
Using Tree-width for the
verification of infinite

state systems

C. Aiswarya - CMI, UMI ReLaX

CAALM - 2019

�1

Tree-interpretation
Interpret a graph in a tree

Model checking

⊧ ∀x ∃y ∃z E(x, y) ∧ E(x, z) ∧ x ≠ y

fixed

Can be done efficiently if the tree-width is bounded.

Fixed-parameter tractable.

input

Model checking

Model checking

⊧
inputinput

System Property

Model checking
inputinput

∀x ∃y ∃z E(x, y) ∧ E(x, z) ∧ x ≠ y

Model checking
inputinput

∀x ∃y ∃z E(x, y) ∧ E(x, z) ∧ x ≠ y

Every run of the system satisfies the property.

Model checking
inputinput

∀x ∃y ∃z E(x, y) ∧ E(x, z) ∧ x ≠ y

… ⊧ ∀x ∃y ∃z E(x, y) ∧ E(x, z) ∧ x ≠ y

⊧

Model checking Model checking

⊧∀x ∃y ∃z E(x, y) ∧ E(x, z) ∧ x ≠ y

fixedinput

Can be done efficiently if
the tree-width is bounded.

Fixed-parameter tractable.

inputinput

∀x ∃y ∃z E(x, y) ∧ E(x, z) ∧ x ≠ y

…
∀x ∃y ∃z E(x, y) ∧ E(x, z) ∧ x ≠ y

⊧
⊧

Verification

input

…

Understanding behaviours as graphs…

Pushdown systems Multi-pushdown systems

Message passing systems Message passing pushdowns

input

…

Understanding behaviours as graphs…
Pushdown systems
(recursive programs)

func f1
{while <true>
{call f1 OR

a OR
exit;}

return;}

input

…

Understanding behaviours as graphs…
Pushdown systems
(recursive programs)

func f1
{while <true>
{call f1 OR

a OR
exit;}

return;}

Nested word

= word + binary nesting relation

f1

f1

f1

f1

input

…

Understanding behaviours as graphs…

Pushdown systems

Nested Words
(AlurMadhusudan2006)

Multi-pushdown systems

input

…

Understanding behaviours as graphs…
Multi-pushdown systems

(Concurrent Recursive Programs)

func f1
{while <true>
{call f1 OR

a OR
exit;}
return;}

func f2
{while <true>
{call f2 OR

a OR
exit;}

return;}

func f3
{while <true>
{call f3 OR

a OR
exit;}

return;}

Multiply Nested word (MNW)
= word + multiple nesting relation

f1 f2 f3

f3

input

…

Understanding behaviours as graphs…

Pushdown systems

Nested Words
(AlurMadhusudan2006)

Multi-pushdown systems

Multiply Nested Words

input

…

Understanding behaviours as graphs…
Message passing systems

input

…

Understanding behaviours as graphs…
Message passing systems

d, d1? a, d3!

a, d3!

b, d1!c, d2? 54

3
2 1

0
9

7

6

8

a, d2!

b, d4!

d, d4?

c, d3?

c, d3?

input

…

Understanding behaviours as graphs…
Message passing systems

d, d1? a, d3!

a, d3!

b, d1!c, d2?

54
3

2 1 0
9

7

6

8

a, d2!

b, d4!

d, d4?

c, d3?

c, d3?

a a b c d

b a c d c

input

…

Understanding behaviours as graphs…

Pushdown systems

Nested Words
(AlurMadhusudan2006)

Multi-pushdown systems

Multiply Nested Words

Communicating Finite State Machines

Message Sequence Charts

Message passing pushdowns

…

input

…

Understanding behaviours as graphs…

Pushdown systems

Nested Words
(AlurMadhusudan2006)

Multi-pushdown systems

Multiply Nested Words

Communicating Finite State Machines

Message Sequence Charts

Message passing pushdowns

…

Finite state machines with auxiliary storage

constructive writes and destructive reads

Model checking
inputinput

∀x ∃y ∃z E(x, y) ∧ E(x, z) ∧ x ≠ y

… ⊧ ∀x ∃y ∃z E(x, y) ∧ E(x, z) ∧ x ≠ y

⊧

Understanding specification over graphs…

q
Answer the correct client

for topmost requests

a↑ba↑c↑aa↓↑b↓a↓cb↑↑a↓↓a↑b↑cb↓a↓↓ab↑b↑aa↑↑↓↑↓↓↓↓b

∀x, y

(

a(x − 1) ∧ x ◃ y ∧
¬∃z, z′ (z ◃ z′ ∧ z < x < z′)

)

⇒ a(y + 1)

Behaviours must be graphs and
specifications should be over graphs…

Reasoning About Distributed Systems: WYSIWYGú

Aiswarya Cyriac1 and Paul Gastin2

1 Uppsala University, Sweden
aiswarya.cyriac@it.uu.se

2 LSV, ENS Cachan, CNRS, INRIA, France
paul.gastin@lsv.ens-cachan.fr

Abstract
There are two schools of thought on reasoning about distributed systems: one following inter-
leaving-based semantics, and one following partial-order/graph-based semantics. This paper
compares these two approaches and argues in favour of the latter. An introductory treatment of
the split-width technique is also provided.

1998 ACM Subject Classification F.1.1 [Computation by Abstract Devices]: Models of Compu-
tation, F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords and phrases Verification of distributed systems, Communicating recursive programs,
Partial order/graph semantics, Split-width and tree interpretation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.11

Category Invited Talk

1 Introduction

Distributed systems form a crucially important but particularly challenging domain. Design-
ing correct distributed systems is demanding, and verifying its correctness is even more so.
The main cause of di�culty here is concurrency and interaction (or communication) between
various distributed components. Hence it is important to provide a framework that makes
easy the design of systems as well as their analysis. In this paper we argue in favour of
(visual) graph-based techniques towards this end.

The behaviour of a distributed system is often understood by means of an interleaving-
based semantics. People are guided by this understanding when designing a system, and also
when formally expressing properties for system verification. But interleavings obfuscate the
interactions between components. This inherent complication of interleaving-based semantics
makes the design and verification vulnerable to many (human) errors. Moreover, expressing
distributed properties on interleavings is non-trivial and sometimes also impossible to achieve.
In contrast, a visual understanding of behaviours of distributed systems would make it less
prone to errors – in the understanding of the semantics, in the statement of properties and in
verification algorithms. Not only does the visual approach help in providing right intuitions,
but, we will demonstrate that, it is also very powerful and e�cient.

ú
Supported by LIA InForMel.

© Aiswarya Cyriac and Paul Gastin;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 11–30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Model checking
inputinput

∀x ∃y ∃z E(x, y) ∧ E(x, z) ∧ x ≠ y

… ⊧ ∀x ∃y ∃z E(x, y) ∧ E(x, z) ∧ x ≠ y

⊧

Model checking
inputinput

∀x ∃y ∃z E(x, y) ∧ E(x, z) ∧ x ≠ y

… ⊧ ∀x ∃y ∃z E(x, y) ∧ E(x, z) ∧ x ≠ y

⊧Model checking is undecidable

under-approximation
All behaviours

= subset of behaviours
parametrized

exhaustive

1 2
3
4 5

…

Tree-width as under-approximation
allows interpretation in trees…

Tree-width as under-approximation
allows interpretation in trees…

Tree-width as under-approximation
allows interpretation in trees…

turing powerful models -
unbounded tree-width

turing powerful models -
unbounded tree-width

bounded tree-width
under-approximation

All behaviours

= subset of behaviours with tree-width at most kparametrized

exhaustive

1 2
3
4 5

…

verification results with
bounded tree-width

Non-emptiness checking : ExpTime Complete

Temporal logic model checking : ExpTime Complete

MSO model checking : non-elementary

proof idea = move to the world of trees

get tree automata to recognize all
tree interpretations TW k

get tree automata to recognize all
tree interpretations

get tree automata to recognize all
trees representing valid runs in the

system

System

TW k

proof idea = move to the world of trees

get tree automata to recognize all
tree interpretations

get tree automata to recognize all
trees representing valid runs in the

system

get tree automata for trees
representing runs violating the

property

System

φTW k

proof idea = move to the world of trees

The Tree Width of Auxiliary Storage

P. Madhusudan
University of Illinois at Urbana-Champaign, USA

madhu@illinois.edu

Gennaro Parlato
LIAFA, CNRS and University of Paris Diderot, France.

gennaro@liafa.jussieu.fr

Abstract
We propose a generalization of results on the decidability of empti-
ness for several restricted classes of sequential and distributed au-
tomata with auxiliary storage (stacks, queues) that have recently
been proved. Our generalization relies on reducing emptiness of
these automata to finite-state graph automata (without storage)
restricted to monadic second-order (MSO) definable graphs of
bounded tree-width, where the graph structure encodes the mech-
anism provided by the auxiliary storage. Our results outline a uni-
form mechanism to derive emptiness algorithms for automata, ex-
plaining and simplifying several existing results, as well as proving
new decidability results.

Categories and Subject Descriptors F.1.1 [Theory of Computa-
tion]: Models of Computation: Automata; D.2.4 [Software Engi-
neering]: Software/Program Verification: Model checking; F.4.3
[Theory of Computation]: Formal Languages: Decision problems

General Terms Algorithms, Reliability, Theory, Verification

Keywords model checking, automata, decision procedures, bounded
tree-width

1. Introduction
Several classes of automata with auxiliary storage have been de-
fined over the years that have a decidable emptiness problem. Clas-
sic models like pushdown automata utilizing a stack have a decid-
able emptiness problem [14], and several new models like restricted
classes of multi-stack pushdown automata, automata with queues,
and automata with both stacks and queues, have been proved de-
cidable recently [8, 15, 17, 22].

The decidability of emptiness of these automata has often been
motivated for model-checking systems. Software models can be
captured using automata with auxiliary storage, as stacks can
model the control recursion in programs while queues model FIFO
communication between processes. In abstraction-based model-
checking, data domains get abstracted from programs, resulting in
automata models (e.g., the SLAM tool builds pushdown automata
models using predicate abstraction [7], and the GETAFIX tool
model-checks both single-stack and multi-stack automata mod-
els [18, 19]). The emptiness problem for these automata is the most
relevant problem as it directly corresponds to checking reachability
of an error state.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c⃝ 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

However, the various identified decidable restrictions on these
automata are, for the most part, awkward in their definitions—
e.g. emptiness of multi-stack pushdown automata where pushes
to any stack is allowed at any time, but popping is restricted to
the first non-empty stack is decidable! [8]. Yet, relaxing these
definitions to more natural ones seems to either destroy decidability
or their power. It is hence natural to ask: why do these automata
have decidable emptiness problems? Is there a common underlying
principle that explains their decidability?

We propose, in this paper, a general criterion that uniformly
explains many such results— several restricted uses of auxiliary
storage are decidable because they can be simulated by graph
automata working on graphs that capture the storage as well as
their sequential or distributed nature, and are also of bounded tree-
width.

More precisely, we can show, using generalizations of known
results on the decidability of satisfiability of monadic second-order
logic (MSO) on bounded tree-width graphs [9, 23], that graph au-
tomata on MSO-definable graphs of bounded tree-width are decid-
able. Graph automata [24] are finite-state automata (without auxil-
iary storage) that accept or reject graphs using tilings of the graph
using states, where the restrictions on tiling determine the graphs
that get accepted. The general decidability of emptiness of graph
automata on MSO-definable graphs follows since the existence of
acceptable tilings is MSO-definable.

We proceed to show that several sequential/distributed automata
with an auxiliary storage (we consider stacks and queues only in
this paper), can be realized as graph automata working on single
or multiple directed paths augmented with special edges to capture
the mechanism of the storage. Intuitively, a symbol that gets stored
in a stack/queue and later gets retrieved can be simulated by a
graph automaton working on a graph where there is a special edge
between the point where the symbol gets stored to the point where
it gets retrieved. A graph automaton can retrieve the symbol at the
retrieval point by using an appropriate tiling of this special edge.

The idea of converting automata with storage to graph automata
without storage but working on specialized graphs is that it allows
us to examine the complexity of storage using the structure of
the graph that simulates it. We show that many automata with a
tractable emptiness problem can be converted to graph automata
working on MSO definable graphs of bounded tree-width, from
which decidability of their emptiness follows.

We prove the simulation of the following classes of automata
with auxiliary storage by graph automata working on MSO-
definable bounded tree-width graphs:

- Multi-stack pushdown automata with bounded context-switching:
This is the class of multi-stack automata where each computa-

tion of the automaton can be divided into k stages, where in each
stage the automaton touches only one stack (proved decidable first
in [22]). We show that they can be simulated by graph automata on
graphs of tree-width O(k).

MSO decidability of Multi-Pushdown Systems

via Split-Width
?

Aiswarya Cyriac1, Paul Gastin1, and K. Narayan Kumar2

1 LSV, ENS Cachan, CNRS & INRIA, France
{cyriac,gastin}@lsv.ens-cachan.fr

2 Chennai Mathematical Institute, India
kumar@cmi.ac.in

Abstract. Multi-threaded programs with recursion are naturally mod-
eled as multi-pushdown systems. The behaviors are represented as mul-
tiply nested words (MNWs), which are words enriched with additional
binary relations for each stack matching a push operation with the cor-
responding pop operation. Any MNW can be decomposed by two basic
and natural operations: shu✏e of two sequences of factors and merge of
consecutive factors of a sequence. We say that the split-width of a MNW
is k if it admits a decomposition where the number of factors in each
sequence is at most k. The MSO theory of MNWs with split-width k is
decidable. We introduce two very general classes of MNWs that strictly
generalize known decidable classes and prove their MSO decidability via
their split-width and obtain comparable or better bounds of tree-width
of known classes.

1 Introduction

Multi-pushdown systems (MPDS) — finite state systems with several stacks —
are natural abstractions of concurrent programs. Verification of multi-pushdown
systems is undecidable in general. However concurrency is indispensable for many
critical systems. Hence, several behavioral restrictions have been proposed and
employed for their under-approximate verification [10,13,16,17,19].

The first behavioral restriction shown to have a decidable reachability prob-
lem was bounded context switching [19] in which the control can switch from
one stack to another only a fixed number of times [13,16,17]. This was followed
by ordered MPDS where the stacks have a priority ordering between them [2,3],
and a stack could pop only when all higher priority stacks are empty. Another
restriction is allowing only a fixed number of phases [12], where in one phase only
one stack was allowed to return. Later bounded scope MPDS [14], where there
are at most k context switches between any push and the corresponding pop,
were also shown to have a decidable emptiness. In [18], Madhusudan and Parlato
give a unified proof of decidability of emptiness of all but the last, by showing
that these restrictions impose bounds on the tree-width of the underlying runs.

? Supported by LIA InForMel, and DIGITEO LoCoReP.

Verifying Communicating Multi-pushdown
Systems via Split-Width⋆

C. Aiswarya1, Paul Gastin2, and K. Narayan Kumar3

1 Uppsala University, Sweden
aiswarya.cyriac@it.uu.se

2 LSV, ENS Cachan, CNRS & INRIA, France
gastin@lsv.ens-cachan.fr

3 Chennai Mathematical Institute, India
kumar@cmi.ac.in

Abstract. Communicating multi-pushdown systems model networks of
multi-threaded recursive programs communicating via reliable FIFO
channels. We extend the notion of split-width [8] to this setting, improv-
ing and simplifying the earlier definition. Split-width, while having the
same power of clique-/tree-width, gives a divide-and-conquer technique
to prove the bound of a class, thanks to the two basic operations, shuffle
and merge, of the split-width algebra. We illustrate this technique on ex-
amples. We also obtain simple, uniform and optimal decision procedures
for various verification problems parametrised by split-width.

1 Introduction

This paper is about the formal verification of multi-threaded recursive programs
communicating via reliable FIFO channels. This is an important but highly
challenging problem. Recent researches have developed several approximation
techniques for the verification of multi-threaded recursive programs (abstracted
as multi-pushdown systems) and communicating machines. We continue this line
of research. We propose a generic under-approximation class, and give uniform
decision procedures for a variety of verification problems including reachability
and model-checking against logical specifications.

We model the system as a collection of finite state machines, equipped with
unbounded stack and queue data-structures. Thus, we get a faithful modelling
of programs using such data-structures. They can also be used to model im-
plicit features in a distributed setting, e.g., stack models recursion and queues
model communication channels. Such systems are called stack-queue distributed
system (SQDS) in this paper. The behaviour of an SQDS, called a stack-queue
MSC (SQMSC), is a tuple of sequences of events (one per program/process). In
addition a binary matching relation links corresponding writes (push/send) and
reads (pop/receive). These were called stack-queue graphs in [20], run graphs
in [15] and they jointly generalise nested words [1], multiply nested words [17]
and Message Sequence Charts (MSC) [16]. An example is given is Fig. 1.

⋆ This work is partially supported by LIA InForMel.

F. Cassez and J.-F. Raskin (Eds.): ATVA 2014, LNCS 8837, pp. 1–17, 2014.
c⃝ Springer International Publishing Switzerland 2014

what do bounded tree-
width look like?

Bounded channel size

Existentially bounded [Genest et al.,]

Acyclic Architectures [Genest et al.,Clemente et al.]

Bounded context switching [LaTorre et al.]

Bounded context switching [Qadeer,Rehof]

Bounded phase [LaTorre et al.]

Bounded scope [LaTorre et al.]

Priority ordering [Atig et al. Breveligiri et al, Saivasan et al.]

*list not exhaustive!!

bounded context

bounded scope : inside every curved edge bounded context

bounded phase

Existentially bounded:
at least one linearization where the channel size is bounded

get tree automata to recognize all
tree interpretations

get tree automata to recognize all
trees representing valid runs in the

system

get tree automata for trees
representing runs violating the

property

System

φTW k

proof idea = move to the world of trees

get tree automata for the under-
approximation

Existentially bounded

if an under-approximation gives decidability for
MSO, then it has bounded tree-width

complete..

More results

Tree - interpretations

Handle unbounded
number of processes

[Fortin, Gastin]

Handle timing constraints
[Akshay, Krishna, Gastin,

Ilias Sarkar, Sparsa
Roychowdhury]

More results

Tree - interpretations

Handle unbounded
number of processes

[Fortin, Gastin]

Handle timing constraints
[Akshay, Krishna, Gastin,

Ilias Sarkar, Sparsa
Roychowdhury]

Handle pushdown with
numerical values and gap-

order constraints
[Abdulla, A, Atig]

tools

Open!

Tree - interpretations

From a tree-automata over
interpretations is there a
translation to system?

synthesis

