
Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Formal methods for embedded software systems:
Two problems

Meenakshi D’Souza

IIIT-Bangalore.

24th January 2019.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Embedded Control Software

Figure: Robotics

Figure: IoT

Figure: Avionics

Figure: Simulink: Embedded Control
Design

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Embedded control software: Characteristics

Runs on a proprietary real-time platform.

Software tightly coupled with its environment.

Distributed, real-time.

Typically safety critical— subject to certification and
regulatory requirements.

Not feasible to shut down a malfunctioning system to restore
safety or functionality.

One of the areas where formal methods is used by the industry.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Software for Control Automation

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Software for automation engineering systems

Software is used in automation systems to monitor and control
various operations like batch processing, arc welding etc.

Such software is implemented using domain-specific
languages, most are proprietary in nature.

Usually safety critical in nature, certification standards
demand use of formal methods techniques.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Program analysis tools for automation software

Standard program analysis tools (Coverity for C, PolySpace
for C/C++/Ada, Klocwork etc.) are not known to work for
such languages.

Complex data types, task-based asynchronous/parallel
execution, real-time system interrupts.
Tools do not port well across various development
environments.
Many tools deploy pattern based matching to detect code
violations, not known to scale for industrial automation tools.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Industry automation languages

We work with three programming languages used in industry
automation:

Rapid, a domain-specific language for programming industrial
robot arms.

IEC 61131-3 for PLC programming.

Electronic Device Description Language (EDDL) used for
configuration of field devices.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Rapid: A robotics programming language

ABB robots are multi-axes industrial robots/robot
manipulators.

Typical actions done include welding, painting, picking,
placing etc.

Rapid is ABB proprietary language to program their robots.

Robot instructions can be programmed using a teach pendant
that generates Rapid code or directly using a textual interface.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Rapid in a nutshell: Data types

Many standard datatypes are included in Rapid: num,

string, bool, array etc.

In addition, complex datatypes support co-ordinates in 3-D
space, target positions for the robot arm etc.

VAR pos := [500, 0, 940];: Position in 3-D space.
VAR robtarget p15 := [[600, 500, 225.3], [1, 0, 0,

0], [1, 1, 0, 0], [11, 12.3, 9E9, 9E9, 9E9,

9E9]];: Position of a robot.
First tuple: position in 3-D space,
Last three tuples specify orientation of the tool,
axis-configuration of the robot and the position of external
axes respectively.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Rapid in a nutshell: Instructions

WaitTime 200;: Instructs the robot to wait for 200 seconds
before doing any assigned work.

IDelete intr;: Disables the interrupt variable intr.

MoveL p1,v500,z10,tool1;: Moves the position of the
robotic tool tool1 linearly to the position p1, with velocity
v500 and zone data z10.

This internally calculates the torque that needs to be applied
to each axis (motor) to move linearly to the position p1.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Rapid in a nutshell: Program control flow

Program flow: Written using standard imperative language
constructs including relational and logical expressions,
IF-THEN-ELSE statements and FOR and WHILE loops.

Procedure calls are available, makes execution semantics
complex.

System generated interrupts and exceptions and their handling
can alter the control flow of a program.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Rapid: An example

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

IEC 61131-3

IEC 61131 is an open international standard for
Programmable Logic Controllers (PLC).

IEC 61131-1 deals with architecture and programming
languages of the control program within PLC.

Several standard data types, user defined data types including
a kind of strongly typed pointer, I/O variables amongst
others, program organization units that structure the code in
a modular way.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

IEC 61131-3: An example

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

EDDL

EDDL (Electronic Device Description Language), an IEC
standard, is a language for describing the service and
configuration of field devices for process and factory
automation.

EEDL has data, communication (e.g. addressing information),
user interfaces and operations (e.g., calibration).

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

EEDL: An example

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Common characteristics

All three languages, although from disparate domains,
characterize domain-specific languages for automation
engineering.

All of them support

Task based execution and use a modular structure for code
organization. Execution can change based on interrupts.
Code is used to monitor and control various devices and
controllers. Interrupts come from the platform.
Variables can be primitive as well as structured data types.

Other languages like PLCopen, KRL, etc. support similar
programming structures, and can be analyzed as well.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Program analysis framework: Key contributions

Generic datatype to represent the parsed information for the
three languages.

Flexible Data Flow Analysis (DFA) engine to encode data flow
rules as needed by varying the domain.

Flexible rule engine to process data for further analysis.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Rapid: Program analysis framework

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Generic analysis engine

Abstract-Syntax Tree (AST) and Control Flow Graph (CFG)
are generated the usual way.

Inter-procedural CFG needs one or more executions as input if
procedure calls are not clear from the code.

CFG and inter-procedural CFG are annotated with data flow
results.

Data Flow Analysis (DFA) uses abstract interpretation based
on interval domain abstraction to define transfer functions
that support all standard arithmetic, logical and relational
operations.

Interval domain semantics defined for all special datatypes.

Several standard syntactic errors can be detected using AST
and CFG.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Rapid code: Annotated inter-procedural CFG

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Rules: Classification

Generic Programming rules: Depend solely on the analysis
framework, generic across all languages.

Division by zero, array out of bounds.

Language specific rules: Based on a specific language, may
not exist for all languages.

Boundary violation check for a robot arm (Rapid), variable
re-definition rule (EDDL).

User specified rules. Rules defined by the user based on a
specific project or application.

Nesting levels of code, based on quality requirements.
Conformance to NORSOK standards for oil and gas
applications.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Distribution of rules

Rules Language Generic errors Language based User specific

Pattern-based IEC 61131-3 11 5 2
EDDL 4 12 1
RAPID 11 7 0
Total 34 24 3

Semantic IEC 61131-3 0 0 0
EDDL 0 1 0
RAPID 5 0 0
Total 5 1 0

DFA IEC 61131-3 5 1 1
EDDL 4 2 0
RAPID 1 4 1
Total 10 7 2

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Errors and rules: IEC 61131-3

Rule name Category Error Warning

Incorrect Attribute language specific 10 0
Uninitialized variable generic 0 76
Datatype mismatch language specific 0 9

Divide-by-zero generic 0 7
Duplicate identifier generic 0 1

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Errors and rules: EDDL

Rule name Category Error Warning

Divide-by-zero generic 0 5
Missing Mandatory Menus language specific 0 23

Unused variables generic 0 24
Assignment for comparison generic 3 0

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Errors and rules: Rapid

Rule name Category Error Warning

Illegal wait statement language specific 4 0
Function side effects language specific 0 4

Routines not used generic 12 52
Unused variable project specific 41 15

Arithmetic overflow generic 2 2
Constant project specific 0 30

Unreachable code generic 3 7

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Program analysis framework: Drawbacks

Framework generates false positives.

Interval domain based abstraction is known to have this
problem.
We are working on other abstraction techniques.

Tool cannot handle recursion efficiently, we assume that worst
case is reached when the function call stack exceeds a set
limit.

Works really well for Rapid, has handled code with ≥ 11000
statements and high cyclomatic complexity. Yet to be tested
on large EDDL code.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Publications

Joint work with Avijit Mandal and Raoul Jetley (ABB).

28th IEEE ISSRE 2017, industry track.

23rd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), 2018.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Modelling and verification of IoT
protocols 1

1Joint work with Maithily Diwan, Michael Butler

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Introduction: Internet of Things

Connects different computing devices, sensors, actuators,
people and virtually any object.

Prevalent in various industries like health care, automotive,
manufacturing, power grid, domotics, etc.

Gartner has predicted that there will be over 20 billion devices
by 2020.

Communication between these devices is an important aspect
of IoT.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Introduction: IoT Communication Protocols

Various protocols are used for communication in an
IoTsystem. TCP/IP is a popular protocol used in lower layers.

Protocols used in IoT systems posses properties like
bandwidth efficient, light-weight and small code foot-print.

Common IoT Protocol features: publish-subscribe, messaging
layer, QoS(Quality of Service) levels, resource discovery,
re-transmission, etc.

Some protocols adapted for use in application layer in an IoT
system - MQTT, MQTT-SN, CoAP, XMPP, AMQP.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Comparison of IoT communication protocols

Sl.No. Protocol Feature MQTT MQTT-SN CoAP

1 Architecture
Asynchronous

Message exchange
Asynchronous

Message exchange
REST architecture
Layered Approach

2 Transport Layer TCP Any UDP

3 Communication type UniCast UniCast/Multicast UniCast/Multicast

4 Addressing
ClientID

Server address
ClientID

Server address
Uri Based

5 Messaging pattern Publish Subscribe Publish Subscribe
Request-Response
Publish-Subscribe

6 QoS Levels
AtmostOnce,
AtleastOnce,
ExactOnce

AtmostOnce,
AtleastOnce,
ExactOnce

AtmostOnce,
AtleastOnce

7 Persistent Session Yes Yes Yes

8
Retained Message
/Offline/Caching

Yes Yes Yes

9 Proxying/Caching No Yes Yes
10 Resource Discovery No Yes Yes
11 Sleep Mode No Yes Yes
12 Security Optional TLS Optional TLS Optional DTLS

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Introduction to Event-B

Uses set theory as a modeling notation and first order
predicate calculus for writing axioms and invariants.

Step by step refinement to represent systems at different
abstraction levels and provides proofs to verify consistency of
refinements.

Has two types of components: contexts and machines.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Introduction to Event-B

Machine

A machine has several events and can also define variables
and its types.

Can refine another machine to introduce new events, refine
events, split or merge events.

Event

An event consists of guards which need to be satisfied before
the actions in events are executed.

When an event is enabled and executed, the variables are
updated as per the actions in the event.

An invariant is a condition on the state variables that must
hold permanently.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Rodin and ProB

Rodin

Implements Event-B and is based on Eclipse platform.

Has sophisticated automatic provers like PP, ML and SMT.

Provides interactive proving mechanism for manual proofs.

Offers various plug-ins: text editors,
decomposition/modularization tools, simulator ProB, etc.

ProB

Provides a simulation environment through animation.

Run executes a sequence of events.

System state gives values of variables, evaluates invariants,
axioms and guards for all the events.

Deadlocks, invariant violation and errors can be detected.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Mapping between communication protocol and Event-B
model

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Protocol Modeling and Decomposition Using Event-B

The protocol modeling is done in two major steps:

Building a common abstract model encompassing the
common features of various protocols.

Refining this common abstract model into a concrete model
of a particular IoT protocol.

Our modeling is done using the techniques of machine
decomposition, refinement and atomicity decomposition in
Event-B.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Common Abstract Model

Context

Set MSG represents a message which is a basic
communication entity.

Attributes of a message are defined as relations over the set
message and the sets defined for the attributes.

A projection function is used to extract the value of an
attribute for a given message.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Common Abstract Model

Atomicity Decomposition

Communication
Channel

Establishment

UniCast
MultiCast/

BroadCast

Channel Channel
Conversation

Resource Discovery Service Discovery

1st Refinement

2nd Refinement

NonConfirmable

MessageSend

Confirmable
MessageSend

Timer
Increment

Timer Intruder

Message
Acknowlege

Timeout
Detection

Conversation
Channel

Send
Message

3rd Refinement

4th Refinement

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Common Abstract Model

Machine Decomposition

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Concrete Protocol Models

Atomicity Decomposition

Publish
QoS2

Publish
QoS1

Message

Release QoS2

Publish

Publish Qos2

Release Rcv

1st Refinement

2nd Refinement

Subscribe

Send

Subscribe
Send

Subscribe
Receive

. . . .Publish

QoS2 Orig

Publish

QoS2 Rcv

Publish

QoS2 Dup

Publish

QoS2 Orig

Client

Publish
QoS2 Rcv

Publish
QoS2 Rcv

Server

.
3rd Refinement

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Concrete Protocol Models

Event for publishing message with QoS0

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Model Validation

ProB is used for validating our model through simulation of
events and checking LTL properties.

Accuracy of the model can be obtained by executing different
runs and observing the sequence of events and variable values
in each of these events.

ProB also reports invariant violation or error in events which
is then corrected in the model.

Model validation is also done by writing and verifying
invariants.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Verification of IoT Properties Using Event-B

Properties are verified by writing them as invariants that have to
be satisfied for all the events in model.

Message Ordering

If both client and server make sure that no more than one message
is ”in-flight” at any one time, then no QoS1 message will be
received after any later one.

∀ch·∀pc1 · ∀pc2 · ((pc1 ∈ 0 · ·9 ∧ pc2 ∈ 0 · ·9 ∧ ch ∈ establishChannel

∧ (pc1 ∈ Client MsgSentQoS2(ch) ∨ pc1 ∈ Client MsgSentQoS1(ch))

∧ (pc2 ∈ Client MsgSentQoS2(ch) ∨ pc2 ∈ Client MsgSentQoS1(ch))

∧ (time > SendTRange(pc2) + Response Timeout)

∧ pc1 6= pc2 ∧ (SendTRange(pc1) < SendTRange(pc2))

⇒ (RcvTRange(pc1) ≤ RcvTRange(pc2))

(1)

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Verification of IoT Properties Using Event-B

Persistent Session

When a client reconnects with “CleanSession” set to 0, both the
client and server must re-send any unacknowledged publish packets
(where QoS > 0) and publish release packets using their original
packet Identifiers. The variable RcvTRange is updated with
current time only after the message is received. Hence it should be
greater than the SendTRange time.

∀ch · ∀pc · ((pc ∈ 0 · ·9 ∧ ch ∈ establishChannel

∧ Channel CleanSess(ch) = FALSE

∧ ((pc ∈ Client MsgSentQoS1(ch)) ∨ (pc ∈ Client MsgSentQoS2(ch))

∧ (time > (SendTRange(pc) + Response Timeout))

⇒ (RcvTRange(pc) > SendTRange(pc)))

(2)

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Verification of IoT Properties Using Event-B

QoS of a message from Client1 to Client2

The effective QoS of any message received by the subscriber is
minimum of QoS with which the publishing client transmits this
message and the QoS set by the subscriber while subscribing for
the given topic.

∀ch · ∀pc · ∀chnl · ∀msg · ((pc ∈ 0 · ·9 ∧ ch ∈ establishChannel

∧ msg ∈ MSG ∧ chnl ∈ establishChannel

∧ (pc ∈ Client MsgSentQoS1(ch)

∧ (msg 7→ ((PUBLISH 7→ AtleastOnce) 7→ pc)) ∈ Msg Type QoS

∧ ((Msg Topic(msg) 7→ ExactOnce) ∈ Channel TopicQoS(chnl))

∧ ((time − SendTRange(pc)) > Response Timeout)))

⇒ (∃QC · ((QC ≥ 1) ∧ Client MsgReceived 2(chnl) = QC)))

(3)

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Proof Obligations Results

Sl.No. Protocol Property Proof Obligations Result
1 Duplicate Channel 10 Passed
2 Message Ordering 34 Passed
3 Persistent Session 34 Passed
4 QoS1 in single channel 26 Passed
5 QoS2 in single channel 26 Passed
6 Retained QoS1 message 24 Passed
7 Retained QoS2 message 24 Passed
8 Effective QoS0 in Multi channel(3 cases) 66 Passed
9 Effective QoS1 in Multi channel(3 cases) 66 Passed

10 Effective QoS2 in Multi channel(3 cases) 72 Passed
11 Request-Response Matching and Timeout 39 Passed
12 Confirmable Message ID Matching and Timeout 39 Passed
13 Exponential Backoff 39 Passed

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Related Work

In his paper published in 2014, the author Aziz. B., shows
that there are scenarios where MQTT has failed to adhere to
the QoS requirement.

Gawanmeh. A’s paper published in 2011, shows that a
protocol used for IoT - Zigbee is verified for properties related
to connection establishment propertie using Event-B.

Authors Lee, S., Kim, H., Hong, D. K., Ju, H, of paper
written in 2013, give methods to evaluate performance of
MQTT protocol with regards to different QoS levels used and
compare with other IoT protocol CoAP.

In their paper of 2013, Authors Che, X., Maag, S, test
connection properties using passive testing for XMPP protocol
in IoT.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Conclusion and Future Work I

Conclusion

Proposed and demonstrated use of a framework based on
Event-B for modelling some of the widely used IoT protocols
MQTT, MQTT-SN and CoAP.

Properties verified: QoS, persistent session, will, retain
messages, resource discovery, two layered request-response
architecture, caching, proxying and message deduplication.

We show that the protocols work as intended in an
uninterrupted network as well as with an intruder which
consumes messages in the network.

Proposed and used a model of time based on intervals of time
points, a new feature in Event-B.

Embedded control S/W Program Analysis for Control Automation Verifying IoT protocols

Thank you!

Thank you! Questions?

	Embedded control S/W
	Program Analysis for Control Automation
	Verifying IoT protocols

