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Büchi-Elgot-Trakhtenbrot Theorem (’60s)
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MSO[→] = Finite Automata = EMSO[→]

∃X0 . . . ∃Xn.ϕ with ϕ ∈ FO[→]

Extended to trees [Thatcher-Wright ’68], Mazurkiewicz traces
[Thomas ’90], nested words [Alur-Madhusudan ’04], data words
[Bojańczyk et al. ’06], weighted automata [Droste-Gastin ’05], . . .
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The model

I Fix finite set of processes and finite alphabet
(e.g., P = {p, q, r} and Σ = {a, b, c})

I Reliable unbounded point-to-point FIFO channels

I Partial order semantics: Message Sequence Charts (MSC)

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

The model

I Fix finite set of processes and finite alphabet
(e.g., P = {p, q, r} and Σ = {a, b, c})

I Reliable unbounded point-to-point FIFO channels

I Partial order semantics: Message Sequence Charts (MSC)

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

The model

I Fix finite set of processes and finite alphabet
(e.g., P = {p, q, r} and Σ = {a, b, c})

I Reliable unbounded point-to-point FIFO channels

I Partial order semantics: Message Sequence Charts (MSC)

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

The model

I Fix finite set of processes and finite alphabet
(e.g., P = {p, q, r} and Σ = {a, b, c})

I Reliable unbounded point-to-point FIFO channels

I Partial order semantics: Message Sequence Charts (MSC)

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

The model

I Fix finite set of processes and finite alphabet
(e.g., P = {p, q, r} and Σ = {a, b, c})

I Reliable unbounded point-to-point FIFO channels

I Partial order semantics: Message Sequence Charts (MSC)

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

The model

I Fix finite set of processes and finite alphabet
(e.g., P = {p, q, r} and Σ = {a, b, c})

I Reliable unbounded point-to-point FIFO channels

I Partial order semantics: Message Sequence Charts (MSC)

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

The model

I Fix finite set of processes and finite alphabet
(e.g., P = {p, q, r} and Σ = {a, b, c})

I Reliable unbounded point-to-point FIFO channels

I Partial order semantics: Message Sequence Charts (MSC)

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

Communicating finite-state machines (CFMs)
[Brand–Zafiropulo ’83]

P = {p, q, r}, Σ = {a, b, c}

Msg = {�,�}

ApAp

〈b, !q�〉
〈b, !r�〉
〈a, !q�〉
〈a, !r�〉

AqAq

〈c, ?p�〉

〈c, !r�〉

〈c, ?p�〉

〈c, !r�〉

ArAr

〈b, ?p�〉
〈b, ?q�〉
〈a, ?p�〉
〈a, ?q�〉

“send � to process r” “receive � from process q”
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[Brand–Zafiropulo ’83]
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Remarks

I The emptiness problem for CFMs is undecidable.

I CFMs are inherently non-deterministic.

[Genest-Kuske-Muscholl ’07]
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Monadic Second-Order Logic (MSO) over MSCs

ϕ ::=

a(x) | p(x) label/process of event x

| x→ y process successor

| x↘ y message relation

| x ≤ y happened-before

| ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ | x ∈ X

a a c a a a a a

a a a a a a a a a a

a b b a a c a a a

p

q

r

x y

x

yx

y

x

y

Mutual exclusion: ¬(∃x.∃y.c(x) ∧ c(y) ∧ x ‖ y )

¬(x ≤ y) ∧ ¬(y ≤ x)
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Büchi-like theorems for CFMs

When channels are bounded:

Theorem (Henriksen-Mukund-Narayan Kumar-Sohoni-Thiagarajan ’05)

Over universally bounded MSCs, CFM = MSO[↘,→,≤].

Theorem (Genest-Kuske-Muscholl ’06)

Over existentially bounded MSCs, CFM = MSO[↘,→,≤].
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General case

MSO[↘,→,≤]

CFM = EMSO[↘,→]

= EMSO[↘,→,≤]

FO[↘,→]

FO[↘,→,≤]

?

FO2[↘,→,≤]

FO[↘,→,≤]

[B.-Leucker ’06] CFM = EMSO[↘,→] ( MSO[↘,→]

[B.-Fortin-Gastin ’18] CFM = EMSO2[↘,→,≤]
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A simple modal logic for MSCs: PDL−sf
ϕ, ψ ::=

a | p | ϕ ∨ ϕ | ¬ϕ

| 〈→〉ϕ ϕ
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Examples

P = {p, q, r}, Σ = {a, b, c}

r

q

p b b a b b a b a

c c c c c c c c

b a b b ba b a

“On q, a receive from p is directly followed by a send to r”:

〈p↖q〉 true =⇒ 〈→〉 〈q↘r〉 true

“All events strictly in between the current and the last event
on a process are b s”:

〈 b−→〉¬ 〈→〉 true
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Star-free Propositional Dynamic Logic (PDLsf)
[Fischer-Ladner 1979] (PDL)

Event formulas

ϕ ::= a | p | ϕ ∨ ϕ | ¬ϕ

| 〈π〉ϕ ϕπ

| Loop(π)
π

Path formulas

π ::=→ | ← | p↘q | p↖q | jumpp,q |
ϕ−→ | ϕ←− | π · π | {ϕ}?

| π ∪ π | π ∩ π | πc

Notation: 〈π1 · π2 · · ·πk〉ϕ ≡ 〈π1〉 (〈π2〉 · · · (〈πk〉ϕ) · · · )
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Example
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From PDLsf to FO3

I Any PDLsf event formula ϕ can be transformed into an
FO3 formula ϕ̃(x) with one free variable.

p  p(x)
〈π〉ϕ  

(
∃y.ϕ̃(y) ∧ π̃(x, y)

)
(x)

I Any PDLsf path formula π can be transformed into an
FO3 formula π̃(x, y) with two free variables.

π1 · π2  
(
∃z.π1(x, z) ∧ π2(z, y)

)
(x, y)

PDLsf ⊆ FO3 ⊆ FO

⊆ PDLsf
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(
∃y.ϕ̃(y) ∧ π̃(x, y)

)
(x)

I Any PDLsf path formula π can be transformed into an
FO3 formula π̃(x, y) with two free variables.

π1 · π2  
(
∃z.π1(x, z) ∧ π2(z, y)

)
(x, y)

PDLsf ⊆ FO3 ⊆ FO ⊆ PDLsf
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From FO to PDLsf

Theorem
Any FO formula Φ(x1, . . . , xn) can be rewritten as

Φ(x1, . . . , xn) ≡
∨∧

π(xi, xj) where π ∈ PDLsf

Proof: By induction.

Two interesting cases:

I negation

I existential quantification



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

From FO to PDLsf

Theorem
Any FO formula Φ(x1) can be rewritten as

Φ(x1, . . . , xn) ≡
∨∧

π(xi, xj) where π ∈ PDLsf

Proof: By induction.

Two interesting cases:

I negation

I existential quantification



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

From FO to PDLsf

Theorem
Any FO formula Φ(x1) can be rewritten as

Φ(x1, . . . , xn) ≡
∨∧

π(x1, x1)︸ ︷︷ ︸
Loop(π)

where π ∈ PDLsf

Proof: By induction.

Two interesting cases:

I negation

I existential quantification



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

From FO to PDLsf

Theorem
Any FO formula Φ(x1, . . . , xn) can be rewritten as

Φ(x1, . . . , xn) ≡
∨∧

π(xi, xj) where π ∈ PDLsf

Proof: By induction.

Two interesting cases:

I negation

I existential quantification



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

From FO to PDLsf

Theorem
Any FO formula Φ(x1, . . . , xn) can be rewritten as

Φ(x1, . . . , xn) ≡
∨∧

π(xi, xj) where π ∈ PDLsf

Proof: By induction. Two interesting cases:

I negation

I existential quantification



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

Key Lemma

For all π ∈ PDLsf ,

e fπ
iff

e

〈π−1〉

f
min π max π

I Monotonicity of path formulas.

I Relies on FIFO behavior.

I Proof is by simple induction.
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Negation

¬
∨∧

π(xi, xj) ≡
∧∨

¬π(xi, xj)

e

〈π−1〉〈π−1〉 〈π−1〉 〈π−1〉

min π max π

min π · +←−

πc ≡

∪ max π · +−→∪ max π · +−→ ∪ min π · +−→ · {¬ 〈π−1〉}?∪ min π · +−→ · {¬ 〈π−1〉}?∪ min π · +−→ · {¬ 〈π−1〉}?

∪
⋃
p,q{¬ 〈π〉 q}? · jumpp,q



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

Negation

¬
∨∧

π(xi, xj) ≡
∧∨

¬π(xi, xj)

e

〈π−1〉〈π−1〉 〈π−1〉 〈π−1〉

min π max π

min π · +←−

πc ≡

∪ max π · +−→∪ max π · +−→ ∪ min π · +−→ · {¬ 〈π−1〉}?∪ min π · +−→ · {¬ 〈π−1〉}?∪ min π · +−→ · {¬ 〈π−1〉}?

∪
⋃
p,q{¬ 〈π〉 q}? · jumpp,q



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

Negation

¬
∨∧

π(xi, xj) ≡
∧∨

¬π(xi, xj)

e

〈π−1〉〈π−1〉 〈π−1〉 〈π−1〉

min π max π

min π · +←−πc ≡

∪ max π · +−→∪ max π · +−→ ∪ min π · +−→ · {¬ 〈π−1〉}?∪ min π · +−→ · {¬ 〈π−1〉}?∪ min π · +−→ · {¬ 〈π−1〉}?

∪
⋃
p,q{¬ 〈π〉 q}? · jumpp,q



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

Negation

¬
∨∧

π(xi, xj) ≡
∧∨

¬π(xi, xj)

e

〈π−1〉〈π−1〉 〈π−1〉 〈π−1〉

min π max π

min π · +←−πc ≡ ∪ max π · +−→∪ max π · +−→

∪ min π · +−→ · {¬ 〈π−1〉}?∪ min π · +−→ · {¬ 〈π−1〉}?∪ min π · +−→ · {¬ 〈π−1〉}?

∪
⋃
p,q{¬ 〈π〉 q}? · jumpp,q



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

Negation

¬
∨∧

π(xi, xj) ≡
∧∨

¬π(xi, xj)

e

〈π−1〉〈π−1〉 〈π−1〉 〈π−1〉

min π max π

min π · +←−πc ≡ ∪ max π · +−→∪ max π · +−→ ∪ min π · +−→ · {¬ 〈π−1〉}?∪ min π · +−→ · {¬ 〈π−1〉}?∪ min π · +−→ · {¬ 〈π−1〉}?

∪
⋃
p,q{¬ 〈π〉 q}? · jumpp,q



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

Negation

¬
∨∧

π(xi, xj) ≡
∧∨

¬π(xi, xj)

e

〈π−1〉〈π−1〉 〈π−1〉 〈π−1〉

min π max π

min π · +←−πc ≡ ∪ max π · +−→∪ max π · +−→ ∪ min π · +−→ · {¬ 〈π−1〉}?∪ min π · +−→ · {¬ 〈π−1〉}?∪ min π · +−→ · {¬ 〈π−1〉}?

∪
⋃
p,q{¬ 〈π〉 q}? · jumpp,q



Introduction CFMs Star-free PDL Equivalence of FO and PDLsf From PDLsf to CFMs Conclusion

Existential quantification

∃x.
∧
i πi(xi, x)  ?

x

xi

min πi max πi

x`

min π`

max π`
xk

min πk
max πk
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∧
i πi(xi, x)  ?

x

xi

min πi max πi

x`

min π`

max π`
xk

min πk
max πk

Is there an event in the intersection of the intervals that
satisfies ψ =

∧
i 〈π

−1
i 〉 ?
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Existential quantification
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∧
i πi(xi, x)  ?
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xi
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min π`
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∨
k
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∧
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−1)(xi, xk)

∧
∧
i(max πi ·

∗←− · (max π`)
−1)(xi, x`)

∧ (πk · {ψ}? · π`−1)(xk, x`)
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From PDLsf to CFMs

Theorem
Any event formula ϕ ∈ PDLsf can be translated into a CFM
which determines for each event whether ϕ holds.

Proof: By induction.

I ϕ = b

I ϕ = 〈p↘r〉ψ (CFM for ψ given by induction)

I ϕ = ¬ψ
I . . .

I Only difficult case: ϕ = Loop(π)

ψ ψ¬ψ ¬ψ

r

q

p b b a b b a b a

c c c c c c c c

b a b b ba b a

ϕ ϕ ¬ϕ

ϕ ¬ϕ

¬ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

¬ϕ ¬ϕ ¬ϕ

¬ϕ ¬ϕ ¬ϕ ¬ϕ

¬ϕ ¬ϕ ¬ϕ

¬ϕ ¬ϕ ¬ϕ ¬ϕ

¬ϕ ¬ϕϕ ϕ

¬ψ ¬ψ ¬ψψ ψ ψ ψ ψ
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Translation of Loop formulas

Needed: CFM that, at every event, evaluates Loop(π).

I If e 6|= 〈π〉 ∧ 〈π−1〉, then e 6|= Loop(π).

I If e |= 〈π〉 ∧ 〈π−1〉, three possible cases:

e
¬Loop(π)

min π

max π

e
¬Loop(π)

max π

min π

e
Loop(π)

min π max π

I To know which of these cases applies, it is enough to
evaluate formulas Loop(min π′) and Loop(max π′).

1) Translate Loop(min π′) to Loop(max π′) into CFMs.

2) Use this to evaluate Loop(π) from left to right.
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CFM for ϕ = Loop(max π)

I Guess for each event whether ϕ holds.

ϕ ϕ ϕ ϕ ϕ¬ϕ ¬ϕ ¬ϕ ¬ϕ ¬ϕ

max π
max π max π max π max πmax π

max π max π max π

max π

I Check positive guesses:

I Alternately assign to ϕ-events colors • or •.
I Check that the source and target color of (max π)-paths

are the same.

I Check negative guesses:

I Guess a 2-coloring of the ¬ϕ-events.
I Check that the source and target color of (max π)-paths

are distinct.
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Summary

FO[↘,→,≤] PDLsf CFMs = EMSO[↘,→]
(1) (2)

FO3[↘,→,≤]

I FO sentence is a positive boolean combination of
formulas ∃x.Φ(x) or ¬∃x.Φ(x).

I Both types of formulas can be evaluated using the
CFMs for Φ(x).
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