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Talk will be based on the following papers

Shallow packings, semialgebraic set systems, Macbeath
regions and polynomial partitioning,
with Bruno Jartoux, Kunal Dutta and Nabil Hassan Mustafa.
Discrete & Computational Geometry, to appear.

A Simple Proof of Optimal Epsilon Nets,
with Kunal Dutta and Nabil Hassan Mustafa.
Combinatorica, 38(5): 1269 – 1277, 2018.

Two proofs for Shallow Packings,
with Kunal Dutta and Esther Ezra.
Discrete & Computational Geometry, 56(4): 910-939, 2016.
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Geometric set systems

Point-disk incidences: an example of geometric set system
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Geometric set systems

Point-disk incidences: an example of geometric set system
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Geometric set systems

Typical applications: range searching, point set queries.
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Macbeath regions

Macbeath decomposition (Macbeath 1952)

For any convex body K with unit volume and ε > 0, there is a
small collection of convex subsets of K with volume Θ(ε) such
that any halfplane h with vol(h ∩ K ) ≥ ε contains one of them.

K

h

≥ ε
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Mnets, or combinatorial Macbeath regions

Macbeath decomposition (Macbeath 1952)

For any convex body K with unit volume and ε > 0, there is a
small collection of convex subsets of K with volume Θ(ε) such
that any halfplane h with vol(h ∩ K ) ≥ ε includes one of them.

Mnets – for halfplanes

For a set K of n points and ε > 0, an Mnet is a collection of
subsets of Θ(εn) points such that any halfplane h with
|h ∩ K | ≥ εn includes one of them.

Goal: discrete analogue of Macbeath’s tool.
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Bounds on Mnets

Question

What is the minimum size of an Mnet?

Theorem (D.–G.–J.–M. ’17)

Semialgebraic set systems with VC-dim. d <∞ and shallow
cell complexity ϕ have an ε-Mnet of size

O

(
d

ε
· ϕ
(
d

ε
, d

))
.

X Disks

X Rectangles

X Lines

X ‘Fat’ objects

× General convex sets

Theorem (D.–G.–J.–M. ’17)

This is tight for hyperplanes.
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Abstract set systems

X := arbitrary n-point set
Σ := collection of subsets of X , i.e., Σ ⊆ 2X

The pair (X ,Σ) is called a set system

Set systems (X ,Σ) are also referred to as hypergraphs,
range spaces
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Abstract set systems

Projection:
For Y ⊆ X ,

ΣY := {S ∩ Y : S ∈ Σ}

and
Σk
Y := {S ∩ Y : S ∈ Σ and |S ∩ Y | ≤ k}

Ghosh CAALM Workshop, 2019



VC dimension and shallow cell complexity

Primal Shatter function Given (X ,Σ), primal shatter function is
defined as

πΣ(m) := max
Y⊆X , |Y |=m

|ΣY |

VC dimension: d0 := max {m |πΣ(m) = 2m}
Sauer-Shelah Lemma: VC dim. d0 implies for all m ≤ n,
πΣ(m) ≤ O(md0).

Shallow cell complexity ϕ(·, ·) If ∀Y ⊆ X ,∣∣∣Σk
Y

∣∣∣ ≤ |Y | × ϕ(|Y |, k).
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Shallow cell complexity of some geometric set systems

1. Points and half-spaces O(|Y |bd/2c−1kdd/2e)
or orthants in Rd

2. Points and balls O(|Y |b(d+1)/2c−1kd(d+1)/2e)
in Rd

3. (d − 1)-variate polynomial |Y |d−2+εk1−ε

function of constant degree
and points in Rd
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Some geometric set systems

dim = 2

dim = d+ 1

dim = d+ 1
dim = d+ 2
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Epsilon-nets

Epsilon-nets: For a set system (X ,Σ), Y ⊆ X is an ε-net if

∀S ∈ Σ with |S | ≥ εn, Y ∩ S 6= ∅
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Epsilon-nets

Epsilon-nets: For a set system (X ,Σ), Y ⊆ X is an ε-net if

∀S ∈ Σ with |S | ≥ εn, Y ∩ S 6= ∅

Theorem (Haussler-Welzl’87)

For a set system with VC-dimen d there exists an ε-net of size
O
(
d
ε log d

ε

)

O
(

1
ε

)
-size ε-nets are known for special set systems

Half-spaces in R2 and R3, pseudo-disks, homothetic copies of
convex objects, α-fat wedges etc . . .
(Matousek-Seidel-Welzl, Buzaglo-Pinchasi-Rote, Pyra-Ray, . . . )

Ghosh CAALM Workshop, 2019



Epsilon-nets

Epsilon-nets: For a set system (X ,Σ), Y ⊆ X is an ε-net if

∀S ∈ Σ with |S | ≥ εn, Y ∩ S 6= ∅

Theorem (Haussler-Welzl’87)

For a set system with VC-dimen d there exists an ε-net of size
O
(
d
ε log d

ε

)
O
(

1
ε

)
-size ε-nets are known for special set systems

Half-spaces in R2 and R3, pseudo-disks, homothetic copies of
convex objects, α-fat wedges etc . . .
(Matousek-Seidel-Welzl, Buzaglo-Pinchasi-Rote, Pyra-Ray, . . . )

Ghosh CAALM Workshop, 2019



Optimal size Epsilon-nets

Theorem (Varadarajan’10, Aronov et al.’10, Chan et al.’12)

Let (X ,Σ) be a set system with constant VC-dimen and shallow
cell complexity ϕ(·). Then there exists an ε-net of (X ,Σ) of size

O

(
1

ε
logϕ

(
1

ε

))
.

Remark: This result gives optimal size nets for all known geometric
set systems. For example the above result implies 1

ε log log 1
ε size

nets for points and rectangles in plane.
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δ-packing number

Parameter: Let δ > 0 be a integer parameter

δ-separated: A set system (X ,Σ) is δ-separated if for all S1, S2

in Σ, if the size of the symmetric difference (Hamming distance)
S1∆S2 is greater than δ, i.e. |S1∆S2| > δ.

δ-packing number: The cardinality of the largest δ-separated
subcollection of Σ is called the δ-packing number of Σ.
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Connection to Euclidean packing

This is analogous to packing maximum number of Euclidean balls
of radius δ/2 in a box with edge length n.

In Rd , this packing number is O
((

n
δ

)d)
We have the same bound for the case of set systems with VC
dimension d . (due to Haussler, Chazelle and Wernisch)
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Shallow packing result

Theorem (Dutta-Ezra-G.’15 and Mustafa’16)

Let (X ,Σ) be a set system with VC-dim d and shallow cell
complexity ϕ(·) on a n-point set X . Let δ ≥ 1 and k ≤ n be two
integer parameters such that:

1. ∀S ∈
∑

, |S | ≤ k, and

2.
∑

is δ-packed.

Then

|Σ| ≤ dn

δ
ϕ

(
d n

δ
,
d k

δ

)
We can show that the above bound is tight.
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Applications: Optimal nets

Theorem (Dutta-G.-Mustafa’17)

Let (X ,Σ) be a set system with VC-dim d and shallow cell
complexity ϕ(·) on a n-point set X . Then there exists an ε-net of
size

1

ε
logϕ

(
d

ε
, d

)
+

d

ε

Remark: The proof just uses the Shallow Packing Lemma and the
Alteration Technique from The Probabilistic Method.
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Application: Mnets bound

Theorem (D.–G.–J.–M. ’17)

Semialgebraic set systems with VC-dim. d <∞ and shallow
cell complexity ϕ have an ε-Mnet of size

O

(
d

ε
· ϕ
(
d

ε
, d

))
.

Remark: The proof just uses Guth-Katz’s Polynomial Partitioning
Theorem together with Shallow Packing Lemma.
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From Mnets to ε-nets

Theorem (D.–G.–J.–M. ’17)

(
ε-Mnet of size M

with sets of size ≥ τεn

)
=⇒ ε-net of size

log(εM)/τ + 1

ε

This gives ε-nets of size d
ε logϕ

(
d
ε , d
)
for semialgebraic set

systems.

Yields best known bounds on ε-nets for geometric set systems
with bounded VC-dim.

Table: Upper bounds on Mnets and ε-nets

Mnet ε-net

Disks ε−1 ε−1

Rectangles 1
ε log 1

ε
1
ε log log 1

ε

Halfspaces (Rd) O
(
ε−bd/2c) d

ε log 1
ε
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Probabilistic proof

Theorem (D.–G.–J.–M. ’17)

(
ε-Mnet of size M

with sets of size ≥ τεn

)
=⇒ ε-net of size

log(εM)/τ + 1

ε

Proof.

1 M is such an Mnet. Let p = 1
τεn log(εM).

2 Pick every point into a sample S with probability p.

3 ∀m ∈M, Pr[S ∩m = ∅] = (1− p)|m| ≤ e−p|m| ≤ 1
εM

4 In expectation, |S |+ |m ∈M : S ∩m = ∅| ≤ np + 1
ε .

5 so there is an ε-net of size ≤ np + 1
ε (why?).
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Proof of Shallow Packing

Theorem follows from the following result:

Theorem

Let (X ,R) be a δ-separated set system with VC dimension at most
d. Then

|R| ≤ 2E [|RA′ |]

where A′ is an uniformaly random subset of X of size 4dn
δ − 1.

For the proof of the main result consider:

R′ :=

{
σ ∈ R : |σ ∩ A′| > 3× 4dk

δ

}
(1)

R′′ := R \R′ (2)
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Conclusion

Ideally we want a combinatorial proof of the Mnets bound for
set systems.

Improve the current lower bound.

Find more applications/connections of Mnets in combinatorial
geometry.

Ghosh CAALM Workshop, 2019



Thank you.
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