
B u l b  
ELSEVIER Nuclear Physics B 520 (1998) 513-532 

Conformally invariant path integral formulation of 
the Wess-Zumino-Witten > Liouville reduction 

L. O'Raifeartaigh, V.V. Sreedhar 
School of Theoretical Physics, Dublin Institute for Advanced Studies, I0, Burlington Road, Dublin 4, Ireland 

Received 26 September 1997; accepted 8 January 1997 

Abstract 

The path integral description of the Wess-Zumino-Witten ~ Liouville reduction is formulated 
in a manner that exhibits the conformal invariance explicitly at each stage of the reduction 
process. The description requires a conformally invariant generalisation of the phase-space path 
integral methods of Batalin, Fradkin, and Vilkovisky for systems with first class constraints. The 
conformal anomaly is incorporated in a natural way and a generalisation of the Fradkin-Vilkovisky 
theorem regarding gauge independence is proved. This generalised formalism should apply to all 
conformally invariant reductions in all dimensions. A previous problem concerning the gauge 
dependence of the centre of the Virasoro algebra of the reduced theory is solved. 
(~) 1998 Elsevier Science B.V. 
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1. Introduction and the statement of  the problem 

In the course of  the past decade the classical Hamiltonian reduction of  Wess-Zumino-  

Witten (WZW)  theories to Toda theories using first class constraints, and the concomi- 

tant reduction of  Kac-Moody  algebras to W-algebras, has been formulated in consider- 

able detail [ 1 ]. The quantized version of  the reduction process has also been consid- 

ered, but mainly within the framework of  canonical quantisation [2] .  The elegance of  
the classical reduction process suggests, however, that the most natural framework for 

quantisation is through the functional integral. Accordingly, in this paper, we present 
the functional integral formulation for the quantisation of  the simplest WZW ~ Toda 

reduction, namely the reduction of  the SL(2,  ~ )  WZW theory to the Liouville theory. 

More general cases may be dealt with in an analogous fashion and will be considered 
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later. It turns out that a suitable refinement of the Batalin-Fradkin-Vilkovisky (BFV) 
formalism for constrained systems [3] introduced in this paper, does indeed allow the 
functional integral reduction to proceed in an elegant manner. 

The setting up of the functional integral reduction process presents a few subtleties 
that make it worthwhile to present our results in some detail. The main point is that 

the WZW ~ Liouville reduction should be conformally invariant but neither the usual 

Faddeev-Popov-BRST formalism, nor its BFV generalisation guarantees this. These for- 

mulations are primarily concerned with gauge invariance and to make them conformally 

invariant as well requires a non-trivial extension, especially in view of the conformal 

anomaly. We find such an extension, and within this generalised formalism, prove a 

conformally invariant generalisation of the Fradkin-Vilkovisky theorem regarding gauge 
independence. An important point, although we have not pursued it in this paper, is that 

the same procedure should be valid for any conformally invariant reduction and for any 
number of dimensions. 

The failure of the straightforward Faddeev-Popov-BRST method was pointed out in 

an earlier paper [4], where it took the form of a discrepancy between the values of 

the Virasoro centres obtained in two different gauges. More precisely, it turned out that 

while the two centres had the same functional form, the arguments were k and k - 2, 

where k is proportional to the WZW coupling constant K. Such a discrepancy suggests, 

of course, the existence of a conformal anomaly. But a straightforward application of 

the Faddeev-Popov method, or even the usual BFV method, produces no such anomaly. 
The generalised formalism that is developed in this paper, which allows us to keep track 

of both gauge and conformal invariances at each stage of the reduction, resolves this 

problem. 
There are a number of other novel situations that arise in the WZW ~ Liouville 

reduction. First, we note that although, as usual, the original WZW Hamiltonian is not 

bounded below because it is based on a non-compact group, the Hamiltonian for the 

reduced theory is positive definite and is thus physically acceptable. More importantly, 
the fact that it is not possible to choose configurations such that both the kinetic term and 

the potential of the Liouville action are simultaneously finite on a non-compact base- 

space means that the base-space must be compact. As a consequence of this, one has to 

beware of zero-modes when gauge fixing. In fact it is the gauge-invariant zero-modes 
which actually produce the Liouville interaction term in the reduced theory. 

This paper is organised in the following manner. In Section 2 we review the Hamilto- 
nian formalism of the SL(2,  •) WZW model and sketch the essential ingredients of the 
classical reduction procedure. As the BFV formalism is the natural one to use for the 
path integral approach, the basic structure of this formalism is presented in Section 3. 
The heart of the paper is contained in Section 4 in which we formulate the conformally 
invariant generalisation of the BFV formalism, and establish its gauge invariance by 
proving the analogue of the Fradkin-Vilkovisky theorem. In Section 5 we compare the 
path integral reduction process as formulated in this paper with earlier attempts in this 
direction. In Section 6 we give a summary of our results. 
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2. The classical SL(2, R) W Z W  ~ Liouville reduction 

The WZW model is defined on a two-dimensional manifold a 2  by the action [5] 

Swzw = ~ Tr(g - l  dg) • ( g - l  dg) - ~ Tr (g - l  dg) A (g - l  dg) Ix (g - l  dg).  

02 2 ~ 

(2.1) 

In the above g E G =_ SL(2 ,  R).  In what follows we shall set the coupling constant K/~  
equal to one, for convenience, and restore it when it becomes of interest in Section 4. 
The two-dimensional manifold is parametrized by the light-cone coordinates Zr and Zl 

defined by 

Z0 + E1 Z0 - -  Zl 
zr - - - ,  zt = (2.2) 

2 2 

The action is invariant under 

g --'>" g U ( Z r ) ,  g -~ V(Zt)g, (2.3) 

where u ( z r ) , v ( z t )  C G. The conserved Noether currents which generate the above 

transformations are given by 

Jr = (Org)g -1 , "It = g--I (alg) (2.4) 

and take their values in the infinite-dimensional Lie algebra of the model. In order to 

set up the Hamiltonian formalism, let us introduce the Gauss decomposition for the 

group-valued field g, 

g = exp (ao-+) exp (/30-3) exp (yo-_),  (2.5) 

where 0-+ and 0"3 are the generators of the SL(2,  R)  Lie algebra, 

0 :) ° 0) 
As is well known, the Gauss decomposition is not valid globally. This issue has been 

dealt with in detail in [6]. For simplicity, we restrict our present considerations to the 

coordinate patch that contains the identity. Similar results hold for the other patches. In 

terms of the local coordinates a, /3,  y on the group manifold the action can be rewritten 

a s  

Swzw = f d2z [(Ou/3) (0~'/3) + (Ota) (Ore) e x p ( - 2 / 3 ) ] .  (2.7) 

The momenta canonically conjugate to ce,/3, y respectively are defined, as usual, by 

6£  
~r~ = - -  - ( O~ y ) e x p ( - 2 / 3 ) ,  (2.8a) 

S(0oa) 
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(5£ 
are -  ~5(a09') - (0t~r)exp(-2/3), (2.8b) 

SZ; 
a r ~ -  a(Oo/3-------S - 20o/3. (2 .8c)  

The canonical Hamiltonian density Hwzw is 

1 2 Hwzw = ~ar~ + (/3') 2 + ar,~arr exp(2/3) + ar,~a' - ar~,9". (2.9) 

The currents can be expanded in the basis of the Lie algebra and the various components 
can be read off from the following equations: 

('r+) (i  2exp  
Jr 3 = 1 ot exp(-2/3)  & / 3 / ,  (2.10a) 
J r  0 exp(-2/3)  &9' / 

g = 9" exp(-2 /3)  1 Ot/3~ • (2.lOb) 

at- _9'2 exp(-2/3)  -29'  Otg" / 

The currents may also be expressed completely in terms of the phase-space variables 
or,/3, 9' and their conjugate momenta using the relations in Eq. (2.8). Further, by using 
canonical Poisson brackets for the phase-space variables, viz. 

{ a ( z ) ,  ar, ,(z ')} = {/3(z),  ar#(z') } = {y (z ) ,  arr(z ' )}  = ~5(z - z ' ) ,  (2.11) 

the rest being zero, we can check explicitly that the currents satisfy two independent 
copies of the infinite-dimensional Kac-Moody algebra 

{ J 3 ( Z r )  , Jr::~: (Zrt) } = -4-Jr:t:~(Zr --  Ztr), 

{ J 3 ( Z r ) ,  J3(Zrl) } = t~Zr~(Z r --  Ztr), 

{ J r + ( Z r ) ,  J r  (Zrt) } = 2 ( J  3 - Cgz/)~(Zr --  Ztr). (2.12)  

Similar equations are valid for the left currents. In terms of the currents, the Hamiltonian 
density H can be written in the Sugawara form 

I + -- art+.//- j 3 ) 2 l  (2.13) Hwzw = ~{J; J; + (j~)2 + + ( ~ s. 

The constraints we want to impose are 

qb r - -  "17 - m r  .~ O, q~ ! = J +  - m t .~ O, (2.14a) 

or equivalently, 

dpr =- q'r,~ - m r  ,~ O, dpl -~ ar~, --  ml  "~ O, (2.14b) 

where m r  and m l  are constants. However, these constraints are not consistent with the 
conformal invariance defined by the two Sugawara Virasoro operators 
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l { j+ j r  + (# )2} ,  ~ = ½{j+j~- + (j~)2} (2.15) % = 3  

because, as is well known, the currents Jr and Jt + are not conformal scalars, but spin-1 
fields. However, taking advantage of the fact that the Virasoros for Kac-Moody algebras 
are unique only up to the addition of a diagonalisable element of the algebra or its first 
derivative, we modify the Sugawara Virasoros above to define the components of the 
so-called improved energy momentum tensor, namely Tr and TI, 

Tr : ½{J+J7 + ( g ) 2  _ 20rg},  (2.16a) 

Tt = ½{J+JF + (j3)2 .at_ 20tJ~}. (2.168) 

The physical meaning of the additional terms is that they are just the 'improvement' 
terms necessary to make the energy-momentum tensor of the reduced theory traceless. 
From Eqs. (2.13) and (2.16), it is clear that the above modification is tantamount to 
adding only total derivative terms to the Hamiltonian density. Hence this modification 
leaves the Hamiltonian, and consequently the dynamics of the theory, invariant. With 
respect to the conformal group generated by the Virasoros (2.16), the currents J;- 
and at- are conformal scalars i.e. they now have conformal weights, denoted by w, as 
follows: 

w( JT ) = w( J +) = (0,0).  (2.17) 

The constraints in Eq. (2.14) are, therefore, compatible with this conformal group. 
The currents J+ and Jr- now have conformal weights (0, 2) and (2, 0) respectively. 

The phase-space variables a and y become primary fields of conformal weights (0, 1) 
and (1,0) ,  respectively, the field/3 becomes a conforrnal connection, while e 2~ becomes 
a primary field of weight ( 1, 1), i.e. it has the opposite conformal weight to the volume 
element d2z in the two-dimensional space. 

Upon imposing the constraints (2.14b) on the classical Hamiltonian density (2.9) of 
the SL(2, ~) WZW model, we get, apart from boundary terms, 

Oreduced 1 2 = ~Tr/~ + (/3~)2 + mrmte2~. (2.18) 

This is easily recognised as the expression for the Hamiltonian density of the classical 
Liouville theory. Since the constraints we impose are linear in the momenta, it is natural 
to use the phase-space path integral, rather than the configuration space path integral, for 
setting up the functional integral formulation of the above classical reduction. The next 
section, therefore, prepares us for the quantisation of this reduction using phase-space 
path integral methods. 

3. The B a t a l i n - F r a d k i n - V i l k o v i s k y  path integral  

As mentioned in Section I, our aim is to establish a functional integral formulation 
for the W Z W  --~ Liouvil le reduction. But since one of  the gauges we are interested in is 
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the WZW gauge in which the Lagrange multipliers are set equal to zero (the analogue 
of the temporal gauge in QED), the standard Faddeev-Popov [FP] method does not 
quite suffice. A more general method for quantizing constrained systems, namely the 
BFV procedure, needs to be used. Hence we begin by recalling the basics of the BFV 
procedure. Let 

Z = f d ( p q ) e x p [ - f d x d t [ p q - H ( p , q ) ] ] ,  (3.1) 

where p and q are any set of canonically conjugate variables, be the phase-space path 
integral which is to be reduced by a set of first class constraints cI)(q,p). Let A be a 
set of Lagrange multipliers, B their canonically conjugate momenta, and b, g and c, b 
be conjugate ghost pairs. Then define the BRST charge by 

f 
12= J dx [cqb+ bB] + . . . .  (3.2a) 

where the dots refer to terms which involve higher order ghosts which occur in the 
general case but do not occur in the WZW --~ Liouville reduction. The BRST charge 12 
also satisfies the nilpotency condition 

{12, 12} = 0. (3.2b) 

A minimal gauge-fixing fermion ~ is then defined as 

= gX + bA, (3.3) 

where X(P, q, A, B) is a set of gauge-fixing conditions. The BFV procedure now consists 
of inserting the following reduction factor: 

F = f d ( A B b b c e ) e x p [ - f d x d t  [be + {12,~'}]] (3.4) 

into the path integral in Eq. (3.1). 
From the non-zero Poisson brackets for the variables 

{q(x) ,p (x ' )}  = {A(x), B(x')  } = {b(x), e(x')  } = {c(x), b(x') } = 8 ( x  - x ' ) ,  

(3.5) 

we see that the gauge variations of the fields are 

{12, f ( q , p )  } = c{¢, f ( q , p )  }, (3.6a) 

{12, A} = -b ,  {12, B} = 0, (3.6b) 

{12, b} =~/', {12, g'} = B, (3.6c) 

{12, b} = {12, c} = 0, (3.6d) 

where f (q ,  p) is an arbitrary function of the phase-space variables. It follows from the 
above equations that 
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{12, ~ } = ( A~ + BX) + (-bb + ~[FP]c + ~[BFV]b) ,  (3.7) 

where the FP and BFV terms are defined by 

{qb(x),x(x')}= [ F P ] t 3 ( x - x ' ) ,  {B(x),x(x')}= [BFV]6(x-x'). (3.8) 

Note that in the definition of the reduction factor above, it is not necessary to include 

the term BA + cb in the action. This is because such a term can always be generated by 
letting X ~ X + c,4. By virtue of the Fradkin-Vilkovisky theorem, which says that the 
reduced functional integral ZR is independent of the choice of the gauge-fixing fermion 

~ ,  the above definition of the functional integral produces the correct quantum theory. 
Substituting for {12, ~'} in F and doing the bb integrations yields 

F= f d(ABgc) exp[-/dxdt[A~+Bx+~{[FP]+[BFV]O,}c]]. (3.9) 

Inserting this factor into Eq. (3.1) we get, for the reduced path integral, 

ZR = f d(pq)d(AB)d(c~) 

xexp[ - fdxd t  [pgI-H(p,q)+A~+Bx+g{[FP]+[BFV]O,}c]]. 

(3.10) 

Since, in general, X may depend on A as well as p and q, the above expression can be 

used to specialise to either the temporal gauge, for which [FP] = 0, or to gauges which 
do not depend on the Lagrange multipliers, for which [BFV] = 0, with equal facility. In 

the latter case, we can integrate over A, B, and the remaining ghosts E and c to obtain 
the standard Faddeev-Popov result [ 7 ], viz. 

ZR = f d(pq)6(~)S(x)ll[FP]l[exp [- f dxdt [pgl- H(p,q) ] ] . (3.11) 

In contrast, for temporal (or ghost-free) gauges, X = A ,.~ 0 and X ~- A ~ 0 we obtain, 
if we ignore intricacies regarding zero-modes, 

zR= f d(pq)[,(OD[,exp[- f dxdt[p~l-H(p,q)]]. (3.12) 

Thus, in this case, we obtain the unconstrained phase-space path integral modified by 
the determinant for a free field. The purpose of the more general formula for the path 
integral reduction factor in Eq. (3.10) is thus clear. It allows us to treat the WZW gauge 

for which A = 0 on the same footing as other gauges which do not involve the Lagrange 
multipliers. In the following we shall generalise the above results to the case at hand, 
viz. the WZW-+ Liouville reduction. 
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4. The  path integral reduetion procedure 

Armed with the basic details about the classical WZW ~ Liouville reduction and 
the Batalin-Fradkin-Vilkovisky formalism for quantizing constrained systems, from the 
previous sections, we may now return to the problem of constructing the corresponding 

quantum reduction in terms of the phase-space path integral. However, our application of 
the BFV formalism to the present problem differs from the standard approach reviewed 
in the last section in two respects. First, because we are dealing with independent 
left-handed and right-handed constraints, it is convenient to replace the standard BFV 
formalism by a light-cone BFV formalism. This is done by replacing the space and 
time directions by the two branches of the light-cone parametrised by the light-cone 
coordinates defined in Eq. (2.2). It is important, however, to state that since we use the 
Euclidean space formulation of the path integral, these light-cone coordinates actually 
get converted into holomorphic and anti-holomorphic coordinates. As a consequence of 
this all the fields in the theory will be functions of the latter complex coordinates and 
any function which depends only on zr or zt will be a holomorphic or anti-holomorphic 
function. This fact will have important repercussions in the next section. Second because 
the straightforward BFV formalism does not respect conformal invariance it has to be 
modified. We shall modify it in such a way that the conformal invariance is manifest at 

each stage. 
We begin by noting that the correct phase-space path integral measure for the uncon- 

strained WZW model is the symplectic measure d(af l7Tr~rp~rr) .  This is because an 
integration over the momenta with this measure produces the configuration space path 
integral with the correct group-invariant measure d ( e - 2 a a f l ~ ) ,  

lwzw(j)=fd(aBr*r~zraTr,)exp[-fd2z[~r~+~ra#+~rr,-Hwzw+jB]] 
=fd(e-2P~Bg')exp[-fd2z [Lwzw+jfl]]. (4.1) 

In the above formula for the Schwinger functional, Lwzw stands for the Wess-Zumino- 
Witten Lagrangian density and j ,  as usual, stands for an external source. The source is 
attached only to fl on account of the proposed reduction. 

As discussed in detail in the previous section, the imposition of the constraints, by 
means of the BFV formalism, will bring into the phase space path integral a reduction 
factor which involves the Lagrange multipliers, the ghosts, and their conjugate momenta. 
In the following we shall proceed to construct this factor. As a first step towards 
constructing the reduction factor, we write down the expression for the nilpotent BRS 
charge 12, following the usual BFV prescription, namely 

if2 ~ a r --~ {r ~ l}, Or = / a z r  a r ( Z ) ,  (4.2) 

where 
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~r(Z)  = Cr(Z)~r(Z) + b r ( z ) n r ( z ) .  (4 .3)  

In the above expression, Cr and br are ghost fields and Br is the momentum conjugate 
to the Lagrange multiplier field Ar to be introduced shortly. The exact splitting of the 
BRS charge into left and right sectors is to be expected because the constraints we are 
imposing are completely independent of each other. For the same reason, the gauge- 
fixing fermion also splits into left and right parts. The expression for the right part, 1~" r 
is given by 

~[tr(Z) : br(Z)Ar(Z)  q- Cr(Z)Xr(Z). (4 .4)  

A similar expression holds for the left part ~t. Xr in the above equation is the gauge- 
fixing condition for the constraint ~br. As a consequence of the left-right splitting, the 
reduction factor F factorises 

F = FrEt, (4.5) 

Fr and Ft being the corresponding factors for the right and left reductions respectively. 
We shall therefore restrict our attention henceforth to one of the sectors. Identical 
considerations apply naturally to the other sector. Notice that there are no higher order 
terms in the ghosts in the expression for the BRS charge. This is because the constraints 
have exactly vanishing Poisson brackets. It is straightforward to check that the Poisson 
bracket of the improved Hamiltonian density with the BRS charge given above is 
identically zero, i.e. the Hamiltonian is gauge invariant. The reduction factor Fr can be 
written as 

Fr = / d ( BrarCrCrbrbr ) exp [ -  / d2 z [ brOlCr + {,(2r, ~r } ] ] . (4.6) 

This factor differs from the standard BFV one only in the replacement of dr by Otc r 

due to the fact that 01 and Or play the role of the time derivative in the right-hand and 
left-hand sectors, respectively. 

As mentioned earlier, the straightforward application of the above BFV formalism is 
not expected to respect conformal invariance. This can be seen as follows. The physical 
(Liouville) gauge is defined by the condition Xr =-- a ,~ O. The important point to note 
is that a derivative of a would not suffice to fix the gauge completely. Accordingly, the 
natural conformal weight for Xr is 

w(X~) = (0, 1). (4.7) 

We shall now show that it is not possible to satisfy this condition without making some 
modifications. Since/2r generates gauge transformations, it is required to be a conformal 
scalar. And since the action is a scalar, the gauge-fixing fermion ~r  is required to have 
a conformal weight (1, 1). Using the fact that the constraint ~b~ is a conformal scalar, 
the above two requirements translate into the following equations for the weights of the 
various fields respectively 
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to(Cr) = to( br) q- to( n r )  = (0,  1) (4 .8a)  

and 

to( Cr ) "}- to( Xr ) = to( [~r ) 4- to( Ar ) = (1, 1). (4.8b) 

On the other hand, the conventional Poisson brackets for the fields, 

{ar(Z) ,B~(z ' ) }  = {br(z) ,~r(Z')}  = {Cr(Z),b~(z')} =6(Z~-  Z~r), (4.9) 

imply that the conformal weights for the fields satisfy the following equations: 

w(ar)  + to(Br) = w(br) + to(Cr) = to(Or) q- to(br) = (0, 1). (4.10) 

It is easy to see that the set of Eqs. (4.8) and (4.10) is not compatible with Eq. (4.7). 
It is in this sense that the BFV formalism does not automatically incorporate conformal 
invariance. 

The way in which we propose to overcome this difficulty is to introduce invertible 
auxiliary fields er and et with conformal weights 

to(er)  = (0,  1) ,  to(el) = (1 ,0) .  (4.11) 

At this stage the only purpose of these fields is to incorporate manifest conformal 
invariance but their significance will become clear later. We use these auxiliary fields to 
define new Poisson brackets 

{Ar(Z) ,Br(Z' )}  = {br(z),?~r(zt)} = el6(Zr -- Ztr), 

{Cr( Z ), b~(Z') } = ~3(Z~ -- Z~r). (4.12) 

Similar modifications apply on the left sector in which we introduce the right partner 

er. Upon using these new Poisson brackets, the requirement (4.10) is replaced by 

t o ( a r ) + t o ( B ~ ) = t o ( b r ) + t o ( ~ ) = ( 1 , 1 ) ,  to(Cr)+to(br)=(O, 1). (4.13) 

It is easy to check that the system of Eqs. (4.8) and (4.13) is compatible with Eq. (4.7). 
There is a certain amount of freedom in assigning weights to the fields so as to satisfy 
these equations but for later convenience we choose the following assignment: 

Ol qb r A r Br br br Cr Cr 
(4.14) 

(0 ,1)  (0 ,0)  (1 ,1)  (0 ,0)  (0 ,1)  (0 ,0)  (0 ,1)  (1,0)  

The modified reduction factor Fr is defined by 

f r=  f d rexp  [ -  f d2z [brOlCr + {Or,~tr}]] . (4.15) 

In the above equation we have deliberately refrained from explicitly writing down the 
measure dF at this stage as it will be constructed a little later taking into account the 
conformal properties of its constituent fields. 
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In passing, let us also mention that it is easy to verify that with the modified ghost 
algebra, the BRS charge satisfies the nilpotency condition 

{/2, g2} =0.  (4.16a 

It also generates the following gauge transformations: 

{d'2r, O~} = --Cr, {[2, Ar} = -e tbr ,  (4.16b 

{O, br}=d¢r, {f2, cr}= Brel, (4.16c 

the rest of the brackets being zero. The consistency with respect to the conformal 
dimensionality of the above relations is easily verified. Since the right-hand sides of 
the ghost Poisson brackets now involve er and et which could, in principle, depend 

on the background field /3, the generalised Jacobi identity involving 7rt~ and the two 
ghost fields b, g, or the Lagrange multipliers A, B impels ~'t~ to have non-vanishing 
Poisson brackets with either the set ( b , B )  or (g, A). We choose the latter option as it 
automatically ensures that the above modifications in the algebra of the ghosts do not 
tamper with the gauge invariance of the improved Hamiltonian density. This therefore 
reconciles the requirements of conformal invariance with the standard ingredients of the 
BFV procedure in a consistent manner. 

We may now readily evaluate the all important {Or, ~r} term in Fr using the modified 
algebra for the ghosts given in (4.12), to find 

{~Qr, ~tr} = -e lbrbr  + cr[FPlrcr + cr[BFWlrbr ÷ etBrXr + Arfbr, (4.17) 

where [FP]r and [BFV]r are conformal scalars defined by 

{ ~ ) r ( Z ) , X r ( Z t ) }  -~ [ F P ] r ~ ( Z r  - Z ; ) ,  { n r ( z ) , X r ( Z t ) }  -~ [ B F W ] r ~ ( Z r  - Z ; ) .  

(4.t8) 

As in Section 3, we now wish to perform the integration over the bb ghosts. Before we 
carry out these integrations, however, we have to define the correct phase-space path 
integral measure d F  for the Lagrange multipliers and their conjugate momenta as well 
as for all the ghosts. This is easily done from first principles. 

Let q~ (z )  be a quasi-primary field with a conformal dimension s = sl + Sr, st and Sr 

being the conformal weights corresponding to the left and right Virasoros, respectively. 
On an arbitrary manifold, we can expand the field as follows: 

c~( z ) = ~-~ cn~b,( z ), (4.19) 

where c, are constants and {~bn(z )} constitute a complete set of orthonormal functions. 
The orthonormality condition is expressed in a coordinate-invariant way through the 
equation 
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Thus the correct fields which have the square integrability property in the usual sense are 
scaled by factors of e(1/E)-Sre~ l/2)-st. Accordingly, the correct functional measure for 

the fields is d[e~l/E)-Sre~l/2)-s'qb]. Thus fields which have a conformal weight (0, l) 

need a factor of (el/er)1/2, fields which have a conformal weight ( l ,  0) need a factor 
of (er/el) 1/2, conformal scalars require a factor of (eret) 1/2, and fields which have a 
conformal weight (1, 1) require a factor of (eret)-l/2 

Such being the general rule for constructing the conformally invariant measure, we are 

now in a position to write down the correct expression for dF. Taking into consideration 
the assignment of the weights in Eq. (4.14), we see that most of the contributions 
coming from the various fields cancel requiring us to modify the standard measure 
d(BrArbrbrPrCr) by just a factor of et. Thus we have for the reduction factor 

Fr = f d( elBrAr[~rbrcrCr) 

×exp[-fd2Z[brOlCr-el[~rbr+cr[FP]rcr'q-C,r[gFV]rbr+elBrXr+arqbr]]. 

Integrating over the bb fields now gives 

Fr = f d(BrAre~C~) 

xexp[-/d2z[g~[FP]~cr+O~[BFV]~e~"OlCr+elBrX~+Ard~]] . (4.21) 

All the results we have obtained above are equally valid in the left sector of the reduction 
and can be obtained simply by exchanging the suffixes r and l and interchanging the 
two entries corresponding to the left and right Virasoros in the conformal weights of the 
fields. We therefore have for Ft 

Ft = f d( BlAtOlcl) 

The full reduction factor that needs to be introduced into the WZW path integral is 
therefore 

F = f d(BrBIArAlOrCrCtCt) 

×exp[-/d2Z[gr[FP]rcr+gr[BFV]rellOlcr+elBrXr+arq~r+{r~--~l}]]. 

(4.23) 

This expression is the conformally invariant generalisation of the standard BFV reduction 
factor in Eq. (3.9) for the present theory. Since this generalisation introduces non-trivial 
modifications to the standard BFV formalism, we have to prove that these modifications 
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are indeed consistent. We do this by proving an analogue of the Fradkin-Vilkovisky 
theorem for the gauge independence of the path integral of the reduced theory within 
our generalised formalism. 

Theorem 1. If the reduction factor F ( ~ )  is defined as in Eq. (4.23), and the gauge- 
fixing functions Xr and Xt are independent of the fields Br and Bt, as is usually the 
case, the reduced path integral 

I~ (j) = f d( otfly'rr,~'n'#'n'~,) 

is independent of ~ .  In fact, 

I~ (j) = f d (e r l e~-lB) e- f d2z [(°'~#)(e'''p) +mrmte2P+jfl] (4.25) 

which is manifestly independent of ~ .  

Proof Since the gauge-fixing functions Xr, Xt are independent of Br and Bt, we may 
integrate over the B fields in Eq. (4.23) to get 

F = I d (e r 1 e[- 1ArAlCrCrelCl ) ¢~(Xr) 6(  Xt ) 

×exp[-fd2Z[gr[FP]rcr+gr[BFV]rellOlcr+arq~rW{r+--~l}]]. (4.26) 

Using the fact that the constraints ~br and ~bt are expressible in terms of the momenta 7r~ 
and 7r r through Eq. (2.14b), we can introduce the above reduction factor into Eq. (4.24) 
and integrate over the momenta cry, ~-#, 7r r to get the gauged WZW model 

I~ ( j )  = . I  d( erl e t l  aflyArAte-2~)~(Xr)~(Xt) 

× e x p [ - f £ z  [Lcwzw +j /3]]  x G ,  (4.27a) 

where LGwzw stands for the Lagrangian density of the gauged Wess-Zumino-Witten 
model and is given by 

LGWZW = (O~fl) (3u'fl) + e-2C~(Ory + Al) (Otoz + A,.) - A i m  I -- A,.m,. (4.27b) 

and 

=Ja(..c..,cl)exp[-ja'z[..t ~O,]er+{r'.-'~')]]. (4.27c) 
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stands for the ghost factor. Notice that this expression differs from what one might 
naively expect for the gauged WZW path integral because of the appearance of the 
auxiliary fields er and et in the measure. But, as is amply clear from the foregoing, 
these are precisely the factors that enable us to carry out the reduction in a conformally 
invariant fashion. We now define the shifted fields 

At -+ ,4t = At + Or'y, Ar ~ A r  -- Ar + Ota. (4.28) 

Notice that Oto~ and 0r'~ can always be absorbed by a redefinition of the A fields as 
above, although the presence of zero-modes may not always allow us to completely 
eliminate the A fields themselves by shifting a and y appropriately. In terms of the 
shifted fields, Eqs. (4.27) become 

I¢, ( j)  = f d( e-~l e-[-l aflyAr,41e -2~) 6(Xr ) 6(Xt) 

and 

LGwzw = ( O~fl) ( 0~ ~) + e - 2 B  Arfiit - ,7ttmt - filrmr (4.29b) 

respectively, where we have dropped total derivative terms that appear in shifting the 

m r and mt dependent terms. The ghost factor G has the following nice interpretation 
in terms of the shifted fields. Recall that the gauge-fixing condition Xr is, in general, a 
function of both a and the Lagrange multiplier Ar which are independent of each other. 
If we work in terms of the shifted fields defined above, this is no longer true and we 
have 

Oa j ,~, k oa JAr [OAr J ~ Or, (4.30) 

where the partial derivatives in the above equation are to be taken keeping the fields 
appearing as subscripts fixed. Notice that the right-hand side of the above equation is 
just the argument in the determinant that results from performing the ghost integrations 
in Eq. (4.27c). Taking this into account, the measure in Eq. (4.29a) becomes 

d(e/-le[loLBy'~r'4le-Z~)~5(Xr)8('gl) [ Oa JL  

= d(erle~-laflyftrAte-2~)8(oO~5(y). (4.31) 

The ot and 3' integrations now drop out to yield 

I ¢ , ( j ) = f d ( e - / l e i - l f l ~ , r ~ t e - 2 a ) e x p [ - f d z z L c w z w ] .  (4.32a) 

Carrying out the gaussian integration over the A fields we then obtain 
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I ~ , ( j ) = f d ( e ~ l e l l ~ ) e x p [ - f d 2 z  [(Out3)(O~fl)-mrmte2[~+j~]], 

(4.32b) 

as required. We have therefore proved that the Fradkin-Vilkovisky theorem can be 

generalized to include conformal invariance. Although this was done within the context 

of the WZW ~ Liouville reduction, it is clear that the principle is sufficiently general 

to transcend the domains of the present theory and should apply to all conformally 

invariant gauge theories. 

We will now discuss the role played by the auxiliary fields. The crucial point to note 

is that they appear in the final result and because they have non-zero conformal weights, 

they can not be set equal to unity without breaking conformal invariance. Thus they are 

an intrinsic part of the reduction. 
On the other hand they appear only in the measure and only in the form of the 

product eret which has a conformal weight (1,1). It is this fact that allows us to use 

them without introducing any new dynamics since the conformal weights allow us to 

make the following natural identification: 

eret =- e 2~. (4.33) 

Moreover, if we regard e 2~ as v~,  where g is the determinant of a two-dimensional 

metric, Eq. (4.33) allows us to immediately recognise the er and et fields as the two 

components of a zweibein. It is interesting to note that had the reduction not been 
left-right symmetric, other combinations of the components of the zweibein would have 

occurred in the final results and these would have corresponded to genuine external 

fields. Using Eq. (4.33) in Eq. (4.32b), and reintroducing the WZW coupling constant 

K we get 

l ( j ) = f d ( e - 2 B ~ ) e x p [ - ~  fd2z[(O~)(O~)-mrmle2/3+jf l]] ,  (4.34) 
[ 7 r j  

where the allusion to ~" has been dropped for obvious reasons. 
As is well known [ 8 ], the exponential factor in the measure of Eq. (4.34) corresponds 

to the conformal anomaly and can be removed by making a suitable shift in the WZW 
coupling constant to yield 

l ( j)=fd~exp[-(K--2)fd2z[O~t30~'~--mrmte2~+J~]] " ¢ r  (4.35) 

This then is the Liouville theory that is the result of the reduction. It is well known [9] 
that the Virasoro centre for the above theory has the form 

= , (4.36) 

where k = K/27"r. In the next section, we shall give a simple interpretation of this 
formula. 
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5. Comparison with earlier path-integral results 

Although most quantized treatments of WZW ~ Liouville reductions use the canon- 
ical formalism [2],  the functional integral formalism was considered in Refs. [4,10]. 
In these references the Faddeev-Popov method was used and led to a Liouville theory. 
These references study the path integral in two special gauges, namely the Liouville 
gauge and the WZW gauge. It would therefore be reassuring to redo our analysis in 
these gauges in order to compare our results with these earlier works. In fact these 
gauges highlight the roles of the anomaly and the zero-modes respectively. We first 
examine the Liouville gauge. 

5.1. Liouville gauge 

In this gauge we have 

Xr-  a~O, Xt=- y,-~O (5.1) 

and hence it follows from Eqs. (4.18) that 

[FP]r,t = - 1 ,  [BFV]r,t = 0. (5.2) 

Substituting the above equalities into our expression for the generalised reduction factor 
Eq. (4.26), we get 

F = .fl d(erlellArAt~rCr~tCl)6(a)t~(y) 

xexp[ - fd2z  [grcr+ar(brq-{r~"~l}]]. (5.3) 

Doing the A integrations and the trivial ghost integrations we find that the BFV reduction 
factor is just 

F = detlle~-le~ -111&(dp~)6(dpl)6(a)6(y). (5.4) 

Inserting this factor into the unconstrained WZW phase-space path integral and carrying 
out the various delta function integrations as well as the gaussian 7r# integration we 
get, as expected, Eq. (4.32b). This result differs from the result of earlier path integral 
formulations of the problem by the appearance of the factor I let  I el-Ill in the measure. 
Since (e~et) -1 = e -2a according to Eq. (4.33), the use of the zweibein changes the 
Liouville measure from d(/3) to d(e-Z~B) and thus produces a conformal anomaly. As 
already mentioned, the insertion of this factor in the measure is equivalent to a change 
of k to k - 2 in the exponent and thus leads to a change 

h + 6  x/-k+----~. - - - , h + 6  x/k-2h+ (5.5) 
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in the Virasoro centre. The difference between the two expressions in Eq. (5.5) is the 

discrepancy that was mentioned in the Introduction and can now be seen to be due to 

the fact that the zweibein was not used in the earlier papers. 

5.2. WZW gauge 

This gauge is the analogue of the temporal gauge in QED and is defined by setting 

the Lagrange multipliers equal to zero, modulo zero modes. On a compact 2-space 

(whose compactness, we recall, is necessitated by the Liouville potential, which in turn 

is present because of the non-zero constants mr and mr) there is just one zero-mode for 
each A. To see this let us consider At, for example, and decompose it according to 

A ° + at, a,a , f d Z z  (erel ) - I  0 ^ Ar = = A~A~ = 0, (5.6) 

i.e. into a part /~1 r that can be gauged away and its orthogonal complement A °. In 
the above equation the gauge transformation parameter '~r has a conformal weight 

og(,hr) = (0, 1 ). The factor (erel) -1 in the integral comes from the requirement that the 
orthogonality condition be conformally invariant. Since the orthogonality must hold for 

arbitrary h~, it follows from a simple partial integration that 

--1 --1 0 0 3l(e r e I Ar) = 0 or A r = erel f (Zr) ,  (5.7) 

where f ( z r )  is an arbitrary holomorphic function. However, since there are no holo- 

morphic functions on a compact Riemann surface except the constant functions [ 11], 
we see that f(Zr) must be constant and thus the only normalised zero-mode is 

z ° = e r e l  f f v ~ '  where V = d2z e~et = d2z e 2t~. (5.8) 

A similar expression holds for A °. Thus the WZW gauge is 

erel 
Xr -~ el l ,4r  ~ O, AO = /,Zr W'  

erel 
Xt =- e-/-1At ~ 0, A ° = / z t - ~ ,  (5.9) 

where the/z 's  are arbitrary constants. Notice that this is a complete gauge fixing because 

it determines the gauge parameter ar up to a function A(z~) and the only such function 
is a constant which must be zero because Ar has a conformal weight (0, 1). Similar 

considerations apply for/It .  The measure for the Lagrange multipliers now becomes 

d( erZ e t l  A~At) = d(I.~rlzl)d( e r l  e[-l ArAt).  (5.10) 

The expressions for the X's imply that 

[FP] ~.t = 0, [BFV]r,I = - 1 .  (5.11) 

Substituting the above results in Eq. (4.27) and doing the ghost integrations yields 
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I (j) = f d( er %ll aBytZrlZl,~r,~te-2t3)6( e[-l,~r)6( e-Tl,~t) 

×lle7%ey'Orllexp [- f d2z [LGwzw + jfl]] . (5.12) 

The integration over the .,~ fields can now be performed using the gauge-fixing delta 
functions to yield 

l( j)  f d(aflye-2gl.trl.t,l)lle~lOlerlOrllexp[ f d2z 0 ] = - [LGwzw + j/3] , (5.13a) 

where 

L°wzw = (0u/3) (0~/3) + e- 2g ( Ol ~ q- a°r ) ( Or y + A °) - m~A°r - mtA~ 
I-6rmr ll, lml 

= (Oj,/3)(0t'/3) + e-2t~(Ota)(O~y) +/Zr/Zl v~eret  x/~eret 

(5.13b) 

In arriving at the above equation we have used the expressions for A°'s in Eq. (5.9) and 

the equality e~et = e 2# in Eq. (4.33). The integration over the cr and y fields produces 

a factor that exactly cancels the e -2~ factor in the measure and the I[ara;ll factor in the 
fermionic determinant. The path integral therefore reduces to 

l(j)=fd(e-71etlfl lZr~t)exp{-fd2z[(O~,fl)(O~'fl)+j¢~ 

+erel(l'~v I'tt x~vvmr-~vvmt)]}.  (5.14) 

The zero-modes can now be integrated without further ado to produce 

I ( j ) = / d ( e r ' e ~ - l f l ) e x p [ - f d 2 z  [(Oufl)(O~fl)-mrmle2~+jfl]], (5.15) 

where we have used Eq. (4.33) to set erel = e 2g. We have thus verified that the WZW 
gauge produces the same result as the Liouville gauge. From the foregoing discussion 
it is clear that the Liouville potential is actually due to the zero-modes. 

However, our interest here is not in verifying that the WZW gauge leads to the correct 
result but in comparing the final results with the expressions obtained in the previous 
papers [4,10]. In those papers the zero-modes were neglected and the WZW gauge was 
defined as Ar = At ~ O. As a result, the final expression in the WZW gauge was the 

same as in Eq. (5.15) but without the Liouville potential. The omission of the Liouville 
potential actually made no difference to the final results because the purpose of those 
papers was to compute the Virasoro centre; and for that purpose the only role of the 
Liouville potential is to require the use of the improved Virasoro operators. Since the 
improved Virasoros were used in any case, the result obtained for the centre in those 
papers was the correct one. 
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The fact that the earlier computations of the Virasoro centre in the WZW gauge are 

still valid allows us to draw two interesting conclusions. First, since the expression for 

the Virasoro centre is independent of mr and mr, there is a smooth transition for the 
Virasoro algebra to the case mt = mr = 0 even though the reduced system in the latter 
case does not require the 2-space to be compact. Second, since the earlier WZW-gauge 

computations are valid, they provide an interesting interpretation of the formula for the 
Virasoro centre in the Liouville theory which is not at all obvious in the context of the 

Liouville theory itself. In fact, they show that if the Liouville theory formula for the 

centre is expanded according to 

C = h + 6 ( ~ +  k ~ - 2 h )  2--k3kh-2h 2 h + 6 k ,  (5.16) 

it is just the sum of three independent centres, namely the centre for the SL(2,1~) WZW 

model, the centre for the ghosts, and the centre for the classical improvement term. The 
results of [4,10] show that a similar interpretation exists for Toda theories. 

6. Summary and conclusions 

We have introduced a generalisation of the Batalin-Fradkin-Vilkovisky formalism 

which allows us to incorporate conformal invariance into the usual procedure for the 

path integral quantisation of systems with first-class constraints. Although we have done 

this only for WZW --~ Liouville reduction in two dimensions it is clear that the procedure 
should apply to all conformally invariant reductions and should be independent of the 

dimension. In later papers we hope to apply it to WZW --0 Toda and Goddard-Olive 

reductions the latter of which will require a further generalisation of our analysis to 

include second class constraints. An essential feature of our procedure is the introduction 
of a zweibein which makes the conformal invariance manifest at each stage of the 
reduction. The two components of this zweibein appear in the final theory only as 

products of the form eret = e 2/~ where/3 is the Liouville field, and thus introduce non- 

trivial modifications of the reduction (actually a conformal anomaly) without introducing 

new fields. Our main result is that, in spite of the conformal anomaly, an analogue of 
the Fradkin-Vilkovisky theorem is still valid. 

An interesting feature of the WZW ~ Liouville (or indeed Toda) reductions is that 

the first-class constraints are obtained by setting the momenta not equal to zero but to 

constants mt and mr. When these constants are not zero the gauge fields (Lagrange 
multipliers) have zero-modes and it is precisely these zero-modes that produce the 
exponential Liouville interaction. 

Earlier papers, in which the straightforward Faddeev-Popov formalism was used, did 
not produce the conformal anomaly in the Liouville gauge, which led to a discrepancy 
in the expression for the Virasoro centre in the Liouville and WZW gauges. Our anal- 
ysis traces the origin of this discrepancy to the fact that the standard Faddeev-Popov 
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formalism, in spite of its appearance, is not conformally invariant. A modification using 
a zweibein produces a formalism which is both gauge and conformal invariant. 
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