time ?
 Or provide an hardness proof.

Theorem [Mescoff, P., Thilikos (grasta 2018)]
If G is a series-parallel graph (i.e. tw(G) = 2),

then we can decide if ctw(G) 6 k in time nO(1).

I Identify problems that are hard with respect to tw(.) but not with
respect to ctw(.).

I Describe the set of obstructions for k > 3.

Conclusion – connected treewidth

I [P. Fraigniaud, N. Nisse, LATIN’06]

 To each edge eT of the tree-decomposition we associate two
graphs G eT

1 and G eT
2 that need to be connected.

I [P. Jégou, C. Terrioux, Constraints’17], [Diestel, Combinatorica’17]

 every bag of the tree decomposition (T ,F) induces a connected
subgraph

I [IA, Constraints] : efficient heuristics based on the structure of
the constraint network to fasten backtracking strategies;

I [Graph theory] : duality theorem, relation to graph
hyperbolicity.

Thank to the organizers !

