Using Tree-width for the
verification of infinite
state systems

C. Aiswarya - CMI, UMI RelLaX

CAALM - 2019

Tree-interpretation

Interpret a graph in a tree

AN

Model checking

w5 a»

Vxdydz E(x,) AE(X,2) Ax # Yy

Can be done efficiently if the tree-width is bounded.

Fixed-parameter tractable.

Model checking

Model checking

m

F

Model checking

Vxdydz Ex, Y AEX,2)) AX F Y

Model checking

Vxdydz Ex, Y AEX,2)) AX F Y

Every run of the system satisfies the property.

Model checking

Vxdydz Ex, Y AEX,2)) AX F Y

AA NN
.&f Vxdydz E(xx,) AE(X, 2) AXFy

Model checking

; ! | Vx3dy3dz Ex,VY)VANEX,2)AX F# Y

~ Model checking
F Vx3dy3dz E(x,y)) NE(X,2) Ax #y

TERVNN
AA
A

n

."‘

i \ N l/
|

Vx3dydz EG,VY)ANEX,2)AX F#y
Can be done efficiently if
the tree-width is bounded.

Fixed-parameter tractable.

Verification

Understanding behaviours as graphs...

Pushdown systems Multi-pushdown systems

Message passing systems Message passing pushdowns

Understanding behaviours as graphs...

Pushdown systems
(recursive programs)

func f1
{while <true>
{call f1 OR
a OR
exit;}
return; }

fl

fl

Understanding behaviours as graphs...

Pushdown systems
(recursive programs)

func f1l
{while <true>
{call f1 OR
a OR
exit;}
return; }

A

Nested word
= word + binary nesting relation

Understanding behaviours as graphs...

Pushdown systems

Multi-pushdown systems

Nested Words

(AlurMadhusudan2006)

Understanding behaviours as graphs...

Multi-pushdown systems

(Concurrent Recursive Programs)

func f1 func £2 func £3
{while <true> {while <true> {while <true>
e {call f1l OR {call £2 OR {call £3 OR
——J a OR —LF» a OR a OR £3
exit;} exit;} exit;}
return;} £l return;} t2 return;} £3

7T — N

Multiply Nested word (MNW)
= word + multiple nesting relation

Understanding behaviours as graphs...

Pushdown systems Multi-pushdown systems

Nested Words Multiply Nested Words

(AlurMadhusudan2006)

Understanding behaviours as graphs...

Message passing systems

L e

Understanding behaviours as graphs...

Message passing systems

d.d.7R a.ds!R

a, d2'® d, d4?®

Understanding behaviours as graphs...

Message passing systems

a—>=Q—>pHh—>=C—>

b—a—>C—pd—>cC

d,

Understanding behaviours as graphs...

Pushdown systems Multi-pushdown systems

Nested Words Multiply Nested Words

(AlurMadhusudan2006)

Communicating Finite State Machines .
Message passing pushdowns

Message Sequence Charts

Understanding behaviours as graphs...

Pushdown systems Multi-pushdown systems

Nested Words

(AlurMadhusudan2006)

iC _...y Finite State Machines .
Message passing pushdowns

Message Sequence Charts

Model checking

Vxdydz Ex, Y AEX,2)) AX F Y

AA NN
.&f Vxdydz E(xx,) AE(X, 2) AXFy

Understanding specification over graphs...

ient
the correct cl < >

ama @}Cb@am /fm

'btcblalilablblaal
Vo, y (

alx — 1) ANx>yA
2,2 (22 Nz<a <

Behaviours must be graphs and
specifications should be over graphs...

Reasoning About Distributed Systems: WYSIWYG*

Aiswarya Cyriac! and Paul Gastin?

1 Uppsala University, Sweden
aiswarya.cyriac@it.uu.se
2 LSV, ENS Cachan, CNRS, INRIA, France

paul.gastin@lsv.ens-cachan.fr

—— Abstract

There are two schools of thought on reasoning about distributed systems: one following inter-
leaving-based semantics, and one following partial-order/graph-based semantics. This paper
compares these two approaches and argues in favour of the latter. An introductory treatment of
the split-width technique is also provided.

1998 ACM Subject Classification F.1.1 [Computation by Abstract Devices]: Models of Compu-
tation, F.3.1 [Logics and Meanings of Programs|: Specifying and Verifying and Reasoning about
Programs

Keywords and phrases Verification of distributed systems, Communicating recursive programs,
Partial order/graph semantics, Split-width and tree interpretation

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2014.11

Model checking

Vxdydz Ex, Y AEX,2)) AX F Y

AA NN
.&f Vxdydz E(xx,) AE(X, 2) AXFy

Model checking

| Vxdydz E(xx,) AE(X, 2) AXFy

under-approximation

All behaviours

Tree-width as under-approximation

allows interpretation In trees...

Tree-width as under-approximation

allows interpretation In trees...

Tree-width as under-approximation

allows interpretation In trees...

turing powerful models -
unbounded tree-width

N\,

turing powerful models -
unbounded tree-width

N\ 7\,

bounded tree-width
under-approximation

t of behaviours with tree-width at most k

All behaviours

verification results with
bounded tree-width

Non-emptiness checking : ExpTime Complete

Temporal logic model checking: ExpTime Complete

MSO model checking: non-elementary

proof idea = move to the world of trees

get tree automata to recognize all
tree interpretations

proof idea = move to the world of trees

get tree automata to recognize all
tree interpretations

get tree automata to recognize all
trees representing valid runs in the
system

proof idea = move to the world of trees

get tree automata to recognize all
tree interpretations

get tree automata to recognize all
trees representing valid runs in the
system

get tree automata for trees
representing runs violating the
property

MSO decidability of Multi-Pushdown Systems

The Tree Width of Auxiliary Storage via Split-Width*

P. Madhusudan

University of Illinois at Urbana-Champaign, USA
madhu@illinois.edu

Abstract

‘We propose a generalization of results on the decidability of empti-
ness for several restricted classes of sequential and distributed au-
tomata with auxiliary storage (stacks, queues) that have recently
been proved. Our generalization relies on reducing emptiness of
these automata to finite-state graph automata (without storage)
restricted to monadic second-order (MSO) definable graphs of
bounded tree-width, where the graph structure encodes the mech-
anism provided by the auxiliary storage. Our results outline a uni-
form mechanism to derive emptiness algorithms for automata, ex-
plaining and simplifying several existing results, as well as proving
new decidability results.

Categories and Subject Descriptors F.1.1 [Theory of Computa-
tion]: Models of Computation: Automata; D.2.4 [Software Engi-
neering]: Software/Program Verification: Model checking; F.4.3
[Theory of Computation]: Formal Languages: Decision problems

General Terms Algorithms, Reliability, Theory, Verification

Keywords model checking, automata, decision procedures, bounded
tree-width

1. Introduction

Several classes of automata with auxiliary storage have been de-
fined over the years that have a decidable emptiness problem. Clas-
sic models like pushdown automata utilizing a stack have a decid-
able emptiness problem [14], and several new models like restricted
classes of multi-stack pushdown automata, automata with queues,
and automata with both stacks and queues, have been proved de-
cidable recently [8, 15, 17, 22].

The decidability of emptiness of these automata has often been
motivated for model-checking systems. Software models can be
captured using automata with auxiliary storage, as stacks can
model the control recursion in programs while queues model FIFO
communication between processes. In abstraction-based model-
checking, data domains get abstracted from programs, resulting in
automata models (e.g., the SLAM tool builds pushdown automata
models using predicate abstraction [7], and the GETAFIX tool
model-checks both single-stack and multi-stack automata mod-
els [18, 19]). The emptiness problem for these automata is the most
relevant problem as it directly corresponds to checking reachability
of an error state.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’11, January 26-28, 2011, Austin, Texas, USA.

Copyright © 2011 ACM 978-1-4503-0490-0/11/01. .. $10.00

Gennaro Parlato
LIAFA, CNRS and University of Paris Diderot, France. Aiswarya Cyriac!, Paul Gastin', and K. Narayan Kumar
gennaro@liafa.jussieu.fr

2

1 LSV, ENS Cachan, CNRS & INRIA, France
{cyriac,gastin}@lsv.ens-cachan.fr
2 Chennai Mathematical Institute, India

However, the various identified decidable restrictions on these kumar@cmi.ac.in

automata are, for the most part, awkward in their definitions—
e.g. emptiness of multi-stack pushdown automata where pushes
to any stack is allowed at any time, but popping is restricted to
the first non-empty stack is decidable! [8]. Yet, relaxing these

definitions to more natural ones seems to either destroy decidability Abstract. Multi-threaded programs with recursion are naturally mod-
or their power. It is hence natural to ask: why do these automata eled as multi-pushdown systems. The behaviors are represented as mul-
have decidable emptiness problems? Is there a common underlying . . R . ..
principle that explains their decidability? tiply nested words (MNWs), which are words enriched with additional
We propose, in this paper, a general criterion that uniformly binary relations for each stack matching a push operation with the cor-

explains many such results— several restricted uses of auxiliary
storage are decidable because they can be simulated by graph
automata working on graphs that capture the storage as well as
their sequential or distributed nature, and are also of bounded tree-
width.

More precisely, we can show, using generalizations of known
results on the decidability of satisfiability of monadic second-order
logic (MSO) on bounded tree-width graphs [9, 23], that graph au-
tomata on MSO-definable graphs of bounded tree-width are decid-

responding pop operation. Any MNW can be decomposed by two basic

able. Graph automata [24] are finite-state automata (without auxil- Verify:ing Communicating MU.].t i-pUShdown
iary storage) that accept or reject graphs using filings of the graph . . . *
using states, where the restrictions on tiling determine the graphs SystemS vVia Spllt— "‘/ ldth

that get accepted. The general decidability of emptiness of graph
automata on MSO-definable graphs follows since the existence of
acceptable tilings is MSO-definable.
We proceed to show that several sequential/distributed automata C. Aiswaryal, Paul Gastin2, and K. N arayan Kumar®
with an auxiliary storage (we consider stacks and queues only in
this paper), can be realized as graph automata working on single

1 . .
or multiple directed paths augmented with special edges to capture Uppsala University, Sweden
the mechanism of the storage. Intuitively, a symbol that gets stored aiswarya.cyriac@Qit.uu.se
in a stack/queue and later gets retrieved can be simulated by a 2 SV. ENS Cachan. CNRS & INRIA. France
)) 9

graph automaton working on a graph where there is a special edge .
between the point where the symbol gets stored to the point where gastin@lsv.ens-cachan.fr
it gets retrieved. A graph automaton can retrieve the symbol at the 3 Chennai Mathematical Institute, India
retrieval point by using an appropriate tiling of this special edge. kumar@cmi.ac.in

The idea of converting automata with storage to graph automata
without storage but working on specialized graphs is that it allows
us to examine the complexity of storage using the structure of
the graph that simulates it. We show that many automata with a

. Abstract. Communicating multi-pushdown systems model networks of
tractable emptiness problem can be converted to graph automata

working on MSO definable graphs of bounded tree-width, from multi-threaded recursive programs communicating via reliable FIFO
which decidability of their emptiness follows. channels. We extend the notion of split-width [8] to this setting, improv-
We prove the simulation of the following classes of automata ing and simplifying the earlier definition. Split-width, while having the

ith ili t b h aut t ki MSO-
Zvelﬁnai‘lebloaﬁdsdotr;%mZthgéisphzu omata working on same power of clique-/tree-width, gives a divide-and-conquer technique
to prove the bound of a class, thanks to the two basic operations, shuffle
- Multi-stack pushdown automata with bounded context-switching: and merge, of the split-width algebra. We illustrate this technique on ex-

This is the class of multi-stack automata where each computa- amples. We also obtain simple, uniform and optimal decision procedures

tion of the automaton can be divided into k stages, where in each : . . . s
stage the automaton touches only one stack (proved decidable first for various verification problems parametrised by split-width.

in [22]). We show that they can be simulated by graph automata on
graphs of tree-width O(k).

k

what do bounded tree-
width look like?

Bounded channel size

Existentially bounded [Genestetal.,]

Acyclic Architectures [Genest et al.,Clemente et al.]
Bounded context switching [LaTorre et al.]
Bounded context switching [Qadeer,Rehof]
Bounded phase [LaTorre et al]

Bounded scope [LaTorre et al]

Priority ordering [Atig et al. Breveligiri et al, Saivasan et al.]

*list not exhaustive!!

bounded context

bounded scope : inside every curved edge bounded context

bounded phase

7T — N

Existentially bounded:
at least one linearization where the channel size is bounded

7

proof idea = move to the world of trees

get tree automata to recognize all
tree interpretations

get tree automata to recognize all
trees representing valid runs in the
system

get tree automata for trees
representing runs violating the
property

get tree automata for the under-
approximation

stem

lly bounded

complete..

If an under-approximation gives decidability for
MSO, then it has bounded tree-width

More results

7

N

Handle timing constraints| .
[Aks:hay, Krishna, Gastin, [Handle unbounded \
llias Sarkar, Sparsa /| ‘
Roychowdhury] / | number of processes |

!

[Fortin, Gastin]

N\
= /f’ = -
g
| 7

Tree - Iinterpretations

More results

| “Handle pushdown wit

=
N

lnumerical values and gap-| andle timing constraints
order constraints | [Akshay, Krishna, Gastin, unbounded
“ llias Sarkar, Sparsa ‘ |

[Abdulla, A, Atig] jof processes

!

Roychowdhury]

~ [Fortin, Gastin]

Tree - Iinterpretations

From a tree-automata over \
Interpretations is there a
translation to system?

Tree - interpretations

