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A node search strategy

A search strategy is defined by a sequence of moves, each of these
» either add a searcher

> or remove a searcher

d e
({a};{a, b}, {b},...) a4 ¢
f g
More formally, we define S = (Sy,...S,) such that
> forall i e[r], Si C V(G); (set of occupied positions)

> |5 =1,
» forallic[r—1],|S A Si_1| =1.
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Properties and cost of a node search strategy

A node search strategy S = (51,...5,) is
» complete if F, = {;

> monotone if for every i € [r — 1], Fi11 C F;.
(there is no recontamination of a vertex)

We define
ans(G) = min{cost(S) | S is a complete strategy against an agile robber}

mans(G) = min{cost(S) | S is a complete monotone ... agile robber}

Ins(G) = min{cost(S) | S is a complete strategy against a lazy robber}

mins(G) = min{cost(S) | S is a complete monotone ... lazy robber}
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Theorem.
> treewidth corresponds to lazy strategies [DKT97]
tw(G) = tvs(G) = mins(G) — 1 =Ins(G) — 1
o e O e o o e o o e o o o

7

5((:)(/) = {x € V| o(x) < iA3(x,0)-path with internal vertices in o}



Known relationship between parameters

Theorem.
> treewidth corresponds to lazy strategies [DKT97]
tw(G) = tvs(G) = mins(G) — 1 =Ins(G) — 1
o e O [ ] [ ] e o o [ ]

7
S(St)(i) = {x € V| o(x) < i A3(x,0;)-path with internal vertices in o~;}

tvs(G) = min, maxiegy |8 (7)|



Known relationship between parameters

Theorem.
> treewidth corresponds to lazy strategies [DKT97]
tw(G) = tvs(G) = mins(G) — 1 =Ins(G) — 1
> pathwidth corresponds to agile strategies [Kin92, KP95]
pw(G) = pvs(G) = mans(G) — 1 = ans(G) — 1
o e O e o o o [ ] e o

7
SPUi) = Ne(o51)

pvs(G) = min, maxic( |SP (i)
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What about connected node search strategy 7
Hints : force to search the graph in a connected manner
~~ the guarded space G; = F; has to be connected
This is not a connected search !

A node search strategy S = (51,...5,) is

> connected if for every i € [r], G, is connected.

’Why connected search ?‘

» from the theoretical view point ~~ very natural constraint
> from the application view point:

» cave exploration
» maintenance of communications between searcher
> ..



What about connected node search strategy 7

Questions

v

What is the price of connectivity ?

v

Can the mclns(.) parameter be expressed in terms of a layout
parameter or a width parameter 7

v

Can we characterize the set of graphs such that mclns(G) < k ?

v

What is the complexity of deciding whether mclns(G) < k?
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Theorem 1 [Adler, P., Thilikos (GRASTA'17)]
ctw(G) = ctvs(G) = mclns(G) — 1

In a connected tree decomposition (T, F),
there exists a root r such that for every node v,
G|U{X, | u € rTv}] is connected

In a connected path decomposition, r is an extremity of the path:

S el
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c e o & e o v o o o o o o o
) t

ctvs(G) = min, maxic[q] |5,§t)(i)|, with o a connected layout

o L] L] L] L] L] L] L] L]

Sgt)(i) ={xeV|a(x)<inI(x, &,-)—path with internal vertices in o}
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Results (1) — Parameter equivalence

Theorem 1 [Adler, P., Thilikos, GRASTA'17]
ctw(G) = ctvs(G) = mclns(G) — 1

Sketch of proof:
» ctvs(G) < mclns(G) — 1: search strategy S = (S1,...5,) ~ layout o

o = vertices ordered by the first date they are occupied by a cops.

» ctw(G) < ctvs(G): connected layout o ~~ tree-decomposition (T, F)

f:{sf,’-‘)(i)u{g,-} | ie[n]}

o e o [ ) [ ) e o o [ )
i

» mclns(G) < ctw(G) + 1: connected tree-decomposition (T, F) ~ o

o = vertex ordering resulting from a traversal of (T, F) starting at the root
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Observation. The mclns parameter is closed under edge-contraction.
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Contraction obstruction sets

Observation. The mclns parameter is closed under edge-contraction.

€

c e e e o o ° ° ° o o
i h j
i€ SW(n)
Ve
) @ @ e o o ° ° ° o o
i h
zeSf,’/{(h)
We define

> Cc ={G | mclns(G) < k}
> obs(Cx) = {G | mclns(G) > k and YH,H <. G, mcIns(H) < k}
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The set of obstructions for C; is obs(Cy) = {Ky} U H1 U Ho UR where
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Theorem 2 [Adler, P., Thilikos (GRASTA'17)]
The set of obstructions for C; is obs(Cy) = {Ky} U H1 U Ho UR where

Ky Hy Ho

> graphs of H; UH, are obtained by replacing thick subdivided edges
by multiple subdivided edges;



Results (2) — Obstruction set for C,

Theorem 2 [Adler, P., Thilikos (GRASTA'17)]
The set of obstructions for Cy is obs(C2) = {Ky} U H1 U Ha UR where

Ry R? R} R!

» graphs of H; U H, are obtained by replacing thick subdivided edges
by multiple subdivided edges;

» graphs of R are obtained by gluing two graphs of R on their root
vertex.
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Lemma. Let G € obs(Cx).
> If x is a cut-vertex, then G — x contains two connected components;

» G contains at most one cut-vertex.
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Obstruction set for C» — some lemmas

Lemma. Let G € obs(Cx).

> If x is a cut-vertex, then G — x contains two connected components;

» G contains at most one cut-vertex.

X
b D

Sketch of proof: Suppose G — x contains 3 connected components
As G/¢,, G/c,, G/c, are contractions:

1. ctvs(Cy, x) < k or ctvs( Gy, x) < k;
2. ctvs((y, x) < k or ctvs(Gs, x) < k;
3. ctvs(Gs, x) < k or ctvs(Cy, x) < k.

= there exists o such that ctvs(G, o) < k: contradiction.



Obstruction set for C» — some lemmas

Lemma. Let G € obs(Cx).
> If x is a cut-vertex, then G — x contains two connected components;

» G contains at most one cut-vertex.

X
b D

Twin-expansion Lemma.

Let x and y are two twin-vertices of degree 2 of a graph
G and G be the graph obtained from G by adding an
arbitrary number of twins of x and y. Then

G € obs(Cx) if and only if GT € obs(Cx).



Obstruction set for C» — some lemmas

Lemma. Let G € obs(Cx).
> If x is a cut-vertex, then G — x contains two connected components;

» G contains at most one cut-vertex.

Lemma. For every k > 1 and every connected graph G, G € O is not a
biconnected graph iff G e {A® B | A,B € R}.

R
Ry R? R} R
T T i T
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Theorem [Adler, P., Thilikos, (GRASTA 2017)]
Vn € N, 3G, such that mins(G,) = 3 and mclns(G,) =3+ n
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tw ctw # of levels # of parallel edges in highest level
Gy 2 3 1 4
Go 2 4 2 5
G3 2 5 3 6
Gy 2 6 4 7




Results (3) — Price of connectivity

Theorem [Derenioswki'12] v

pw(G) < cpw(G) < 2-pw(G) +1 ® P D D&

Theorem [Adler, P., Thilikos, (GRASTA 2017)]
Vn € N, 3G, such that mins(G,) = 3 and mclns(G,) =3+ n

and |V(G,)| = O(2). [Fraigniaud, Nisee'08]

Gy
a b
tw ctw # of levels # of parallel edges in highest level
G 2 3 1 7
G 2 7 2 5
G3 2 5 3 6
[ 2 6 7 7




Computing the connected treewidth

~ A graph H is a contraction of a graph G, denoted H <. G,
if H is obtained from G by a series of contractions.

~+ A graph H is a minor of a graph G, denoted H <, G,
if H is obtained from a subgraph G’ of G by a series of contractions.



Computing the connected treewidth

~ A graph H is a contraction of a graph G, denoted H <. G,
if H is obtained from G by a series of contractions.

~+ A graph H is a minor of a graph G, denoted H <, G,
if H is obtained from a subgraph G’ of G by a series of contractions.

Theorem [Roberston & Seymour'84-04, Bodlaender'96]
There is an algorithm that, given a graph G and an integer k, decide
whether tw(G) < k in (k) - n°®) steps.

~ tw(.) is a parameter closed under minor.
~ graphs are well-quasi-ordered by the minor relation.
~» minor testing can be performed in FPT-time.
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Computing the connected treewidth

~ A graph H is a contraction of a graph G, denoted H <. G,
if H is obtained from G by a series of contractions.

~+ A graph H is a minor of a graph G, denoted H <, G,
if H is obtained from a subgraph G’ of G by a series of contractions.

Observation: Cy is closed under contraction not under minor !

> Can we decide whether ctw(G) < k in time
f(k)-n® (FPT) or nf(K (XP)?

Theorem [Dereniowski, Osula, Rzazweski'18]
There is an algorithm that, given a graph G and an integer k, decides
whether cpw(G) < k in n9() steps.

Theorem [Kante, P., Thilikos (GRASTA 2018)]
There is an algorithm that, given a graph G and an integer k, decides
whether cpw(G) < k in f(k) - n°1) steps.



(Connected) path-decomposition and pathwidth

A path-decomposition of a graph G is a sequence B = [By,... B,] st.
> for every i € [r], Bi C V(G);
> for every v € V(G), 3i,j € [r] st. Vi < k<, v € Bx.

® P SO Opiut

The path-decomposition B is connected if

» for every i € [r], the subgraph G[Uj<;B;] is connected.



(Connected) path-decomposition and pathwidth

A path-decomposition of a graph G is a sequence B = [By,... B,] st.
> for every i € [r], Bi C V(G);
> for every v € V(G), 3i,j € [r] st. Vi < k<, v € Bx.

S &

The path-decomposition B is connected if

» for every i € [r], the subgraph G[Uj<;B;] is connected.

Theorem [Derenioswki'12] pw(G) < cpw(G) < 2-pw(G) +1
~> we may assume that
> pw(G) <2k + 1.
> B =[By,...B]is a nice path-decomposition of with at most 2k + 1.



DP algorithm — connected path-decomposition of rooted
graphs

At step i, we aim at computing a connected path-decomposition
A =[A1,...Ag] of the rooted graph (G;, B;) where G; = G[Uj<;B)].

Observation: The graph G; may not be connected.



DP algorithm — connected path-decomposition of rooted
graphs

At step i, we aim at computing a connected path-decomposition
= [A1,...Aq] of the rooted graph (G;, B;) where G; = G[Uj<Bj].

Observation: The graph G; may not be connected.

A path-decomposition A; = [A},... Af] of a rooted graph (G;, B-) is
connected if

» for every j € [{], every connected D D D [
component of G/ = G[Uxg;A']
intersects B;.
Q&@ &



DP algorithm — encoding

A=A ... Al Af] is a connected path-decomposition of (G;, B;)

Al

7

inumnin-i



DP algorithm — encoding

=[A}, ... AJ,:, ... Af] is a connected path-decomposition of (G;, B;)

B;

Each bag AJ: is represented by a basic trlple
=B =BnA , ¢ Z=|K\B)



DP algorithm — encoding

= [A},. ... Af] is a connected path-decomposition of (G;, B;)
Al B,
o o0
Each bag AJ: is represented by a basic triple ‘ _
H=(Bi=BnA , ¢ . Z=|4\B|

where C{ is a partition of \/,-j such that every part X is the intersection of
B; with a connected component of G/.
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But ¢ can be arbitrarily large.
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DP algorithm — encoding

Observation: The size of a basic triple is O(pw(G)).
But ¢ can be arbitrarily large.

~~ we need to compress the sequence of basic triples [}, ..., £].

i

1]
[ N R L
(Bz47 0147 Zz4 <Z47 25, ZG>)

~ Each sequence Z{ of integers in [1, k] will be represented by its
characteristic sequence of size O(k).  [Bodlaender & Kloks, 1996]
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(Bf» C,'ly Zf = (24, Z5, Z(s))

Lemma [Representative sequence]
The size of the representative sequence for the path-decomposition
[AL ... Al of (G, Bi) is O(pw(G)?).



DP algorithm — encoding

(Bf» C,'ly Zf = (24, Z5, Z(s))

Lemma [Representative sequence]

The size of the representative sequence for the path-decomposition
[AL ... Al of (G, Bi) is O(pw(G)?).

Lemma [Congruency]

If two boundaried graphs (Gi, B) and (G, B) have the same

representative sequence, then for every boundaried graph (H, B)

cow((G1. B) & (M. B)) < k < cpw((Gz, B) @ (H, B)) < k



DP algorithm

~~ Build the set of characteristic sequence for (G;11, Bj11) using the one
of (G,', B,)

> Introduce node Bi11 = Bi U {Vinsert }

> Forget node Bi = Bjy1 U {Viorget }



DP algorithm

~~ Build the set of characteristic sequence for (G;11, Bj11) using the one
of (G,', B,)

> Introduce node Bi11 = Bi U {Vinsert }

> Forget node Bi = Bjy1 U {Viorget }

Theorem [Kanté, P. Thilikos]
Given a graph G, we can decide if cpw(G) < k in time 20(K) . .



Conclusion

Open problems
> What is the complexity of deciding whether ctw(G) < k ?

~~+ Can it be solved in FPT time, or even XP time ?
~~ Or provide an hardness proof.

» What is the complexity of deciding whether ctw(G) < k when
parameterized by tw(G) ? (assuming a positive answer to the
previous question)

~~ Can it be solved in FPT time, or even XP time 7
~» Or provide an hardness proof.
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Open problems
> What is the complexity of deciding whether ctw(G) < k ?

~~+ Can it be solved in FPT time, or even XP time ?
~~ Or provide an hardness proof.

» What is the complexity of deciding whether ctw(G) < k when
parameterized by tw(G) ? (assuming a positive answer to the
previous question)

~~ Can it be solved in FPT time, or even XP time 7
~» Or provide an hardness proof.

Theorem [Mescoff, P., Thilikos (GRASTA 2018)]
If G is a series-parallel graph (i.e. tw(G) = 2),

then we can decide if ctw(G) < k in time n(%).



Conclusion

Open problems
> What is the complexity of deciding whether ctw(G) < k ?

~~+ Can it be solved in FPT time, or even XP time ?
~~ Or provide an hardness proof.

» What is the complexity of deciding whether ctw(G) < k when
parameterized by tw(G) ? (assuming a positive answer to the
previous question)

~~ Can it be solved in FPT time, or even XP time 7
~» Or provide an hardness proof.

Theorem [Mescoff, P., Thilikos (GRASTA 2018)]
If G is a series-parallel graph (i.e. tw(G) = 2),
then we can decide if ctw(G) < k in time n(%).

> Identify problems that are hard with respect to tw(.) but not with
respect to ctw(.).

» Describe the set of obstructions for kK > 3.



Conclusion — connected treewidth

> [P. Fraigniaud, N. Nisse, LATIN’06]

~ To each edge et of the tree-decomposition we associate two
graphs G;7 and G,7 that need to be connected.

» [P. Jégou, C. Terrioux, Constraints'17], [Diestel, Combinatorica'17]
~~ every bag of the tree decomposition (T, F) induces a connected
subgraph

» [IA, Constraints] : efficient heuristics based on the structure of
the constraint network to fasten backtracking strategies;

» [Graph theory]| : duality theorem, relation to graph
hyperbolicity.



Thank to the organizers ! ‘




