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The origin of entanglement in a class of three-dimensional spin models, at low momenta,

is traced to topological reasons. The establishment of the result is facilitated by the
gauge principle which, in conjunction with the duality mapping of the spin models,
enables us to recast them as lattice Chern–Simons theories. The entanglement measures
are expressed in terms of the correlators of Wilson lines, loops, and their generalisations.
For continuous spins, these yield the invariants of knots and links. For Ising-like models,
they can be expressed in terms of three-manifold invariants obtained from finite group
cohomology — the so-called Dijkgraaf–Witten invariants.
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The history of modern physics is replete with stories of the progress that followed

every time an appropriate choice of gauge fields was made to account for the funda-

mental forces of nature. Inspired by these successes, we shall use the idea of gauge

invariance as a tour de force to gain insight into the origin of entanglement.

The need to understand the origin of quantum entanglement arises from the

recognition that it is the theoretical bedrock that supports the emerging revolution

in storing, processing, and retrieving information.1 A fundamental question that

naturally arises in this context is: What is the origin of entanglement in quan-

tum systems? We shall show that the gauge principle holds the key to unlock this

mystery.

The applicability of the gauge principle in this context follows from the realisa-

tion that purely quantum features with no classical analogues are usually associated

with non-trivial topology and are most elegantly captured by the gauge principle. A

staggeringly large set of examples which illustrate the role of topology in quantum

theory can be found in a variety of physical contexts.2–4
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We mention that an intriguing analogy between quantum entanglement and

classical topology was publicised by Arvind,5 following his serendipitous discovery

of a similarity between the entanglement properties of the GHZ state6 and the

curious linking properties of Borromean and Hopf rings, and further developed by

Kauffman and Lomonaco.7 The hope that the breakthrough in finding new topo-

logical invariants of knots and links8 may be used to characterise/classify entangled

quantum states, gave rise to some excitement. Progress in this programme was hin-

dered primarily because the rules to associate a closed loop to a quantum state, and

the snipping of a loop to a measurement, remain vague. In this work we circum-

vent this problem by approaching it from Heisenberg’s point of view. We thus deal

only with physically observable quantities which allows us to directly focus on the

intrinsic topological content of entanglement in a prototypical spin system namely,

the 3D Ising model. In the process, we discover unambiguous relations between

the usual measures of entanglement and the correlators of gauge-invariant observ-

ables in a lattice Chern–Simons theory. The latter produce knot and link invariants

when the gauge group is continuous.9 For finite gauge groups, the appropriate in-

variants, following from finite group cohomology, are called the Dijkgraaf–Witten

invariants.10

The Ising model is defined by the Hamiltonian H = −J
∑

〈ij〉 SiSj , where J > 0

and Si = ±1. Here i, j label the sites of a 3D cubical lattice and the 〈 〉 parentheses

indicate that the summation is over different, but nearest neighbour sites. The

positivity of J implies that the ferromagnetic state minimises the energy. For the

opposite sign of J , the antiferromagnetic state is favoured. As already motivated,

we proceed to replace the above Hamiltonian which couples spins at different sites,

by

HU = −J
∑

〈ij〉

SiUijSj (1)

in which the interaction between spatially separated spins is mediated by the gauge

field U . The Uij live on the links connecting sites i and j, are Z2-valued, and hence

equal to ±1. The gauged Ising model accommodates either a ferromagnetic or an

antiferromagnetic bond between various nearest neighbour sites. Such models play

a crucial role in understanding the behaviour of disordered systems and are called

spin glasses.11 In this paper, however, a spin glass is merely an expedient to replace

the action at a distance (of the order of the lattice spacing) between Ising spins by

an interaction mediated by the gauge fields Uij .

We define the partition function for the above model in the usual way as the

trace over the Gibbs’ measure, i.e. Z = Tr e−βHU where β = 1/kBT , kB being the

Boltzmann constant, and T , the temperature. In the first step, called quenching in

the language of spin glasses, we sum over all the spin degrees of freedom to get12

Z = coshJ
∑

U,V

e−SV −SCS , (2)
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where

SV = −J̃β
∑

�

∏

�

Vij , SCS = β
∑

〈ij〉

i
π

4

(

1 −
∏

�

V

)

(1 − U) and tanh J̃ = e−2J .

(3)

The Vij , like the Uij , are Z2-valued fields, but live on the links of the dual lattice.

The product of the dual gauge variables Vij around an elementary plaquette on the

dual lattice is indicated by the � under the product symbol. When the � appears

under the summation symbol, it is an instruction to sum over all such elementary

plaquettes. The SV term is recognised as the standard Wilsonian action for V . The

SCS term is a measure of the flux passing through a dual plaquette perpendicular

to a given link U on the primary lattice. It is a lattice Chern–Simons action. Two

crucial steps in arriving at the above result consist of an expansion of Z in the

characters of the Z2 group, and the introduction of the dual lattice variables. The

details can be found in Refs. 12 and 13. The generalisation to other finite abelian

groups Zp follows along the same lines,14 as does the limiting case p → ∞. The

latter corresponds to the familiar lattice U(1) Chern–Simons theory.15

At this stage, a few remarks are in order. First, from the continuum perspective,

for the case of a continuous group, this result is easily anticipated. It is well known

from Ref. 16 that a derivative expansion of the 3D fermionic determinant produces,

at the lowest two orders, the Chern–Simons and Maxwell terms. The result in (2)

is a lattice realisation of the above continuum result. Second, from a lattice point

of view, it is well known that the 3D Ising model is equivalent to a Z2 gauge theory

on the dual lattice.17 The Ising spins with nearest neighbour interactions on the

primary lattice have thus been traded for the V -fields with a Wilson action that

appears in (3). In the duality transformation, the U fields introduced by the gauge

principle are spectators and hence we arrive at a set of two gauge fields. Moreover,

since there is an inextricable linkage between the primary and dual lattices, each

link on the primary lattice pierces a plaquette of the dual lattice (and vice versa),

and the Chern–Simons action is a measure of this flux. Third, the noticeable dif-

ference between the continuum and lattice realisations of what is essentially the

same result is reminiscent of the lattice fermion doubling problem and has been

discussed before in attempts to discretise Chern–Simons terms.18 From a physical

point of view, this is a consequence of the fact that the Chern–Simons term couples

matter fields to the magnetic flux. In the present case, the Ising spins residing on

the lattice sites are the matter fields. The magnetic flux, in lattice gauge theory, is

defined by the plaquettes. There is no natural way of coupling these two objects

without doing violence to the structure of the lattice. This very fact was used by

Kantor and Susskind for one of the early models for anyons.19

Finally, we mention that anyonic models of quantum computation hold a lot

of promise because they are topological.20–22 Quite independently, remarkable

progress has been achieved by using statistical mechanical techniques to study spin
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glasses in theories of information processing.11,23 Interestingly, (2) establishes the

equivalence of the above two seemingly different approaches to the subject of fault-

tolerant quantum computation. More importantly, since the conceptual roots of the

former approach lie in topology, while those of the latter lie in gauge invariance, it

reinforces the idea anticipated at the beginning of this paper.

To proceed further, we note that although (3) does not treat U and V on the

same footing, the exponential of −SCS which appears in (2) is invariant under an

exchange of U and V .12 However, (2) itself is lop-sided because it does not have a

Wilson term associated with the U field. This suggests that in the next step, called

configurational averaging, we choose the weights such that the U ↔ V symmetry

is restored. This is tantamount to using HU + SU where SU = −K
∑

�

∏

�
Uij

instead of HU . It is clear from the context that, in this case, the plaquettes under

consideration belong to the primary lattice. If we now introduce the two-component

vector Ω = (U, V ) and the matrices M = σx and N = K(1 + σz)/2 + J̃(1 − σz)/2,

the partition function can be rewritten in the neat form

Z = cosh J
∑

Ω

e−S where S =
β

2

∑

〈ij〉

i
π

4

(

1 −
∏

�

Ω

)

M(1 − Ω) . (4)

The 〈ij〉 in the above equation refers to, as before, nearest neighbour sites, but

these could now be either on the primary or dual lattice. Also, a term of the form

−βN
∑

�

∏

�
Ωij has been dropped by taking the infrared (low momentum) limit.

Equation (4) is recognised as the lattice Chern–Simons theory — also referred to

as the BF-theory.

We are now in a position to examine the entanglement properties of Ising spins

in the above system. The object of central interest in studying entanglement is the

(reduced) density matrix. Once it is known, a relatively straightforward calculation

yields the von Neumann entropy S of the system through the standard formula

S = −Tr ρ ln ρ. The single particle reduced density matrix ρi, obtained by tracing

over all the spins except the ith spin, can be expanded as ρi = 1
2

∑3
α=0 cασα

i where

σ0 = 1 and σα6=0
i are the Pauli matrices at site i. A general expression for the

coefficients cα reads cα = Z−1〈σα
i P
∏

Γ(i,∞) Uij〉. The correlation function has been

modified by the path-ordered insertion of a string Γ of links connecting the point i

to ∞ making it path-dependent; the modification ensures that the density matrix

is gauge-invariant. In a similar fashion, we can obtain the two-particle reduced

density matrix by expanding it in terms of the tensor product of Pauli matrices

at the two sites under consideration: ρij = 1
4

∑3
α,β=0 cαβσα

i ⊗ σβ
j . The coefficients

of the expansion cαβ are the connected correlators of two Wilson lines. The two-

particle reduced density matrix is useful in calculating the amount of entanglement

localisable between the two chosen spins.24 Similar results hold, in general, for n-

particle entanglement. In each of these cases, the density matrix is expressed in

terms of correlators of gauge-invariant observables in a topological field theory,

i.e. topological invariants. The difference between two choices of the path Γ is a
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measure of the frustrations (plaquettes with an odd number of (anti-)ferromagnetic

bonds) enclosed by the loop formed by the two paths. There is another way to

obtain a closed loop from an open path namely, by imposing periodic boundary

conditions. If we choose this option, cα and cαβ are just the correlators of Wilson

loop observables in the lattice Chern–Simons theory.

Although the Wilson loop observables are gauge-invariant, they are not the only

interesting observables. Notice that the path connecting two points on the primary

lattice pierces one plaquette on the dual lattice with every step it advances, accu-

mulating a unit of flux in the process. Let us therefore consider the gauge-invariant

operator C = V −1UV obtained by dressing (conjugating) the string Uij by the

group-valued fields V . Labelling the dual lattice sites by barred coordinates, if V

runs from site ī to site j̄, V −1 runs in the opposite direction circumnavigating the

link U . We can use this operator instead of the Wilson loop to define the reduced

density matrices. It may be mentioned that because of duality, the above conju-

gation operation simply corresponds to local unitary transformations of nearest

neighbour spins on the dual lattice. Physically the operator C represents a tube of

dual plaquettes whose axis lies on the primary lattice with fixed end-points.

So far there is nothing quantum about the discussion of entanglement. Indeed,

the Ising spins we have considered take values ±1, much like classical bits; they

are not allowed to be in a superposition state. The density matrices we consid-

ered are purely thermal in nature, obtained, as they are, from the Gibbs’ measure.

This kind of entanglement is called thermal entanglement.25 By using the standard

Suzuki–Trotter11 method, however, we can map the 3D Ising spin glass to a 2D

Ising spin glass in a transverse magnetic field. The presence of the transverse mag-

netic field allows for transitions between the two classical states of the Ising spins

and makes the system quantum mechanical. Care must be exercised in defining the

spin-flip operation: σz and σx behave differently under gauge transformations be-

cause of their non-commutativity. Furthermore, the situation here is slightly more

complicated because the Suzuki–Trotter mapping from a d-dimensional classical

statistical mechanical system to the (d − 1)-dimensional quantum system, requires

the classical system to have different couplings along the missing (replica) dimension

and the remaining dimensions. This makes the duality transformation technically

more involved. The results in so far as the entanglement (now truly quantum) are

concerned, follow the same pattern. The correlation functions that appear in this

case are those of the quantum spins on a 2D square sub-lattice of the original 3D lat-

tice whose third dimension acts as the discretised time direction. To summarise, the

reduced density matrices that one is interested in, both for thermal and quantum

entanglement, are expressed in terms of topological invariants.

It is difficult to obtain a ready physical insight into the correlation functions that

appear above. Let us therefore consider a simpler case. Recall that similar results

hold for all Abelian groups Zp. In particular for p → ∞, we have a U(1) Chern–

Simons gauge theory on the lattice. In this case, it is well known that the correlation

function of a pair of Wilson loops is the Gauss’s linking number. The operator C
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is the lattice generalisation of the operator introduced in the continuum BF theory

in Ref. 26, and gives it a nice physical interpretation as a tube of dual plaquettes.

Its correlation function gives the Alexander–Conway polynomial of the (possibly)

knotted axis of a plaquette-tube, with fixed endpoints on the primary lattice. The

partition function Z is also a topological invariant, namely, the Reidemeister tor-

sion of the three-manifold defined by the boundary conditions.28 Curiously enough,

the entanglement properties of the GHZ-state which has a non-zero tripartite en-

tanglement, but a zero bipartite entanglement when a measurement is made along

the ẑ direction on one of the qubits, cannot be accounted for by the simple linking

number invariants. This property is exactly like the corresponding property of the

Borromean rings which, however, are known to be distinguished from a disjoint

union of unlinked rings by a higher order topological invariant, namely the Massey

triple product.27 An Abelian topological theory cannot produce this invariant. It

is therefore necessary to treat the spins as genuinely non-Abelian objects, like one

is forced to in the presence of a transverse magnetic field. On the other hand, if

the measurement is along the x̂ direction, the entanglement between the remaining

qubits can be easily accounted for by the linking number invariants that describe

the Hopf rings. In general, therefore, one needs to associate a whole class of links

to a given quantum state. The parallels between the entanglement properties of

such a quantum state and the topological entanglement of the class of appropri-

ately chosen braids and links5 are then not so intriguing, when viewed in terms of

the invariants that appear naturally in the form of correlators of gauge-invariant

operators in a topological field theory.

Intuitively, topological invariants are insensitive to the presence, or changes, in

length scales; this being the only distinction between a lattice and the continuum,

we could borrow the relevant topological invariants from the simple continuum U(1)

theory in the above discussion. The topological invariants in that case are easy to

visualise. This luxury is lost if the group under consideration is finite, e.g. Z2 in the

case of the Ising model. Unlike classical gauge symmetries which come from con-

tinuous local invariances, finite groups usually appear as remnants of a continuous

symmetry group which is spontaneously broken. In such instances, these groups are

known to give rise to cocycles in quantum field theory. This is a reflection of non-

trivial group cohomology. In the present case, the finite group appears because we

are dealing with spin systems. The construction of topological theories with finite

groups follows from a deep result due to Dijkgraaf and Witten,10 who showed that

the Chern–Simons actions for a finite group H are in one-to-one correspondence

with the elements of the cohomology group H4(BH, Z), BH being the classifying

space of H . The isomorphism H4(BH, Z) ≈ H3(H, U(1)) further implies that these

actions are algebraic 3-cocycles, ω ∈ H3(H, U(1)), which take values in U(1). The

presence of non-trivial group cohomology in general leads to non-trivial G bundles

and the path integral involves a summation over all possible bundles. Unlike in

the U(1) theory, in which a determinantal expression can be derived for the par-

tition function,28 the resulting invariants in the case of finite groups — called the
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Dijkgraaf–Witten invariants — are not expressible in terms of determinants. Ana-

logues of linking numbers in topological gauge theories with finite gauge groups

have also been worked out by Ferguson.29

As the first closing remark, we mention that the details omitted in this paper

can be found in a longer publication under preparation. Second, we wish to point

out that many interesting problems remain. The connections between quantum

entanglement and more sophisticated topological invariants like the Jones poly-

nomial, require a non-Abelian generalization of the results of this paper. Similar

investigations in two and four dimensions should produce interesting connections

between quantum entanglement and the intersection theory on the moduli space

of Riemann surfaces, and Donaldson’s invariants respectively. Finally, it is not an

exaggeration to say that this letter offers a mere glimpse of a new vista which is

beginning to unfold, on the relevance of finite group cohomology in the studies of

entanglement in spin glasses. We hope to dilate on these issues, in the near future.

Acknowledgments

I thank M. Panero and Siddhartha Sen for some incisive comments and also A. P.

Balachandran, T. R. Govindarajan, I. Tsutsui and A. Wipf for their interest and

discussions. It is a pleasure to acknowledge the hospitality of D. O’Connor and

T. Dorlas of the Dublin Institute for Advanced Studies where this work was com-

pleted.

References

1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information

(Cambridge Univ. Press, 2001).
2. R. Jackiw, Topological Investigations of Quantized Gauge Theories (Les Houches

School on Theoretical Physics: Relativity, Groups, and Topology, 1983).
3. D. J. Thouless, Topological Quantum Numbers in Nonrelativistic Physics (World

Scientific, 1998).
4. M. I. Monastyrsky, Topology in Condensed Matter (Springer, 2005).
5. P. K. Arvind, in Potentiality, Entanglement and Passion-at-a-Distance, eds. R. S.

Cohen et al. (Kluwer, 1997), pp. 53–59.
6. D. M. Greenberger, M. A. Horne and A. Zeilinger, in Bell’s Theorem, Quantum

Theory, and Conceptions of the Universe, ed. M. Kafatos (Kluwer, 1989).
7. L. H. Kauffman and S. J. Lomonaco, Jr., New J. Phys. 4, 73 (2002).
8. E. Witten, Commun. Math. Phys. 121, 351 (1989).
9. R. K. Kaul, T. R. Govindarajan and P. Ramadevi, hep-th/0504100.

10. R. Dijkgraaf and E. Witten, Commun. Math. Phys. 129, 393 (1990).
11. H. Nishimori, Statistical Physics of Spin Glasses and Information Processing: An

Introduction (Oxford Univ. Press, 2001).
12. T. Senthil and M. P. A. Fisher, Phys. Rev. B 63, 134510 (2001).
13. E. Fradkin, B. A. Huberman and S. H. Shenker, Phys. Rev. B 18, 4789 (1978).
14. R. Savit, Rev. Mod. Phys. 52, 453 (1980).
15. D. H. Adams, Phys. Rev. Lett. 78, 4155 (1997).
16. A. J. Niemi and G. W. Semenoff, Phys. Rev. Lett. 51, 2077 (1983).

M
od

. P
hy

s.
 L

et
t. 

A
 2

00
7.

22
:2

01
-2

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

ro
f.

 D
r.

 S
re

ed
ha

r 
V

in
na

ko
ta

 o
n 

11
/0

8/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



January 18, 2007 23:53 WSPC/146-MPLA 02254

208 V. V. Sreedhar

17. F. Wegner, J. Math. Phys. 12, 2259 (1971).
18. S. Sen et al., Phys. Rev. E 61, 3174 (2000).
19. R. Kantor and L. Susskind, Nucl. Phys. B 366, 533 (1991).
20. A. Yu Kitaev, Ann. Phys. 303, 2 (2003).
21. M. H. Freedman et al., Bull. Am. Math. Soc. 40, 31 (2002).
22. H. Bombin and M. A. Martin-Delgado, Phys. Rev. A 73, 062303 (2006).
23. N. Sourlas, Nature 339, 693 (1989).
24. F. Verstraete, M. Popp and J. I. Cirac, Phys. Rev. Lett. 92, 027901 (2004).
25. M. C. Arnesen, S. Bose and V. Vedral, Phys. Rev. Lett. 87, 017901 (2001).
26. A. S. Cattaneo, P. Cotta-Ramusino and M. Martellini, Nucl. Phys. B 436, 355 (1995).
27. W. S. Massey, J. Knot Th. Ramifications 7, 393 (1998).
28. A. S. Schwarz, Lett. Math. Phys. 2, 247 (1978).
29. K. Ferguson, J. Knot Th. Ramifications 2, 11 (1993).

M
od

. P
hy

s.
 L

et
t. 

A
 2

00
7.

22
:2

01
-2

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

ro
f.

 D
r.

 S
re

ed
ha

r 
V

in
na

ko
ta

 o
n 

11
/0

8/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.


