Recursive po2DFA: Hierarchical Automata for FO-definable Languages

Simoni S. Shah

Joint work with Paritosh K. Pandya
Tata Institute of Fundamental Research, Mumbai

9 Feb, 2015
Overview

- Recursive *po2dfa* and its properties
- Interesting Example Languages
 - The STAIR languages
 - The Bounded-Buffer languages
- The recursion hierarchy and FO equivalence
- A Temporal Logic for the recursion hierarchy
- Comparison with other FO hierarchies
- Summary and Interesting Questions
Partially ordered - Only loops in transition graph are self-loops

Single Initial (s), Accept (t), Reject (r) state

The automaton loops in a given state, until a transition is enabled.
Never comes back to that state.

Two-way - On a transition, the head moves in either direction

States are partitioned into left-moving and right-moving states.
On a transition, head moves in the direction determined by the target state.

Deterministic - Unique run on any given word

The word is extended with end-markers: \(\triangleright w \triangleleft \)

Notion of acceptance: \(w, i \models M \)

Pointed language of an automaton: \(\{(w, i) \mid w, i \models M\} \)

Language of and automaton: \(L(M) = \{w \mid w, 1 \models M\} \)
This \textit{po2dfa} accepts words which begin with two successive \textit{a’s}.

\textbf{Figure: po2dfa M_{aa}}
Recursive \textit{po2dfa} or \textit{Rpo2dfa}

- \textit{Rpo2dfa}[1] = \textit{po2dfa}
- \textit{Rpo2dfa}[k] of recursion depth \(k \)
 - Partially ordered, Two-way, Deterministic
 - Transitions are guarded by Boolean functions of \textit{Rpo2dfa}[m], such that \(m \leq k - 1 \) (recursive)
 - If \(F = B(M_j) \) is a boolean function of \textit{Rpo2dfa} \(M_j \), assign \(\top \) to \(M_j \) iff \(w, i \models M_j \)

\[
\begin{array}{c}
\vec{q}_1 \\
\vec{F} \\
\vec{q}_2
\end{array}
\]

- For Determinism: Two transitions from the same state must have disjoint pointed languages
 \[\forall w, i . \ w, i \notmodels (F_1 \land F_2) \]
This $Rpo2dfa$ accepts words which have a bb factor before its first aa factor.

Figure: $Rpo2dfa$
Consider the alphabet $\Sigma = \{a, b, c\}$

$STAIR[k] = \Sigma^* (ac^*)^k a \Sigma^*$

$k + 1$ occurrences of a without any b's between them.

$STAIR[k] \in US^k$ and $STAIR[k] \notin US^{k-1}$

All $STAIR[k]$ languages may be expressed using $Rpo2dfa[2]$
The STAIR languages

Figure: Automaton M_k
Figure: Bounded Buffer DFA of buffer size n - denoted BB_n
Consider any word \(w \in \{a, b\}^* \). The \(BB_n \) accepts \(w \) if and only if

- No. of excessive \(a \)'s must never exceed the limit \(n \).

 i.e. \(\#a(u) - \#b(u) \leq n \) for any prefix \(u \).

- \(b \)'s must never overtake \(a \)'s.

 i.e. \(\#b(u) \leq \#a(u) \) for any prefix \(u \).

- \(\#a(w) = \#b(w) \)
Structure of a word over \(\{a, b\} \)

Mark each position in the word with its **scope index**:

- \(a \) scope index: Starting from 0, how far the DFA can go from that position, before returning to state 0.
- \(b \) scope index: What is the maximal state the run of the DFA can begin from, so that it reaches state 0, without reaching back to that state.

\[
\begin{array}{ccccccc}
\text{w} & a & a & b & a & b & b \\
\end{array}
\]

\[
\begin{array}{ccccccc}
0 & \rightarrow & 1 & \rightarrow & 2 & \rightarrow & k \\
\text{a} & \rightarrow & \text{b} & \rightarrow & \text{a} & \rightarrow & \text{b} \\
\text{b} & \rightarrow & \text{b} & \rightarrow & \text{b} & \rightarrow & \text{b} \\
\end{array}
\]
Structure of a word over \(\{a, b\} \)

Forward run

End-state oscillations

Backward run

Recursive PO2DFA
Bounded Buffer Automaton

Figure: *po2dfa* M_{aa}

Figure: Automaton M_{Ak}
Consider any word $w \in \{a, b\}^\ast$.

Theorem [PS15]
The BB_n accepts w if and only if

- No. of excessive a's must never exceed the limit n.
 $$\forall i \in \text{dom}(w). \ SI(w, i) = A_{n+1}$$

- b's must never overtake a's.
 $$\forall i \in \text{dom}(w). \ SI(w, i) = B_{l+1} \land \forall j < i. \ SI(w, j) \leq A_{l}$$

- $\#a(w) = \#b(w)$
 $$\forall i \in \text{dom}(w). \ SI(w, i) = A_{l+1} \land \forall j > i. \ SI(w, j) \leq B_{l}$$

We can construct $Rpo2dfa$ to check each of the above properties.
The Automata and its Hierarchy

The Recursion Hierarchy

The languages definable by $Rpo2dfa[k]$ forms a hierarchy

$$Rpo2dfa[k] \subsetneq Rpo2dfa[k + 1]$$

- $po2dfa$ are expressively equivalent to the level $\Delta_2[^<]$ of the alternation hierarchy [STV01, TW98].
- For every $Rpo2dfa[k]$, we may construct language-equivalent $\Sigma_{k+1}[<]$ and $\Pi_{k+1}[<]$ sentences.
- Hence, we are able to embed $Rpo2dfa[k]$ within the level $\Delta_{k+1}[<]$ of the alternation hierarchy.
- It can also be shown that the recursion hierarchy is strict: Bounded buffer problem separates these levels.
Recursive Temporal Logic (\(TL[X_\phi, Y_\phi]\)) with the recursive and deterministic\(\) Next and Prev modalities.

Syntax

\[
\phi ::= \top \mid a \mid X_\phi \phi \mid Y_\phi \phi \mid \phi \lor \phi \mid \neg \phi
\]

Theorem: There exists a constructive equivalence between \(TL[X_\phi, Y_\phi]\) and rpotdfa: For every \(TL[X_\phi, Y_\phi]\) formula of level \(k\) we may construct a language-equivalent \(Rpo2dfa[k]\) and vice versa.
Theorem: For every LTL formula, we may construct a language-equivalent $TL[X_\phi, Y_\phi]$ formula.

$$\bigcup_{k} Rpo2dfa[k] \equiv LTL \equiv FO$$

However, the recursion hierarchy is distinct from the Until-since hierarchy and the dot-depth hierarchy.
Some Related Work

- The logic $TL[X\phi, Y\phi]$ was defined by Kroger [Krö84], with “at-next” and “at-prev” modalities and showed equivalence to LTL.
- In [BT04], Borchert characterizes the logic, using weakly-iterated block products of the variety DA.
- [Bor04] defines the “at-hierarchy”, based on the nesting depth of “at”-modalities and shows that the hierarchy is strict.
 - Level $\Sigma_2[\prec]$ intersects with all levels of the at-hierarchy.
 - Level k of the at-hierarchy lies strictly below $\Delta_{k+1}[\prec]$ for every k.
 - The relation between at-hierarchy and US hierarchy was posed as an open question.
Relation between US hierarchy and recursion hierarchy:
The unary F and P modalities of LTL are indeed “for free” i.e. they do not result in increase in recursion depth of the corresponding $Rpo2dfa$.

Theorem

A given LTL formula ϕ may be expressed using a language-equivalent $Rpo2dfa$ whose recursion depth is equal to the modal depth of only U and S operators of ϕ.

Relies on our conversion from $TL[F, P]$ to $po2dfa$ [PS14, Sha12]
A sublogic of $TL[X_\phi, Y_\phi]$

Syntax of $TL^+[X_\phi, Y_\phi]$

$\psi := a | \phi | \psi \lor \psi | \neg \psi$

where $a \in \Sigma$ and ϕ is of the form

$\phi := \top | SP_\phi | EP_\phi | X_\psi \phi | Y_\psi \phi$

This “small” restriction brings down the expressiveness of the logic to $\Delta_2[\triangleleft]$.
Summary

- \(Rpo2dfa \) and the recursion hierarchy define an alternative automaton-characterization and hierarchy for FO-definable languages.
- It has a matching temporal logic and weakly iterated block products of the variety DA.
- \(Rpo2dfa \) are a subclass of recursive state machines, and comparable with alternating automata.
- The recursion hierarchy grows “faster” than the US-hierarchy but “slower” than the alternation hierarchy for FO over finite words.
- Level \(k \) of the US hierarchy can be embedded within level \(k + 1 \) of the recursion hierarchy.
- Level \(k \) of the recursion hierarchy can be embedded within level \(\Delta_{k+1} \) of the \(FO[<] \) alternation hierarchy.
- Complexity of word-membership, satisfiability, language-emptiness needs to be explored.
- How can we “flatten” these automata?
References I

Bernd Borchert.

Bernd Borchert and Pascal Tesson.
The atnext/atprevious hierarchy on the starfree languages, 2004.

Fred Kröger.
A generalized nexttime operator in temporal logic.

Paritosh K. Pandya and Simoni S. Shah.
Deterministic logics for ul.
Paritosh Pandya and Simoni S. Shah. Recursive \textit{po2dfa}: Hierarchical automata for \textit{fo}-definable languages (manuscript), 2015.

Denis Thérien and Thomas Wilke.
Over words, two variables are as powerful as one quantifier alternation.
THANK YOU!