Connected treewidth and connected cops-and-robber game

Obstructions and algorithms

Christophe PAUL (CNRS – Univ. Montpellier, LIRMM, France)

Joint work with **I. Adler** (University of Leeds, UK) **G. Mescoff** (ENS Rennes, France) **D. Thilikos** (CNRS – Univ. Montpellier, LIRMM, France)

CAALM Workshop, Chennai, January 25, 2019

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A search strategy is defined by a sequence of moves, each of these

either add a searcher

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

A search strategy is defined by a sequence of moves, each of these

either add a searcher

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A search strategy is defined by a sequence of moves, each of these

either add a searcher

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A search strategy is defined by a sequence of moves, each of these

- either add a searcher
- or remove a searcher

More formally, we define $S = \langle S_1, \dots, S_r \rangle$ such that

▶ for all $i \in [r]$, $S_i \subseteq V(G)$; (set of occupied positions)

►
$$|S_1| = 1;$$

• for all
$$i \in [r-1]$$
, $|S_i \vartriangle S_{i-1}| = 1$.

►

... an invisible robber, that can be

lazy : he escapes (if possible) if a searcher is landing at his position

Lazy robber

Agile robber

We define the set of free locations in the case of a lazy robber :

$$\blacktriangleright F_1 = V(G) \setminus S_1$$

▶ for all $i \ge 2$, $F_i = (F_{i-1} \setminus S_i) \cup \{v \in cc_{G-S_i}(u) \mid u \in F_i \cap (S_i \setminus S_{i-1})\}$

►

... an invisible robber, that can be

lazy : he escapes (if possible) if a searcher is landing at his position

We define the set of free locations in the case of a lazy robber :

$$\blacktriangleright F_1 = V(G) \setminus S_1$$

▶ for all $i \ge 2$, $F_i = (F_{i-1} \setminus S_i) \cup \{v \in cc_{G-S_i}(u) \mid u \in F_i \cap (S_i \setminus S_{i-1})\}$

►

... an invisible robber, that can be

lazy : he escapes (if possible) if a searcher is landing at his position

We define the set of free locations in the case of a lazy robber :

$$\blacktriangleright F_1 = V(G) \setminus S_1$$

▶ for all $i \ge 2$, $F_i = (F_{i-1} \setminus S_i) \cup \{v \in cc_{G-S_i}(u) \mid u \in F_i \cap (S_i \setminus S_{i-1})\}$

►

... an invisible robber, that can be

lazy : he escapes (if possible) if a searcher is landing at his position

We define the set of free locations in the case of a lazy robber :

$$\blacktriangleright F_1 = V(G) \setminus S_1$$

▶ for all $i \ge 2$, $F_i = (F_{i-1} \setminus S_i) \cup \{v \in cc_{G-S_i}(u) \mid u \in F_i \cap (S_i \setminus S_{i-1})\}$

►

... an invisible robber, that can be

lazy : he escapes (if possible) if a searcher is landing at his position

We define the set of free locations in the case of a lazy robber :

$$\blacktriangleright F_1 = V(G) \setminus S_1$$

▶ for all $i \ge 2$, $F_i = (F_{i-1} \setminus S_i) \cup \{v \in cc_{G-S_i}(u) \mid u \in F_i \cap (S_i \setminus S_{i-1})\}$

►

... an invisible robber, that can be

lazy : he escapes (if possible) if a searcher is landing at his position

We define the set of free locations in the case of a lazy robber :

$$\blacktriangleright F_1 = V(G) \setminus S_1$$

▶ for all $i \ge 2$, $F_i = (F_{i-1} \setminus S_i) \cup \{v \in cc_{G-S_i}(u) \mid u \in F_i \cap (S_i \setminus S_{i-1})\}$

►

... an invisible robber, that can be

lazy : he escapes (if possible) if a searcher is landing at his position

We define the set of free locations in the case of a lazy robber :

$$\blacktriangleright F_1 = V(G) \setminus S_1$$

▶ for all $i \ge 2$, $F_i = (F_{i-1} \setminus S_i) \cup \{v \in cc_{G-S_i}(u) \mid u \in F_i \cap (S_i \setminus S_{i-1})\}$

►

... an invisible robber, that can be

lazy : he escapes (if possible) if a searcher is landing at his position

We define the set of free locations in the case of a lazy robber :

$$\blacktriangleright F_1 = V(G) \setminus S_1$$

▶ for all $i \ge 2$, $F_i = (F_{i-1} \setminus S_i) \cup \{v \in cc_{G-S_i}(u) \mid u \in F_i \cap (S_i \setminus S_{i-1})\}$

►

... an invisible robber, that can be

lazy : he escapes (if possible) if a searcher is landing at his position

We define the set of free locations in the case of a lazy robber :

$$\blacktriangleright F_1 = V(G) \setminus S_1$$

▶ for all $i \ge 2$, $F_i = (F_{i-1} \setminus S_i) \cup \{v \in cc_{G-S_i}(u) \mid u \in F_i \cap (S_i \setminus S_{i-1})\}$

►

... an invisible robber, that can be

lazy : he escapes (if possible) if a searcher is landing at his position

We define the set of free locations in the case of a lazy robber :

$$\blacktriangleright F_1 = V(G) \setminus S_1$$

▶ for all $i \ge 2$, $F_i = (F_{i-1} \setminus S_i) \cup \{v \in cc_{G-S_i}(u) \mid u \in F_i \cap (S_i \setminus S_{i-1})\}$

►

... an invisible robber, that can be

lazy : he escapes (if possible) if a searcher is landing at his position

We define the set of free locations in the case of a lazy robber :

$$\blacktriangleright F_1 = V(G) \setminus S_1$$

▶ for all $i \ge 2$, $F_i = (F_{i-1} \setminus S_i) \cup \{v \in cc_{G-S_i}(u) \mid u \in F_i \cap (S_i \setminus S_{i-1})\}$

►

... an invisible robber, that can be

lazy : he escapes (if possible) if a searcher is landing at his position

We define the set of free locations in the case of a lazy robber :

$$\blacktriangleright F_1 = V(G) \setminus S_1$$

▶ for all $i \ge 2$, $F_i = (F_{i-1} \setminus S_i) \cup \{v \in cc_{G-S_i}(u) \mid u \in F_i \cap (S_i \setminus S_{i-1})\}$

►

... an invisible robber, that can be

lazy : he escapes (if possible) if a searcher is landing at his position

We define the set of free locations in the case of a lazy robber :

$$\blacktriangleright F_1 = V(G) \setminus S_1$$

▶ for all $i \ge 2$, $F_i = (F_{i-1} \setminus S_i) \cup \{v \in cc_{G-S_i}(u) \mid u \in F_i \cap (S_i \setminus S_{i-1})\}$

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position
- agile : he can move (if possible) at any time

We define the set of free locations in the case of a agile robber :

 $\blacktriangleright F_1 = V(G) \setminus S_1$

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position
- agile : he can move (if possible) at any time

We define the set of free locations in the case of a agile robber :

 $\blacktriangleright F_1 = V(G) \setminus S_1$

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position
- agile : he can move (if possible) at any time

We define the set of free locations in the case of a agile robber :

 $\blacktriangleright F_1 = V(G) \setminus S_1$

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position
- agile : he can move (if possible) at any time

We define the set of free locations in the case of a agile robber :

 $\blacktriangleright F_1 = V(G) \setminus S_1$

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position
- agile : he can move (if possible) at any time

We define the set of free locations in the case of a agile robber :

 $\blacktriangleright F_1 = V(G) \setminus S_1$

... an invisible robber, that can be

- lazy : he escapes (if possible) if a searcher is landing at his position
- agile : he can move (if possible) at any time

We define the set of free locations in the case of a agile robber :

 $\blacktriangleright F_1 = V(G) \setminus S_1$

Properties and cost of a node search strategy

A node search strategy $\mathcal{S} = \langle S_1, \dots S_r \rangle$ is

- complete if $F_r = \emptyset$;
- ▶ monotone if for every $i \in [r-1]$, $F_{i+1} \subset F_i$. (there is no recontamination of a vertex)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Properties and cost of a node search strategy

A node search strategy $\mathcal{S} = \langle S_1, \dots S_r \rangle$ is

- complete if $F_r = \emptyset$;
- ▶ monotone if for every $i \in [r-1]$, $F_{i+1} \subset F_i$. (there is no recontamination of a vertex)

We define

 $ans(G) = min\{cost(S) \mid S \text{ is a complete strategy against an agile robber}\}$ $mans(G) = min\{cost(S) \mid S \text{ is a complete monotone } \dots agile \text{ robber}\}$

 $lns(G) = min\{cost(S) \mid S \text{ is a complete strategy against a lazy robber}\}$ $mlns(G) = min\{cost(S) \mid S \text{ is a complete monotone } \dots \text{ lazy robber}\}$

Known relationship between parameters

Theorem.

treewidth corresponds to lazy strategies

$$\mathsf{tw}(G) = \mathsf{tvs}(G) = \mathsf{mlns}(G) - 1 = \mathsf{lns}(G) - 1$$

 $S_{\sigma}^{(t)}(i) = \{x \in V \mid \sigma(x) < i \land \exists (x, \sigma_i) \text{-path with internal vertices in } \sigma_{>i}\}$

・ロト ・ 日・ ・ 田・ ・ 日・ うらぐ

[DKT97]

Known relationship between parameters

Theorem.

treewidth corresponds to lazy strategies

$$\mathsf{tw}(G) = \mathsf{tvs}(G) = \mathsf{mlns}(G) - 1 = \mathsf{lns}(G) - 1$$

 $S_{\sigma}^{(t)}(i) = \{x \in V \mid \sigma(x) < i \land \exists (x, \sigma_i) \text{-path with internal vertices in } \sigma_{>i} \}$ $\mathsf{tvs}(G) = \min_{\sigma} \max_{i \in [n]} |S_{\sigma}^{(t)}(i)|$

・ロット 本語 と 本語 と 本語 や キロ と

[DKT97]

Known relationship between parameters

Theorem.

treewidth corresponds to lazy strategies [DKT97]

$$\mathsf{tw}(G) = \mathsf{tvs}(G) = \mathsf{mIns}(G) - 1 = \mathsf{Ins}(G) - 1$$

pathwidth corresponds to agile strategies [Kin92, KP95]

$$\mathsf{pw}(\mathsf{G}) = \mathsf{pvs}(\mathsf{G}) = \mathsf{mans}(\mathsf{G}) - 1 = \mathsf{ans}(\mathsf{G}) - 1$$

Hints : force to search the graph in a connected manner \rightsquigarrow the guarded space $G_i = \overline{F_i}$ has to be connected

Hints : force to search the graph in a connected manner \rightsquigarrow the guarded space $G_i = \overline{F_i}$ has to be connected

Hints : force to search the graph in a connected manner \rightsquigarrow the guarded space $G_i = \overline{F_i}$ has to be connected

This is not a connected search !

A node search strategy $\mathcal{S} = \langle \mathcal{S}_1, \dots \mathcal{S}_r \rangle$ is

• connected if for every $i \in [r]$, \mathcal{G}_i is connected.

Hints : force to search the graph in a connected manner \rightsquigarrow the guarded space $G_i = \overline{F_i}$ has to be connected

This is not a connected search !

A node search strategy $\mathcal{S} = \langle \mathcal{S}_1, \dots \mathcal{S}_r \rangle$ is

• connected if for every $i \in [r]$, \mathcal{G}_i is connected.

Why connected search ?

- \blacktriangleright from the theoretical view point \leadsto very natural constraint
- from the application view point:
 - cave exploration
 - maintenance of communications between searcher

▶ ...

Questions

- What is the price of connectivity ?
- Can the mclns(.) parameter be expressed in terms of a layout parameter or a width parameter ?
- Can we characterize the set of graphs such that $mclns(G) \leq k$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is the complexity of deciding whether mclns(G) ≤ k?

Results (1) – Parameter equivalence

Theorem 1 [Adler, P., Thilikos (GRASTA'17)] ctw(G) = ctvs(G) = mclns(G) - 1

Results (1) – Parameter equivalence

In a connected path decomposition, r is an extremity of the path:

Theorem 1 [Adler, P., Thilikos (GRASTA'17)] ctw(G) = ctvs(G) = mclns(G) - 1

Connected layout : for every *i*, there exists j < i such that $\sigma_i \in N(\sigma_i)$

Theorem 1 [Adler, P., Thilikos (GRASTA'17)] ctw(G) = ctvs(G) = mclns(G) - 1

Connected layout : for every *i*, there exists j < i such that $\sigma_i \in N(\sigma_i)$

 $\mathsf{ctvs}(G) = \min_{\sigma} \max_{i \in [n]} |S_{\sigma}^{(t)}(i)|$, with σ a connected layout

Theorem 1 [Adler, P., Thilikos, GRASTA'17] ctw(G) = ctvs(G) = mclns(G) - 1

Sketch of proof:

▶ $\mathsf{ctvs}(G) \leq \mathsf{mclns}(G) - 1$: search strategy $S = \langle S_1, \dots S_r \rangle \rightsquigarrow \mathsf{layout} \ \sigma$

 σ = vertices ordered by the first date they are occupied by a cops.

Theorem 1 [Adler, P., Thilikos, GRASTA'17] ctw(G) = ctvs(G) = mclns(G) - 1

Sketch of proof:

► ctvs(G) ≤ mclns(G) - 1: search strategy S = ⟨S₁,...S_r⟩ → layout σ
σ = vertices ordered by the first date they are occupied by a cops.

▶ $\mathsf{ctw}(G) \leq \mathsf{ctvs}(G)$: connected layout $\sigma \rightsquigarrow$ tree-decomposition (T, \mathcal{F})

$$\mathcal{F} = \left\{ S_{\sigma}^{(t)}(i) \cup \{\sigma_i\} \mid i \in [n] \right\}$$

Theorem 1 [Adler, P., Thilikos, GRASTA'17] ctw(G) = ctvs(G) = mclns(G) - 1

Sketch of proof:

► ctvs(G) ≤ mclns(G) - 1: search strategy S = ⟨S₁,...S_r⟩ → layout σ
σ = vertices ordered by the first date they are occupied by a cops.

▶ $\mathsf{ctw}(G) \leq \mathsf{ctvs}(G)$: connected layout $\sigma \rightsquigarrow$ tree-decomposition $(\mathcal{T}, \mathcal{F})$

$$\mathcal{F} = \left\{ S_{\sigma}^{(t)}(i) \cup \{\sigma_i\} \mid i \in [n] \right\}$$

▶ mclns(G) ≤ ctw(G) + 1: connected tree-decomposition $(T, F) \rightsquigarrow \sigma$

 σ = vertex ordering resulting from a traversal of (T, \mathcal{F}) starting at the root

Contraction obstruction sets

Observation. The mclns parameter is closed under edge-contraction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Contraction obstruction sets

Observation. The mclns parameter is closed under edge-contraction.

We define

Results (2) – Obstruction set for C_2

Theorem 2 [Adler, P., Thilikos (GRASTA'17)] The set of obstructions for C_2 is **obs** $(C_2) = \{K_4\} \cup H_1 \cup H_2 \cup R$ where

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Results (2) – Obstruction set for C_2

Theorem 2 [Adler, P., Thilikos (GRASTA'17)] The set of obstructions for C_2 is **obs** $(C_2) = \{K_4\} \cup H_1 \cup H_2 \cup R$ where

▶ graphs of H₁ ∪ H₂ are obtained by replacing thick subdivided edges by multiple subdivided edges;

Results (2) – Obstruction set for C_2

Theorem 2 [Adler, P., Thilikos (GRASTA'17)] The set of obstructions for C_2 is **obs** $(C_2) = \{K_4\} \cup H_1 \cup H_2 \cup R$ where

- ▶ graphs of H₁ ∪ H₂ are obtained by replacing thick subdivided edges by multiple subdivided edges;
- ► graphs of R are obtained by gluing two graphs of R on their root vertex.

Lemma. Let $G \in \mathbf{obs}(\mathcal{C}_k)$.

- If x is a cut-vertex, then G x contains two connected components;
- ► G contains at most one cut-vertex.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lemma. Let $G \in \mathbf{obs}(\mathcal{C}_k)$.

- If x is a cut-vertex, then G x contains two connected components;
- ► G contains at most one cut-vertex.

Sketch of proof: Suppose G - x contains 3 connected components

As $G_{/C_1}$, $G_{/C_2}$, $G_{/C_3}$ are contractions:

- 1. $\mathsf{ctvs}(C_1, x) \leqslant k \text{ or } \mathsf{ctvs}(C_2, x) \leqslant k;$
- 2. $\mathsf{ctvs}(C_2, x) \leqslant k \text{ or } \mathsf{ctvs}(C_3, x) \leqslant k;$
- 3. $\mathsf{ctvs}(C_3, x) \leq k \text{ or } \mathsf{ctvs}(C_1, x) \leq k$.

⇒ there exists σ such that $\mathbf{ctvs}(G, \sigma) \leq k$: contradiction.

Lemma. Let $G \in \mathbf{obs}(\mathcal{C}_k)$.

- If x is a cut-vertex, then G x contains two connected components;
- G contains at most one cut-vertex.

Twin-expansion Lemma.

Let x and y are two twin-vertices of degree 2 of a graph G and G^+ be the graph obtained from G by adding an arbitrary number of twins of x and y. Then

 $G \in \mathbf{obs}(\mathcal{C}_k)$ if and only if $G^+ \in \mathbf{obs}(\mathcal{C}_k)$.

Lemma. Let $G \in \mathbf{obs}(\mathcal{C}_k)$.

- If x is a cut-vertex, then G x contains two connected components;
- ► G contains at most one cut-vertex.

Lemma. For every $k \ge 1$ and every connected graph G, $G \in \mathcal{O}_k$ is not a biconnected graph iff $G \in \{\mathbf{A} \oplus \mathbf{B} \mid \mathbf{A}, \mathbf{B} \in \mathcal{R}\}$.

Results (3) – Price of connectivity

Theorem [Derenioswki'12] $pw(G) \leq cpw(G) \leq 2 \cdot pw(G) + 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Results (3) - Price of connectivity

Theorem [Derenioswki'12] $pw(G) \leq cpw(G) \leq 2 \cdot pw(G) + 1$

Theorem [Adler, P., Thilikos, (GRASTA 2017)] $\forall n \in \mathbb{N}, \exists G_n \text{ such that } \mathbf{mIns}(G_n) = 3 \text{ and } \mathbf{mcIns}(G_n) = 3 + n$

	tw	ctw	# of levels	# of parallel edges in highest level
G1	2	3	1	4
G ₂	2	4	2	5
G3	2	5	3	6
G4	2	6	4	7

Results (3) - Price of connectivity

Theorem [Adler, P., Thilikos, (GRASTA 2017)] $\forall n \in \mathbb{N}, \exists G_n \text{ such that } \mathsf{mIns}(G_n) = 3 \text{ and } \mathsf{mcIns}(G_n) = 3 + n$ and $|V(G_n)| = O(2^n)$. [Fraigniaud, Nisee'08]

	tw	ctw	# of levels	# of parallel edges in highest level
G1	2	3	1	4
G ₂	2	4	2	5
G3	2	5	3	6
G4	2	6	4	7

→ A graph *H* is a contraction of a graph *G*, denoted $H \leq_c G$, if *H* is obtained from *G* by a series of contractions.

→ A graph H is a minor of a graph G, denoted $H \leq_m G$, if H is obtained from a subgraph G' of G by a series of contractions.

→ A graph *H* is a contraction of a graph *G*, denoted $H \leq_c G$, if *H* is obtained from *G* by a series of contractions.

→ A graph H is a minor of a graph G, denoted $H \leq_m G$, if H is obtained from a subgraph G' of G by a series of contractions.

Theorem [Roberston & Seymour'84-04, Bodlaender'96] There is an algorithm that, given a graph G and an integer k, decide whether $\mathbf{tw}(G) \leq k$ in $f(k) \cdot n^{O(1)}$ steps.

→ tw(.) is a parameter closed under minor.
 → graphs are well-quasi-ordered by the minor relation.
 → minor testing can be performed in FPT-time.

→ A graph *H* is a contraction of a graph *G*, denoted $H \leq_c G$, if *H* is obtained from *G* by a series of contractions.

→ A graph H is a minor of a graph G, denoted $H \leq_m G$, if H is obtained from a subgraph G' of G by a series of contractions.

Observation: C_k is closed under contraction not under minor !

► Can we decide whether $\mathbf{ctw}(G) \leq k$ in time $f(k) \cdot n^{O(1)}$ (FPT) or $n^{f(k)}$ (XP) ?

Theorem [Dereniowski, Osula, Rzazweski'18] There is an algorithm that, given a graph G and an integer k, decides whether $\mathbf{cpw}(G) \leq k$ in $n^{O(k^2)}$ steps.

→ A graph *H* is a contraction of a graph *G*, denoted $H \leq_c G$, if *H* is obtained from *G* by a series of contractions.

→ A graph H is a minor of a graph G, denoted $H \leq_m G$, if H is obtained from a subgraph G' of G by a series of contractions.

Observation: C_k is closed under contraction not under minor !

► Can we decide whether $\mathbf{ctw}(G) \leq k$ in time $f(k) \cdot n^{O(1)}$ (FPT) or $n^{f(k)}$ (XP) ?

Theorem [Dereniowski, Osula, Rzazweski'18] There is an algorithm that, given a graph G and an integer k, decides whether $\mathbf{cpw}(G) \leq k$ in $n^{O(k^2)}$ steps.

Theorem [Kante, P., Thilikos (GRASTA 2018)] There is an algorithm that, given a graph G and an integer k, decides whether $\mathbf{cpw}(G) \leq k$ in $f(k) \cdot n^{O(1)}$ steps.

(Connected) path-decomposition and pathwidth

A path-decomposition of a graph G is a sequence $\mathcal{B} = [B_1, \dots B_r]$ st.

• for every
$$i \in [r]$$
, $B_i \subseteq V(G)$;

▶ for every $v \in V(G)$, $\exists i, j \in [r]$ st. $\forall i \leq k \leq j, v \in B_k$.

The path-decomposition $\ensuremath{\mathcal{B}}$ is connected if

▶ for every $i \in [r]$, the subgraph $G[\cup_{j \leq i} B_j]$ is connected.

(Connected) path-decomposition and pathwidth

A path-decomposition of a graph G is a sequence $\mathcal{B} = [B_1, \dots B_r]$ st.

• for every
$$i \in [r]$$
, $B_i \subseteq V(G)$;

▶ for every $v \in V(G)$, $\exists i, j \in [r]$ st. $\forall i \leq k \leq j, v \in B_k$.

The path-decomposition $\mathcal B$ is connected if

▶ for every $i \in [r]$, the subgraph $G[\cup_{j \leq i} B_j]$ is connected.

Theorem [Derenioswki'12] $\mathbf{pw}(G) \leq \mathbf{cpw}(G) \leq 2 \cdot \mathbf{pw}(G) + 1$

 \rightsquigarrow we may assume that

•
$$\mathbf{pw}(G) \leq 2k+1$$
.

• $\mathcal{B} = [B_1, \dots, B_r]$ is a nice path-decomposition of with at most 2k + 1.

DP algorithm – connected path-decomposition of rooted graphs

At step *i*, we aim at computing a connected path-decomposition $\mathcal{A} = [A_1, \dots, A_q]$ of the rooted graph (G_i, B_i) where $G_i = G[\cup_{j \leq i} B_j]$.

Observation: The graph G_i may not be connected.

DP algorithm – connected path-decomposition of rooted graphs

At step *i*, we aim at computing a connected path-decomposition $\mathcal{A} = [A_1, \dots, A_q]$ of the rooted graph (G_i, B_i) where $G_i = G[\cup_{j \leq i} B_j]$.

Observation: The graph G_i may not be connected.

A path-decomposition $A_i = [A_i^1, \dots, A_i^\ell]$ of a rooted graph (G_i, B_i) is connected if

For every j ∈ [ℓ], every connected component of G_i^j = G[∪_{k≤j}A_i^j] intersects B_i.

 $\mathcal{A}_i = [A_i^1, \dots A_i^j, \dots A_i^\ell]$ is a connected path-decomposition of (G_i, B_i)

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ⊙

 $\mathcal{A}_i = [A_i^1, \dots A_i^j, \dots A_i^\ell]$ is a connected path-decomposition of (G_i, B_i)

Each bag A_i^j is represented by a basic triple $\tilde{t}_i^j = (\tilde{B}_i^j = B_i \cap A_i^j \ , \ \tilde{C}_i^j \ , \ z_i^j = |A_i^j \setminus B_i|)$

 $\mathcal{A}_i = [A_i^1, \dots A_i^j, \dots A_i^\ell]$ is a connected path-decomposition of (G_i, B_i)

Each bag A_i^j is represented by a basic triple $\tilde{t}_i^j = (\tilde{B}_i^j = B_i \cap A_i^j \ , \ \tilde{C}_i^j \ , \ z_i^j = |A_i^j \setminus B_i|)$

where \tilde{C}_i^j is a partition of V_i^j such that every part X is the intersection of B_i with a connected component of G_i^j .

Observation: The size of a basic triple is O(pw(G)). But ℓ can be arbitrarily large.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Observation: The size of a basic triple is $O(\mathbf{pw}(G))$. But ℓ can be arbitrarily large.

 \rightsquigarrow we need to compress the sequence of basic triples $[\tilde{t}_i^1, \ldots, \tilde{t}_i^\ell]$.

Observation: The size of a basic triple is $O(\mathbf{pw}(G))$. But ℓ can be arbitrarily large.

 \rightsquigarrow we need to compress the sequence of basic triples $[\tilde{t}_i^1, \ldots, \tilde{t}_i^\ell]$.

 \rightarrow Each sequence Z_i^j of integers in [1, k] will be represented by its characteristic sequence of size O(k). [Bodlaender & Kloks, 1996]

Lemma [Representative sequence]

The size of the representative sequence for the path-decomposition $[A_i^1, \ldots A_i^\ell]$ of (G_i, B_i) is $O(\mathbf{pw}(G)^2)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Lemma [Representative sequence]

The size of the representative sequence for the path-decomposition $[A_i^1, \ldots A_i^\ell]$ of (G_i, B_i) is $O(\mathbf{pw}(G)^2)$.

Lemma [Congruency]

If two boundaried graphs (G_1, B) and (G_2, B) have the same representative sequence, then for every boundaried graph (H, B)

 $\mathsf{cpw}((G_1, B) \oplus (H, B)) \leqslant k \Leftrightarrow \mathsf{cpw}((G_2, B) \oplus (H, B)) \leqslant k$

DP algorithm

 \rightsquigarrow Build the set of characteristic sequence for (G_{i+1}, B_{i+1}) using the one of (G_i, B_i)

- ▶ Introduce node $B_{i+1} = B_i \cup \{v_{insert}\}$
- Forget node $B_i = B_{i+1} \cup \{v_{forget}\}$

DP algorithm

 \rightsquigarrow Build the set of characteristic sequence for (G_{i+1}, B_{i+1}) using the one of (G_i, B_i)

- Introduce node $B_{i+1} = B_i \cup \{v_{insert}\}$
- Forget node $B_i = B_{i+1} \cup \{v_{forget}\}$

Theorem [Kanté, P. Thilikos]

Given a graph G, we can decide if $\mathbf{cpw}(G) \leq k$ in time $2^{O(k^2)} \cdot n$.

Conclusion

Open problems

• What is the complexity of deciding whether $\mathbf{ctw}(G) \leq k$?

 \rightsquigarrow Can it be solved in FPT time, or even XP time ? \rightsquigarrow Or provide an hardness proof.

What is the complexity of deciding whether ctw(G) ≤ k when parameterized by tw(G) ? (assuming a positive answer to the previous question)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 \rightsquigarrow Can it be solved in FPT time, or even XP time ?

 \rightsquigarrow Or provide an hardness proof.
Conclusion

Open problems

• What is the complexity of deciding whether $\mathbf{ctw}(G) \leq k$?

 \rightsquigarrow Can it be solved in FPT time, or even XP time ? \rightsquigarrow Or provide an hardness proof.

What is the complexity of deciding whether ctw(G) ≤ k when parameterized by tw(G) ? (assuming a positive answer to the previous question)

 \rightsquigarrow Can it be solved in FPT time, or even XP time ? \rightsquigarrow Or provide an hardness proof.

Theorem [Mescoff, P., Thilikos (GRASTA 2018)] If G is a series-parallel graph (i.e. $\mathbf{tw}(G) = 2$), then we can decide if $\mathbf{ctw}(G) \leq k$ in time $n^{O(1)}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion

Open problems

• What is the complexity of deciding whether $\mathbf{ctw}(G) \leq k$?

 \rightsquigarrow Can it be solved in FPT time, or even XP time ? \rightsquigarrow Or provide an hardness proof.

What is the complexity of deciding whether ctw(G) ≤ k when parameterized by tw(G) ? (assuming a positive answer to the previous question)

 \rightsquigarrow Can it be solved in FPT time, or even XP time ? \rightsquigarrow Or provide an hardness proof.

Theorem [Mescoff, P., Thilikos (GRASTA 2018)] If G is a series-parallel graph (i.e. $\mathbf{tw}(G) = 2$), then we can decide if $\mathbf{ctw}(G) \leq k$ in time $n^{O(1)}$.

Identify problems that are hard with respect to tw(.) but not with respect to ctw(.).

• Describe the set of obstructions for $k \ge 3$.

Conclusion - connected treewidth

[P. Fraigniaud, N. Nisse, LATIN'06]

 \rightsquigarrow To each edge e_T of the tree-decomposition we associate two graphs $G_1^{e_T}$ and $G_2^{e_T}$ that need to be connected.

- [P. Jégou, C. Terrioux, Constraints'17], [Diestel, Combinatorica'17]
 → every bag of the tree decomposition (*T*, *F*) induces a connected subgraph
 - [IA, Constraints] : efficient heuristics based on the structure of the constraint network to fasten backtracking strategies;

 [Graph theory] : duality theorem, relation to graph hyperbolicity.

Thank to the organizers !

<ロト <回ト < 注ト < 注ト

э