Fast detection of cycles in timed automata

B. Srivathsan

Chennai Mathematical Institute

Joint work with

A. Deshpande (IIT Bombay)

T. T. Tran, F. Herbreteau, I. Walukiewicz (LaBRI, Bordeaux)

Timed Automata

This cycle can be iterated infinitely often

This cycle cannot be iterated infinitely often

This cycle can be iterated infinitely often

Question

Given a cycle in the TA, is it ω -iterable?

Solution: find cycles in region graph or zone graph

$$(q_1, Z_1) \longrightarrow (q_1, Z_2) \xrightarrow{} (q_1, \mathbf{Z}) \xrightarrow{} (q_1, \mathbf{Z})$$

Solution: find cycles in region graph or zone graph

$$(q_1, Z_1) \longrightarrow (q_1, Z_2) \xrightarrow{} (q_1, \mathbf{Z}) \xrightarrow{} (q_1, \mathbf{Z})$$

Solution: find cycles in region graph or zone graph

$$(q_1, Z_1) \longrightarrow (q_1, Z_2) \xrightarrow{} (q_1, \mathbf{Z}) \xrightarrow{} (q_1, \mathbf{Z})$$

Solution: find cycles in region graph or zone graph

$$(q_1, Z_1) \longrightarrow (q_1, Z_2) - - - - - \rightarrow (q_1, \mathbf{Z}) - - - - - \rightarrow (q_1, \mathbf{Z})$$

Complexity: $\mathcal{O}(M^{n^2} \cdot |\sigma| \cdot n^3)$

M: max constant

 $|\sigma|$: length of cycle

n: no. of clocks

In this talk

 n^2 iterations are **sufficient** to conclude ω -iterability

A new algorithm with complexity $\mathcal{O}((|\sigma| + \log n) \cdot n^3)$

Coming next: n^2 iterations are sufficient to conclude ω -iterability

Preprocessing

Assume the cycle resets all clocks at least once

A witness for non-iterability

Same witness irrespective of actual constants

Witness might occur only after some iterations

► Is this witness **sufficient**?

► If so, how **efficiently** can we identify it?

► Is this witness **sufficient**?

Yes

► If so, how **efficiently** can we identify it?

$$n^2$$
 iterations; $\mathcal{O}((|\sigma| + \log n) \cdot n^3)$

Transition sequence $\sigma \rightarrow \text{transformation graph } G_{\sigma}$

H. Comon and Y. Jurski. Timed automata and the theory of real numbers (CONCUR'99)

Transition sequence $\sigma \rightarrow \text{transformation graph } G_{\sigma}$

H. Comon and Y. Jurski. Timed automata and the theory of real numbers (CONCUR'99)

Complexity: $\mathcal{O}(|\sigma| \cdot n^3)$

To reason about *k*-iterations

find shortest paths in k-fold composition

Witness

$$c + d < 0$$

Witness

$$c + d < 0$$

Result:
$$n^2$$
 iterations are sufficient

$$\mathcal{O}((\log n + |\sigma|) \cdot n^3)$$

Witness

$$c + d < 0$$

Result:
$$n^2$$
 iterations are sufficient

$$\mathcal{O}((\log n + |\sigma|) \cdot n^3)$$

Jaubert and Reynier. Quantitative Robustness Analysis of Timed Automata (FOSSACS'11)

Seen so far: An ω -iterability test for cycles

Coming next: An application of the ω -iterability test

Timed Büchi Automata

Run: infinite sequence of transitions

- ▶ accepting if infinitely often green state
- ▶ non-Zeno if time diverges $(\sum_{i>0} \delta_i \to \infty)$

Büchi non-emptiness problem

Given a (strongly non-Zeno) TBA, does it have an accepting run

Theorem [Alur-Dill'94]

This problem is **PSPACE-complete**

Typo in standard CSMA/CD model revealed by Büchi test

Solution to Büchi non-emptiness is through zone graphs

Iterability test can be used to accelerate detection of accepting cycles

	No i-test			With i-test					
Model	Visited nodes			Visited nodes			Iterability checks		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
CSMA/CD 5	12094	11315	14677	207	9	1331	1	1	1
CSMA/CD 6	16200	12931	25861	542	10	3523	1	1	1
Fischer 4	4362	365	136263	827	7	21806	9	1	1702
Fischer 5	74924	455	1171755	14205	7	352682	27	1	1928
FDDI 9	6015	2548	16874	1964	1251	12129	25	1	73
FDDI 10	7986	2845	32019	2125	1381	18925	29	1	73
Train Gate 4	12649	281	65358	1594	4	11844	3	1	92
Train Gate 5	622207	350	1304788	86302	4	241249	34	1	442

Conclusion

- An efficient test for ω -iterability
- ► Application to TBA emptiness

- More applications of ω -iterability test
- ▶ Better algorithms for TBA emptiness