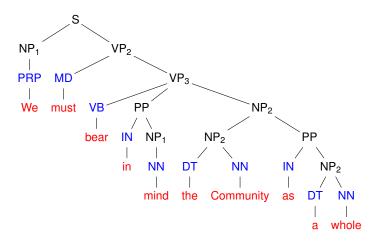
Characterizations of subregular tree languages

Andreas Maletti

Universität Leipzig, Germany andreas.maletti@uni-leipzig.de

CAALM, Chennai — January 24, 2019

Syntax tree for We must bear in mind the Community as a whole



Tree

 $T_{\Sigma}(V)$ for sets Σ and V is least set T of trees s.t.

• Variables: $V \subseteq T$

2 Top concatenation: $\sigma(t_1, \ldots, t_k) \in T$ for $k \in \mathbb{N}$, $\sigma \in \Sigma$, $t_1, \ldots, t_k \in T$

Tree

 $T_{\Sigma}(V)$ for sets Σ and V is least set T of trees s.t.

• Variables: $V \subseteq T$

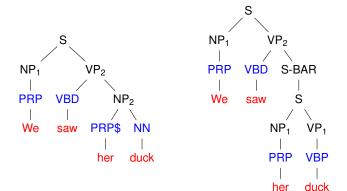
2 Top concatenation: $\sigma(t_1, \ldots, t_k) \in T$ for $k \in \mathbb{N}$, $\sigma \in \Sigma$, $t_1, \ldots, t_k \in T$

• tree language = set of trees

Constituent Syntax Trees

Syntax tree is not unique

(weights are used for disambiguation)



Representations

• enumeration

Parses

Representations

- enumeration
- proof trees of combinatory categorial grammars
- local tree languages
- tree substitution languages
- regular tree languages

Parses

Representations

- enumeration
- proof trees of combinatory categorial grammars
- Iocal tree languages
- tree substitution languages
- regular tree languages

Regular tree language

- $L \subseteq T_{\Sigma}(\emptyset)$ regular iff \exists congruence \cong (top-concatenation) on $T_{\Sigma}(\emptyset)$ s.t.
 - ≅ has finite index (finitely many equiv. classes)
 - **2** \cong saturates *L*; i.e. $L = \bigcup_{t \in L} [t]_{\cong}$

Examples for $\Sigma = \{\sigma, \delta, \alpha\}$:

• 2 equivalence classes (L and $\mathcal{T}_{\Sigma}(\emptyset) \setminus L$)

 $L = \{t \in T_{\Sigma}(\emptyset) \mid t \text{ contains odd number of } \alpha\}$

Examples for $\Sigma = \{\sigma, \delta, \alpha\}$:

• 2 equivalence classes (L and $\mathcal{T}_{\Sigma}(\emptyset) \setminus L$)

 $L = \{t \in T_{\Sigma}(\emptyset) \mid t \text{ contains odd number of } \alpha\}$

• 3 equivalence classes ("no σ ", "some σ , but legal", illegal)

 $L' = \{t \in T_{\Sigma}(\emptyset) \mid \sigma \text{ never below } \delta\}$

Regular tree grammar [Brainerd, 1969]

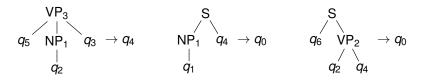
- $G = (Q, \Sigma, I, P)$
 - alphabet Q of nonterminals and initial nonterminals $I \subseteq Q$
 - alphabet of terminals Σ
 - finite set of productions P ⊆ T_Σ(Q) × Q (we write r → q for productions (r, q))

Regular tree grammar [Brainerd, 1969]

 $G = (Q, \Sigma, I, P)$

- alphabet Q of nonterminals and initial nonterminals $I \subseteq Q$
- alphabet of terminals Σ
- finite set of productions P ⊆ T_Σ(Q) × Q (we write r → q for productions (r, q))

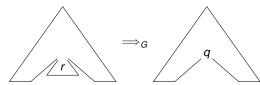
Example productions



Derivation semantics and recognized tree language

Regular tree grammar $G = (Q, \Sigma, I, P)$

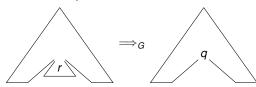
• for each production $r o q \in P$



Derivation semantics and recognized tree language

Regular tree grammar $G = (Q, \Sigma, I, P)$

• for each production $r \to q \in P$



• generated tree language

 $L(G) = \{t \in T_{\Sigma}(\emptyset) \mid \exists q \in I \colon t \Rightarrow^*_G q\}$

<u>Recall</u> 3 equivalence classes ("no σ ", "some σ , but legal", illegal)

 $L' = \{t \in T_{\Sigma}(\emptyset) \mid \sigma \text{ never below } \delta\}$

$$C_1 = [\alpha]$$
 $C_2 = [\sigma(\alpha, \alpha)]$ $C_3 = [\delta(\sigma(\alpha, \alpha), \alpha)]$

<u>Recall</u> 3 equivalence classes ("no σ ", "some σ , but legal", illegal)

 $L' = \{t \in T_{\Sigma}(\emptyset) \mid \sigma \text{ never below } \delta\}$

$$\mathcal{C}_1 = [\alpha] \qquad \qquad \mathcal{C}_2 = [\sigma(\alpha, \alpha)] \qquad \qquad \mathcal{C}_3 = [\delta(\sigma(\alpha, \alpha), \alpha)]$$
Productions with nonterminals $\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3$

 $\begin{aligned} \alpha \to \mathcal{C}_{1} & \delta(\mathcal{C}_{1},\mathcal{C}_{1}) \to \mathcal{C}_{1} \\ \sigma(\mathcal{C}_{1},\mathcal{C}_{1}) \to \mathcal{C}_{2} & \sigma(\mathcal{C}_{1},\mathcal{C}_{2}) \to \mathcal{C}_{2} & \sigma(\mathcal{C}_{2},\mathcal{C}_{1}) \to \mathcal{C}_{2} & \sigma(\mathcal{C}_{2},\mathcal{C}_{2}) \to \mathcal{C}_{2} \\ \delta(\mathcal{C}_{1},\mathcal{C}_{2}) \to \mathcal{C}_{3} & \delta(\mathcal{C}_{1},\mathcal{C}_{3}) \to \mathcal{C}_{3} & \delta(\mathcal{C}_{2},\mathcal{C}_{1}) \to \mathcal{C}_{3} & \delta(\mathcal{C}_{2},\mathcal{C}_{2}) \to \mathcal{C}_{3} \\ \delta(\mathcal{C}_{2},\mathcal{C}_{3}) \to \mathcal{C}_{3} & \delta(\mathcal{C}_{3},\mathcal{C}_{1}) \to \mathcal{C}_{3} & \delta(\mathcal{C}_{3},\mathcal{C}_{2}) \to \mathcal{C}_{3} & \delta(\mathcal{C}_{3},\mathcal{C}_{3}) \to \mathcal{C}_{3} \\ \sigma(\mathcal{C}_{1},\mathcal{C}_{3}) \to \mathcal{C}_{3} & \sigma(\mathcal{C}_{2},\mathcal{C}_{3}) \to \mathcal{C}_{3} & \sigma(\mathcal{C}_{3},\mathcal{C}_{1}) \to \mathcal{C}_{3} & \sigma(\mathcal{C}_{3},\mathcal{C}_{2}) \to \mathcal{C}_{3} \\ \sigma(\mathcal{C}_{3},\mathcal{C}_{3}) \to \mathcal{C}_{3} & \sigma(\mathcal{C}_{3},\mathcal{C}_{3}) \to \mathcal{C}_{3} & \sigma(\mathcal{C}_{3},\mathcal{C}_{3}) \to \mathcal{C}_{3} \end{aligned}$

Properties

- ✓ simple
- most expressive class we consider
- ambiguity, (several explanations for a generated tree) but can be removed
- ✓ closed under all Boolean operations (union/intersection/complement: √/√/√)
- ✓ all relevant properties decidable (emptiness, inclusion, ...)

Characterizations

- finite index congruences
- regular tree grammars
- (deterministic) tree automata
- regular tree expressions
- monadic second-order formulas
- ...

Representations

- enumeration
- proof trees of combinatory categorial grammars
- local tree languages
- tree substitution languages
- regular tree languages

Representations

- enumeration
- proof trees of combinatory categorial grammars
- local tree languages
- tree substitution languages
- regular tree languages

Categories

- category = tree of $T_S(A)$ with $S = \{/, \setminus\}$ and atomic categories A
- e.g. $D/E/E \setminus C$ corresponds to $\setminus (/(/(D, E), E), C)$

Combinators (Compositions)		
Composition rules of degree k are		
$egin{array}{ccc} ax/c, & cy & ightarrow & axy\ cy, & axackslash c & ightarrow & axy \end{array}$	(forward rule) (backward rule)	
with $y = c_1 _2 \cdots _k c_k$		

Combinators (Compositions)		
Composition rules of degree <i>k</i> are		
$egin{array}{ccc} ax/c, & cy & ightarrow & axy\ cy, & axackslash c & ightarrow & axy \end{array}$	(forward rule) (backward rule)	
with $y = c_1 _2 \cdots _k c_k$		

Examples:

Combinatory Categorial Grammar (CCG)

 $(\boldsymbol{\Sigma},\boldsymbol{A},\boldsymbol{k},\boldsymbol{I},\boldsymbol{L})$

- terminal alphabet Σ and atomic categories A
- maximal degree $k \in \mathbb{N} \cup \{\infty\}$ of composition rules
- initial categories $I \subseteq A$
- lexicon $L \subseteq \Sigma \times C(A)$ with C(A) categories over A

Combinatory Categorial Grammar (CCG)

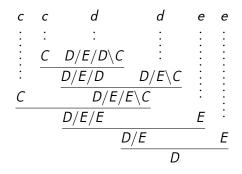
 (Σ, A, k, I, L)

- terminal alphabet Σ and atomic categories A
- maximal degree $k \in \mathbb{N} \cup \{\infty\}$ of composition rules
- initial categories $I \subseteq A$
- lexicon $L \subseteq \Sigma \times C(A)$ with C(A) categories over A

Notes:

- always all rules up to the given degree k allowed
- k-CCG = CCG using all composition rules up to degree k

Combinatory Categorial Grammars



2-CCG generates string language \mathcal{L} with $\mathcal{L} \cap c^+ d^+ e^+ = \{c^i d^i e^i \mid i \ge 1\}$ for initial categories $\{D\}$

$$L(c) = \{C\}$$

$$L(d) = \{D/E \setminus C, D/E/D \setminus C\}$$

$$L(e) = \{E\}$$

Combinatory Categorial Grammars

- allow (deterministic) relabeling (to allow arbitrary labels)
- tree *t* min-height bounded by *k* if the minimal distance from each node to a leaf is at most *k*

Theorem

(Under relabeling) Class of proof trees of <u>0-CCGs</u> = class of min-height bounded binary regular tree languages

joint work with Marco Kuhlmann

Theorem

(Under relabeling) Class of proof trees of <u>1-CCGs</u> ⊊ class of binary regular tree languages

Theorem

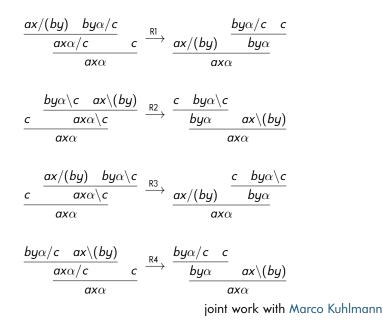
(Under relabeling) Class of proof trees of <u>1-CCGs</u> ⊊ class of binary regular tree languages

Theorem

(Under relabeling*) Class of proof trees of ∞ -CCGs \subsetneq class of simple context-free tree languages

joint work with Marco Kuhlmann

Combinatory Categorial Grammars



Properties

- 🗸 simple
- X ambiguity (several explanations for each recognized tree)
- not closed under Boolean operations (union/intersection/complement:
- closed under (non-injective) relabelings
- ? decidability of membership for subregular classes (0-CCG & 1-CCG) of a regular tree language

Representations

- enumerate trees
- proof trees of combinatory categorial grammars
- local tree languages
- tree substitution languages
- regular tree languages

Representations

- enumerate trees
- proof trees of combinatory categorial grammars
- local tree languages
- tree substitution languages
- regular tree languages

Local tree grammar [Gécseg, Steinby 1984]

Local tree grammar = finite set of legal branchings (together with a set of root labels)

$G = (\Sigma, I, P)$ with $I \subseteq \Sigma$ and $P \subseteq \bigcup_{k \in \mathbb{N}} \Sigma \times \Sigma^k$

Example (with root label S)

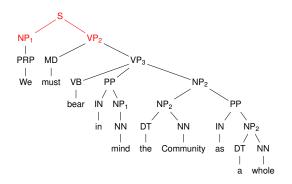
 $\begin{array}{l} \mathsf{S} \rightarrow \mathsf{NP}_1 \; \mathsf{VP}_2 \\ \mathsf{NP}_2 \rightarrow \mathsf{NP}_2 \; \mathsf{PP} \\ \mathsf{MD} \rightarrow \mathsf{must} \end{array}$

 $\begin{array}{l} \mathsf{VP}_2 \rightarrow \mathsf{MD} \; \mathsf{VP}_3 \\ \mathsf{VP}_3 \rightarrow \mathsf{VB} \; \mathsf{PP} \; \mathsf{NP}_2 \end{array}$

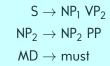
Example (with root label S)

 $\begin{array}{c} \mathsf{S} \rightarrow \mathsf{NP}_1 \ \mathsf{VP}_2 \\ \mathsf{NP}_2 \rightarrow \mathsf{NP}_2 \ \mathsf{PP} \\ \mathsf{MD} \rightarrow \mathsf{must} \end{array}$

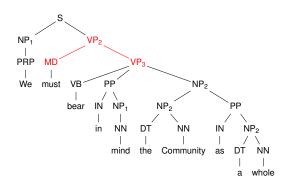
 $\begin{array}{l} \mathsf{VP}_2 \rightarrow \mathsf{MD} \; \mathsf{VP}_3 \\ \mathsf{VP}_3 \rightarrow \mathsf{VB} \; \mathsf{PP} \; \mathsf{NP}_2 \end{array}$



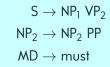
Example (with root label S)



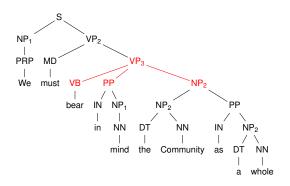
 $\begin{array}{l} \mathsf{VP}_2 \to \mathsf{MD} \; \mathsf{VP}_3 \\ \mathsf{VP}_3 \to \mathsf{VB} \; \mathsf{PP} \; \mathsf{NP}_2 \end{array}$



Example (with root label S)



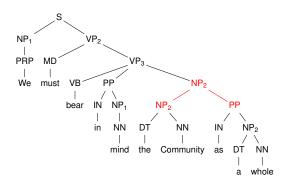
 $\begin{array}{l} \mathsf{VP}_2 \to \mathsf{MD} \; \mathsf{VP}_3 \\ \mathsf{VP}_3 \to \mathsf{VB} \; \mathsf{PP} \; \mathsf{NP}_2 \end{array}$



Local Tree Languages

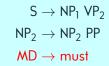
Example (with root label S)

 $S \rightarrow NP_1 VP_2$ $NP_2 \rightarrow NP_2 PP$ $MD \rightarrow must$ $\begin{array}{l} \mathsf{VP}_2 \to \mathsf{MD} \; \mathsf{VP}_3 \\ \mathsf{VP}_3 \to \mathsf{VB} \; \mathsf{PP} \; \mathsf{NP}_2 \end{array}$

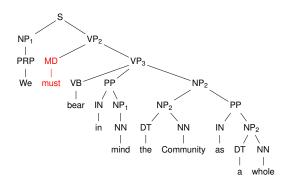


Local Tree Languages

Example (with root label S)

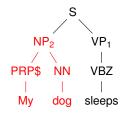


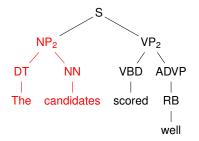
 $\begin{array}{l} \mathsf{VP}_2 \to \mathsf{MD} \; \mathsf{VP}_3 \\ \mathsf{VP}_3 \to \mathsf{VB} \; \mathsf{PP} \; \mathsf{NP}_2 \end{array}$



not closed under union

• these singletons are local

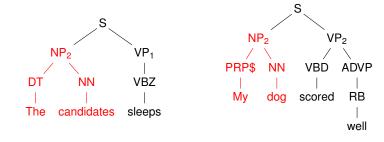




• but their union cannot be local

not closed under union

• these singletons are local



• but their union cannot be local

(as we also generate these trees — overgeneralization)

Properties

- 🗸 simple
- no ambiguity (unique explanation for each recognized tree)
- not closed under Boolean operations (union/intersection/complement: X/√/X)
- X not closed under (non-injective) relabelings
- Iocality of a regular tree language decidable

Representations

- enumerate trees
- proof trees of combinatory categorial grammars
- local tree languages
- tree substitution languages
- regular tree languages

Representations

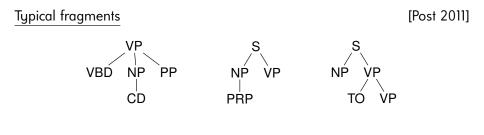
- enumerate trees
- proof trees of combinatory categorial grammars
- Iocal tree languages
- tree substitution languages
- regular tree languages

Tree substitution grammar [Joshi, Schabes 1997]

Tree substitution grammar = finite set of legal fragments (together with a set of root labels)

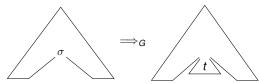
 $G = (\Sigma, I, P)$ with $I \subseteq \Sigma$ and finite $P \subseteq T_{\Sigma}(\Sigma)$

Tree Substitution Languages



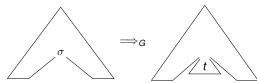
 Tree substitution grammar $G = (\Sigma, I, P)$

• for each fragment $t \in P$ with root label σ



Tree substitution grammar $G = (\Sigma, I, P)$

• for each fragment $t \in P$ with root label σ



• generated tree language

$$L(G) = \{t \in T_{\Sigma}(\emptyset) \mid \exists \sigma \in I \colon \sigma \Rightarrow_{G}^{*} t\}$$

$$S(NP_1(PRP), VP_2)$$

 $VP_2(MD, VP_3(VB, PP, NP_2))$

PRP(We) MD(must)

 $\frac{S(NP_1(PRP), VP_2)}{VP_2(MD, VP_3(VB, PP, NP_2))}$

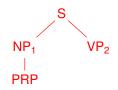
PRP(We) MD(must)

Derivation

S

 $\frac{S(NP_1(PRP), VP_2)}{VP_2(MD, VP_3(VB, PP, NP_2))}$

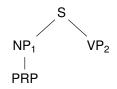
PRP(We) MD(must)



$$S(NP_1(PRP), VP_2)$$

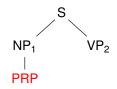
 $VP_2(MD, VP_3(VB, PP, NP_2))$

PRP(We) MD(must)



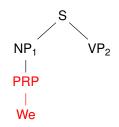
$$\begin{array}{l} S \big(NP_1(PRP), VP_2 \big) \\ VP_2 \big(MD, VP_3 (VB, PP, NP_2) \big) \end{array}$$

PRP(We) MD(must)



$$\begin{array}{l} S \big(NP_1(PRP), VP_2 \big) \\ VP_2 \big(MD, VP_3 (VB, PP, NP_2) \big) \end{array}$$

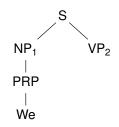
PRP(We) MD(must)



$$S(NP_1(PRP), VP_2)$$

 $VP_2(MD, VP_3(VB, PP, NP_2))$

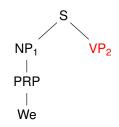
PRP(We) MD(must)



$$S(NP_1(PRP), VP_2)$$

 $VP_2(MD, VP_3(VB, PP, NP_2))$

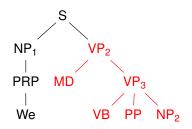
PRP(We) MD(must)



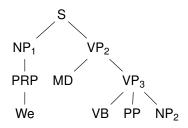
$$S(NP_1(PRP), VP_2)$$

 $VP_2(MD, VP_3(VB, PP, NP_2))$

PRP(We) MD(must)



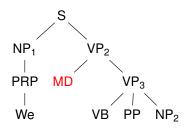
$$\begin{array}{ll} S(NP_1(PRP), VP_2) & PRP(We) \\ VP_2(MD, VP_3(VB, PP, NP_2)) & MD(must) \end{array}$$



$$S(NP_1(PRP), VP_2)$$

 $VP_2(MD, VP_3(VB, PP, NP_2))$

Derivation

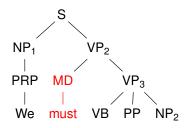


PRP(We) MD(must)

$$S(NP_1(PRP), VP_2)$$

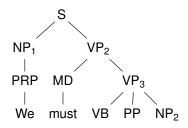
 $VP_2(MD, VP_3(VB, PP, NP_2))$

Derivation



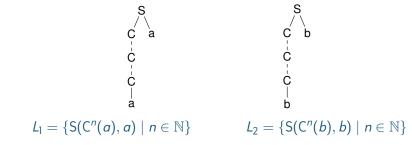
PRP(We) MD(must)

$$\begin{array}{ll} S(NP_1(PRP), VP_2) & PRP(We) \\ VP_2(MD, VP_3(VB, PP, NP_2)) & MD(must) \end{array}$$



not closed under union

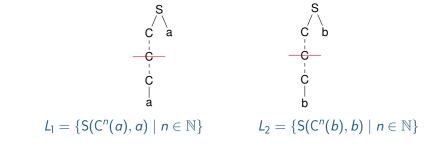
• these languages are tree substitution languages individually



• but their union is not

not closed under union

• these languages are tree substitution languages individually



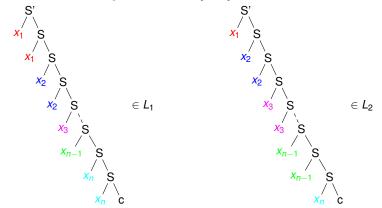
but their union is not

(exchange subtrees below the indicated cuts)

Tree Substitution Languages

not closed under intersection

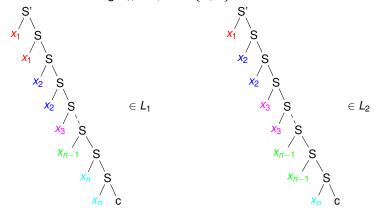
• these languages L_1 and L_2 are tree substitution languages individually for $n \ge 1$ and arbitrary $x_1, \ldots, x_n \in \{a, b\}$



Tree Substitution Languages

not closed under intersection

• these languages L_1 and L_2 are tree substitution languages individually for $n \ge 1$ and arbitrary $x_1, \ldots, x_n \in \{a, b\}$



• but their intersection only contains trees with $x_1 = x_2 = \cdots = x_n$ and is not a tree substitution language not closed under complement

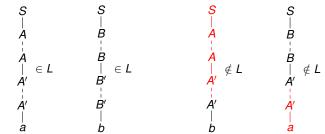
• this language L is a tree substitution language

 $egin{array}{ccccccc} S & S & & S & & \ A & B & & B & \ A & A & B & & B & \ A' & B' & B' & A' & B' & \ A' & B' & B' & \ A' & B' & & B' & \ A' & B' & & B' & \ A' & B' & & \ A' & \ A' & B' & \ A' & B' & \ A' & B' & \ A' & \ A'$

• but its complement is not

not closed under complement

• this language *L* is a tree substitution language



 but its complement is not (exchange as indicated in red)

Properties

- 🗸 simple
- contain all finite and co-finite tree languages
- X ambiguity (several explanations for a generated tree)
- not closed under Boolean operations (union/intersection/complement: X/X/X)
- can express many finite-distance dependencies (extended domain of locality)

Open questions

- multiple intersections more expressive?
- which regular tree languages are tree substitution languages?
- relation to local tree languages?

Open questions

- multiple intersections more expressive?
- which regular tree languages are tree substitution languages?
- relation to local tree languages?
- extension to weights
- application to parsing

Open questions

- multiple intersections more expressive?
- which regular tree languages are tree substitution languages?
- relation to local tree languages?
- extension to weights
- application to parsing

Thank you for your attention!

Experiment

[Post, Gildea 2009]

grammar	size	Prec.	Recall	Fı
local	46k	75.37	70.05	72.61
"spinal" TSG	190k	80.30	78.10	79.18
"minimal subset" TSG	2 <i>,</i> 560k	76.40	78.29	77.33

(on WSJ Sect. 23)

Tree Substitution Languages with Latent Variables

Experiment

[Shindo et al. 2012]

	F1 score			
grammar	<i>w</i> ≤ 40	full		
TSG [Post, Gildea, 2009] TSG [Cohn et al., 2010]	82.6 85.4	84.7		
CFGlv [Collins, 1999] CFGlv [Petrov, Klein, 2007] CFGlv [Petrov, 2010]	88.6 90.6	88.2 90.1 91.8		
TSGlv (single) TSGlv (multiple)	91.6 92.9	91.1 92.4		
Discriminative Parsers				
Carreras et al., 2008 Charniak, Johnson, 2005 Huang, 2008	92.0 92.3	91.1 91.4 91.7		