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Constituent Syntax Tree

Syntax tree for We must bear in mind the Community as a whole
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Constituent Syntax Tree

Tree
TΣ(V ) for sets Σ and V is least set T of trees s.t.

1 Variables: V ⊆ T
2 Top concatenation: σ(t1, . . . , tk) ∈ T for k ∈ N, σ ∈ Σ, t1, . . . , tk ∈ T

tree language = set of trees
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Constituent Syntax Trees

Syntax tree is not unique
(weights are used for disambiguation)
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Parses

Representations

enumeration

proof trees of combinatory categorial grammars

local tree languages

tree substitution languages

regular tree languages

Regular tree language
L ⊆ TΣ(∅) regular i� ∃ congruence ∼= (top-concatenation) on TΣ(∅) s.t.

1 ∼= has �nite index (�nitely many equiv. classes)
2 ∼= saturates L; i.e. L =

⋃
t∈L[t]∼=
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Regular Tree Languages

Examples for Σ = {σ, δ, α}:
2 equivalence classes (L and TΣ(∅) \ L)

L = {t ∈ TΣ(∅) | t contains odd number of α}

3 equivalence classes (“no σ”, “some σ, but legal”, illegal)

L′ = {t ∈ TΣ(∅) | σ never below δ}
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Regular Tree Languages

Regular tree grammar [Brainerd, 1969]
G = (Q,Σ, I, P)

alphabet Q of nonterminals and initial nonterminals I ⊆ Q
alphabet of terminals Σ

�nite set of productions P ⊆ TΣ(Q)× Q
(we write r → q for productions (r, q))

Example productions

VP3
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q2

q3 → q4
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q4 → q0

S

q6 VP2

q2 q4

→ q0
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Regular Tree Languages

Derivation semantics and recognized tree language

Regular tree grammar G = (Q,Σ, I, P)

for each production r → q ∈ P

r

=⇒G
q

generated tree language

L(G) = {t ∈ TΣ(∅) | ∃q ∈ I : t ⇒∗G q}
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Regular Tree Languages

Recall 3 equivalence classes (“no σ”, “some σ, but legal”, illegal)

L′ = {t ∈ TΣ(∅) | σ never below δ}

C1 = [α] C2 = [σ(α, α)] C3 = [δ(σ(α, α), α)]

Productions with nonterminals C1, C2, C3

α→ C1 δ(C1, C1)→ C1

σ(C1, C1)→ C2 σ(C1, C2)→ C2 σ(C2, C1)→ C2 σ(C2, C2)→ C2

δ(C1, C2)→ C3 δ(C1, C3)→ C3 δ(C2, C1)→ C3 δ(C2, C2)→ C3
δ(C2, C3)→ C3 δ(C3, C1)→ C3 δ(C3, C2)→ C3 δ(C3, C3)→ C3
σ(C1, C3)→ C3 σ(C2, C3)→ C3 σ(C3, C1)→ C3 σ(C3, C2)→ C3
σ(C3, C3)→ C3
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Regular Tree Languages

Properties

3 simple

3 most expressive class we consider

7 ambiguity, (several explanations for a generated tree)
but can be removed

3 closed under all Boolean operations
(union/intersection/complement: 3/3/3)

3 all relevant properties decidable (emptiness, inclusion, . . . )



Regular Tree Languages

Characterizations
�nite index congruences

regular tree grammars

(deterministic) tree automata

regular tree expressions

monadic second-order formulas

. . .



Parses

Representations

enumeration

proof trees of combinatory categorial grammars

local tree languages

tree substitution languages

regular tree languages

Categories

category = tree of TS(A) with S = {/, /} and atomic categories A

e.g. D/E/E /C corresponds to /
(
/(/(D, E), E),C

)
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Combinatory Categorial Grammars

Combinators (Compositions)
Composition rules of degree k are

ax/c, cy → axy (forward rule)

cy, ax /c → axy (backward rule)

with y = |1c1 |2 · · · |kck

Examples:
C D/E/D /C

D/E/D︸ ︷︷ ︸
degree 0

D/E/D D/E /C
D/E/E /C︸ ︷︷ ︸
degree 2
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Combinatory Categorial Grammars

Combinatory Categorial Grammar (CCG)
(Σ,A, k, I, L)

terminal alphabet Σ and atomic categories A

maximal degree k ∈ N ∪ {∞} of composition rules

initial categories I ⊆ A
lexicon L ⊆ Σ× C(A) with C(A) categories over A

Notes:

always all rules up to the given degree k allowed

k-CCG = CCG using all composition rules up to degree k
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Combinatory Categorial Grammars
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2-CCG generates string language L with L ∩ c+d+e+ = {c id iei | i ≥ 1}
for initial categories {D}

L(c) = {C}
L(d) = {D/E /C , D/E/D /C}
L(e) = {E}



Combinatory Categorial Grammars

allow (deterministic) relabeling (to allow arbitrary labels)

tree t min-height bounded by k
if the minimal distance from each node to a leaf is at most k

Theorem
(Under relabeling) Class of proof trees of 0-CCGs
= class of min-height bounded binary regular tree languages

joint work with Marco Kuhlmann
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Combinatory Categorial Grammars

ax/(by) byα/c
axα/c c
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Combinatory Categorial Grammars

Properties

3 simple

7 ambiguity (several explanations for each recognized tree)

7 not closed under Boolean operations
(union/intersection/complement: 3/?/7∗)

3 closed under (non-injective) relabelings

? decidability of membership for subregular classes (0-CCG & 1-CCG)
of a regular tree language



Tree Languages

Representations

enumerate trees

proof trees of combinatory categorial grammars

local tree languages

tree substitution languages

regular tree languages

Local tree grammar [Gécseg, Steinby 1984]
Local tree grammar = �nite set of legal branchings
(together with a set of root labels)

G = (Σ, I, P) with I ⊆ Σ and P ⊆
⋃
k∈N Σ× Σk
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Local Tree Languages

Example (with root label S)

S→ NP1 VP2 VP2 → MD VP3
NP2 → NP2 PP VP3 → VB PP NP2
MD→ must . . .
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Local Tree Languages

not closed under union

these singletons are local
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Local Tree Languages

Properties

3 simple

3 no ambiguity (unique explanation for each recognized tree)

7 not closed under Boolean operations
(union/intersection/complement: 7/3/7)

7 not closed under (non-injective) relabelings

3 locality of a regular tree language decidable



Tree Languages

Representations

enumerate trees

proof trees of combinatory categorial grammars

local tree languages

tree substitution languages

regular tree languages

Tree substitution grammar [Joshi, Schabes 1997]
Tree substitution grammar = �nite set of legal fragments
(together with a set of root labels)

G = (Σ, I, P) with I ⊆ Σ and �nite P ⊆ TΣ(Σ)



Tree Languages

Representations

enumerate trees

proof trees of combinatory categorial grammars

local tree languages

tree substitution languages

regular tree languages

Tree substitution grammar [Joshi, Schabes 1997]
Tree substitution grammar = �nite set of legal fragments
(together with a set of root labels)

G = (Σ, I, P) with I ⊆ Σ and �nite P ⊆ TΣ(Σ)



Tree Substitution Languages

Typical fragments [Post 2011]
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Derivation step ξ ⇒G ζ

ξ = c
[
root(t)

]
and ζ = c

[
t
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for some context c and fragment t ∈ P



Tree Substitution Languages

Tree substitution grammar G = (Σ, I, P)

for each fragment t ∈ P with root label σ

σ
=⇒G

t

generated tree language

L(G) = {t ∈ TΣ(∅) | ∃σ ∈ I : σ ⇒∗G t}
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Tree Substitution Languages

not closed under union

these languages are tree substitution languages individually
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(exchange subtrees below the indicated cuts)
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Tree Substitution Languages

not closed under intersection
these languages L1 and L2 are tree substitution languages individually
for n ≥ 1 and arbitrary x1, . . . , xn ∈ {a, b}

S’

x1 S

x1 S

x2 S

x2 S

x3 S

xn−1 S

xn S

xn c

∈ L1

S’

x1 S

x2 S

x2 S

x3 S

x3 S

xn−1 S

xn−1 S

xn c

∈ L2

but their intersection only contains trees with x1 = x2 = · · · = xn
and is not a tree substitution language



Tree Substitution Languages

not closed under intersection
these languages L1 and L2 are tree substitution languages individually
for n ≥ 1 and arbitrary x1, . . . , xn ∈ {a, b}

S’

x1 S

x1 S

x2 S

x2 S

x3 S

xn−1 S

xn S

xn c

∈ L1

S’

x1 S

x2 S

x2 S

x3 S

x3 S

xn−1 S

xn−1 S

xn c

∈ L2

but their intersection only contains trees with x1 = x2 = · · · = xn
and is not a tree substitution language



Tree Substitution Languages

not closed under complement

this language L is a tree substitution language
S

A

A

A′

A′

a

∈ L

S

B

B

B′

B′

b

∈ L

but its complement is not

(exchange as indicated in red)



Tree Substitution Languages

not closed under complement

this language L is a tree substitution language
S

A

A

A′

A′

a

∈ L

S

B

B

B′

B′

b

∈ L

S

A

A

A′

A′

b

/∈ L

S

B

B

A′

A′

a

/∈ L

but its complement is not
(exchange as indicated in red)



Tree Substitution Languages

Properties

3 simple

3 contain all �nite and co-�nite tree languages

7 ambiguity (several explanations for a generated tree)

7 not closed under Boolean operations
(union/intersection/complement: 7/7/7)

3 can express many �nite-distance dependencies
(extended domain of locality)



Tree Substitution Languages

Open questions
multiple intersections more expressive?

which regular tree languages are tree substitution languages?

relation to local tree languages?

extension to weights

application to parsing

Thank you for your attention!
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Tree Substitution Languages

Experiment [Post, Gildea 2009]

grammar size Prec. Recall F1
local 46k 75.37 70.05 72.61

“spinal” TSG 190k 80.30 78.10 79.18
“minimal subset” TSG 2,560k 76.40 78.29 77.33

(on WSJ Sect. 23)



Tree Substitution Languages with Latent Variables

Experiment [Shindo et al. 2012]

F1 score
grammar |w| ≤ 40 full

TSG [Post, Gildea, 2009] 82.6
TSG [Cohn et al., 2010] 85.4 84.7

CFGlv [Collins, 1999] 88.6 88.2
CFGlv [Petrov, Klein, 2007] 90.6 90.1
CFGlv [Petrov, 2010] 91.8

TSGlv (single) 91.6 91.1
TSGlv (multiple) 92.9 92.4

Discriminative Parsers

Carreras et al., 2008 91.1
Charniak, Johnson, 2005 92.0 91.4
Huang, 2008 92.3 91.7
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