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Abstract

It has recently been shown that the maximal kinematical invariance group of polytropic flu-

ids, for smooth subsonic flows, is the semidirect product of SL (2,R) and the static Galilei

group G. This result purports to offer a theoretical explanation for an intriguing similarity,

that was recently observed, between a supernova explosion and a plasma implosion. In this

paper we extend this result to discuss the symmetries of discontinuous flows, which further val-

idates the explanation by taking into account shock waves, which are the driving force behind

both the explosion and implosion. This is accomplished by constructing a new set of Rankine–

Hugoniot conditions, which follow from Noether�s conservation laws. The new set is dual to

the standard Rankine–Hugoniot conditions and is related to them through the SL (2,R) trans-

formations. The entropy condition, that the shock needs to satisfy for physical reasons, is also

seen to remain invariant under the transformations.
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1. Introduction

It has recently been observed that the density profiles of a supernova explosion

and an inertial confinement plasma implosion [1–3] are strikingly similar. An empir-

ical basis for this intriguing duality between explosion and implosion was given by
Drury and Mendonça [4] who pointed out that Euler�s equations of fluid dynamics,

which describe both the systems, are form–invariant under a set of non-linear coor-

dinate transformations viz. ~x !~x=t, t fi �1/t. The minus sign in the time transfor-

mation maps an explosion to an implosion and the inversion allows large time

scales to be mapped to small time scales and vice versa. These transformations sug-

gest that the maximal kinematical invariance group G of fluid dynamics is larger

than the standard Galilei group. It is now known that this larger group is a

twelve-parameter semidirect product, G ¼ SLð2;RÞ ^ G [5,6], where G is the nine-pa-
rameter, connected, static Galilei group:

~x ! R~xþ~vt þ~a; t ! t ð1Þ
and SL (2,R) is the group consisting of the transformations:

t ! at þ b
ct þ d

; ~x ! ~x
ct þ d

with ad� bc ¼ 1: ð2Þ

Physically, the three-parameter SL (2,R) group consists of time translations, scale

transformations, and a one-parameter set of time-dependent scale transformations

called expansions. The transformations proposed by Drury and Mendonça are a spe-

cial case of the SL (2,R) transformations with (a,b,c,d) = (0,�1,1,0). The SL (2,R)

part of G is therefore important for a better understanding of the explosion–implo-

sion map.
It should be pointed out that the naive expectation of using time-reversal invari-

ance, to explain the similarity between explosion and implosion, is untenable here

since the length and timescales involved in the two systems are drastically different.

Invoking scaling arguments is not of much help since, although a composition of

time-reversal and suitable scalings leaves the equations of fluid mechanics and the

Reynolds number invariant, it has the property of reversing the direction of time�s
arrow and thereby violates the second law of thermodynamics. As a consequence,

when applied to a shock wave, such transformations violate entropy conditions that
define the physicality of the shock. As is well-known, however, both the supernova

explosion and the plasma implosion are driven by the formation and propagation of

a shock wave. It is therefore important to examine whether the SL (2,R) symmetry,

that purports to explain the observed duality, respects the physicality of the shock

wave. With this in view, we extend the study of [5]—in which the explanation of

explosion–implosion duality based on the symmetry group G was restricted to

smooth, subsonic flows—to examine shock waves. It will be shown that shock wave

solutions are consistent with the symmetries of the maximal kinematical invariance
group G in the following precise sense.

A shock in a fluid is described mathematically by the well-known Rankine–

Hugoniot jump conditions [7]. So the natural question to ask is: What happens
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to these conditions under the action of the SL(2,R) group? This question is best an-

swered not in the framework of the partial differential equations of fluid dynamics,

but by reverting back to their so-called primitive form, i.e., expressing them as con-

servation laws. The conservation laws are completely equivalent to the partial dif-

ferential equations for smooth flows, but produce the Rankine–Hugoniot jump
conditions for discontinuous flows in a natural and well-defined manner. The con-

nection with SL (2,R) is made by appealing to Noether�s theorem which asserts that

corresponding to every continuous symmetry, there exists a conserved charge.

Anticipating that the SL (2,R) transformations will mix the conservation laws cor-

responding to various symmetries, we construct the Noether charges corresponding

to them and the boost transformations, in addition to the well-known ones for rota-

tions, space and time translations. We then use the attendant conservation laws to

establish a new set of jump conditions. It turns out that the new conditions are iden-
tically satisfied if the standard conditions for mass, momentum and energy conserva-

tion are satisfied. Although seemingly redundant because of this reason, the new set

holds independently; following, as it does, from the symmetries of the fluid equations.

In fact, these conditions are useful to prove the form-invariance of the Rankine–

Hugoniot conditions under the SL (2,R) transformations. Thus, to each physical

system governed by the fluid dynamics equations two independent, but physically

equivalent, sets of jump conditions can be associated, the two being related by

SL (2,R) transformations. We conclude that the SL (2,R) transformations map the
Rankine–Hugoniot conditions of the explosion to the dual Rankine–Hugoniot con-

ditions of the implosion and vice versa. Further, by specialising to the Drury–Men-

donça transformations, ~x !~x=t, tfi �1/t, we show that the jump conditions for

boosts and expansions, along with the continuity equation for mass conservation,

provide an independent, albeit equivalent, description of the shock. They may be

viewed either as the dual of the standard Rankine–Hugoniot conditions, or, in the

language of passive coordinate transformations, as the standard Rankine–Hugoniot

conditions in the dual coordinate system corresponding to the choice
(a,b,c,d) = (0,�1,1,0). Similar dual conditions exist for each choice of the

SL (2,R) parameters.

It is well-known that Rankine–Hugoniot conditions describe not only shocks, but

other discontinuities like slip and contact discontinuities, for example. Therefore, the

map between the dual sets of Rankine–Hugoniot conditions would be relevant to

explosion–implosion duality only if both the sets refer to shocks. In other words,

only those Rankine–Hugoniot conditions that describe a shock and only those

SL (2,R) transformations which map a shock to a shock are of interest for explo-
sion–implosion duality. Moreover, Rankine–Hugoniot conditions say nothing about

the physicality of the shock—this information is contained in additional inequalities

for its entropy that the shock needs to satisfy. Physical shocks are distinguished from

others because their entropy always increases across the shock front. We verify

explicitly that this requirement is unaffected by the SL (2,R) transformations.

The physicality of the map between explosion and implosion may also be estab-

lished in the following subtle manner: Although the notions of viscosity and heat

conduction lose their meaning in the immediate vicinity of the shock, because the
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changes in all the quantities they depend on are so great, they do play an important

role in the formation and maintenance of a shock discontinuity [8]. In particular, the

positivity of the coefficients of viscosity and heat conduction guarantees that the

shock satisfies the appropriate entropy conditions [8,9]. Hence, Euler�s equations

ought to be considered as a special case of a more general set of fluid equations with
vanishingly small viscosity. Requiring the sign of the viscosity to remain unchanged

under the transformations establishes the physicality. The Navier–Stokes equa-

tions—which are the obvious choice for including viscosity— are not invariant under

the full SL (2,R) part of G, but only under the standard Galilean transformations.

However, a more general set of fluid equations with viscosity fields transforming

appropriately under the SL (2,R) transformations has a maximal kinematical invari-

ance group given by G [5]. Hence we use these equations for our purpose of exam-

ining the behaviour of non-vanishing viscosity under the SL (2,R) transformations.
Similar arguments apply for heat conduction, but it does not bring in any new qual-

itative features and hence is omitted from further discussion.
2. Symmetries of fluid dynamics

In this section we briefly recapitulate the results of [5]. The general fluid equations

in n-dimensional space are [9]

Dq ¼ �q~r�~u; ð3Þ

qD~u ¼ �~rp þ ~V ; ð4Þ

De ¼ �ðeþ pÞ~r�~u; ð5Þ
where

D ¼ o

ot
þ~u � ~r

and

V i ¼ rj g rjui þriuj �
2

n
dijrkuk

� �� �
þriðfrkukÞ:

In the above equations q;~u; p; and e stand for the density, velocity, pressure, and en-

ergy density of the fluid, respectively, and g, f are the bulk and shear viscosity fields.

The above differential equations are usually augmented by an algebraic condition
called the polytropic equation of state which relates the pressure to the energy den-

sity as

p ¼ ðc0 � 1Þe; ð6Þ
where c0 is a constant called the polytropic exponent. As shown in [5], the maximal

invariance group of the above set of equations is G ¼ SLð2;RÞ ^ G, provided the
polytropic exponent takes the standard value for an ideal, non-relativistic fluid
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viz. c0 ¼ 1þ 2
n. For this value, the fluid equations are invariant under the following

transformations [5]:
2.1. Connected, static Galilei transformations

Let g denote a general element of this sub-group then

g : t0 ¼ t; ~x0 ¼ R~xþ~vt þ~a ð7Þ
with R an orthogonal matrix. Under the action of g, the fields q and~u transform as

q0 ¼ q and ~u0 ¼~uþ~v ð8Þ
2.2. SL(2,R) transformations

Let r denote a general element of the SL (2,R) part of G then

r : t0 ¼ at þ b
ct þ d

; ~x0 ¼ ~x
ct þ d

; where ad� bc ¼ 1 ð9Þ

Under the action of r, the fields transform as

q0 ¼ ðct þ dÞnq and ~u0 ¼ ðct þ dÞ~u� c~x ð10Þ
For both g and r, the transformations of e and p can be worked out once the trans-

formation properties of q are known since

e ¼ vqc0 ; p ¼ ðc0 � 1Þe; ð11Þ
with the field v—related to entropy—transforming like a scalar. The transformation

properties of the viscosity fields are similar to the density q

g0 ¼
�
ct þ d

�n
g and f0 ¼

�
ct þ d

�n
f: ð12Þ

The above results were derived in [5] by requiring the invariance of the Action for

the simple case of an inviscid and isentropic fluid. The symmetry of the equations

followed by subsequently relaxing the simplifications to arrive at the general fluid

equations. It should be noted that the requirement of the invariance of the Action

is sufficient, but not necessary, for the form invariance of the equations that fol-

low from it. Any transformation that leaves the Action invariant up to a multi-

plicative factor produces equations of motion which have the same form. If

this is taken into account, the condition ad � bc = 1 is no longer required and
SL (2,R) gets replaced by GL (2,R) in the maximal invariance group of the general

fluid equations. However, it is sufficient for our purposes to concentrate on the

variational symmetries of the fluid equations and for this purpose,

G ¼ SLð2;RÞ ^ G. Finally, for the sake of completeness, it should also be pointed

out that the SL (2,R) condition is invariant under the following discrete symme-

tries (a,b,c,d) fi (a,�b,�c,d), fi (�a,b,c,�d), fi (�a,�b,�c,�d) of the SL (2,R)

parameters.
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3. Conservation laws

In this section we construct the conservation laws corresponding to the symme-

tries outlined in the previous section. In order to do this, it is useful to revert back

to the Action formalism and obtain the results for the subclass of inviscid, isentropic
and irrotational flows. The corresponding expressions for a general fluid can then be

worked out along the lines of [5].

For inviscid, isentropic and irrotational flows, the Lagrangian density is given by

L ¼ q
�
_/� 1

2
ð~r/Þ2

�
� qc0 ; ð13Þ

where ~r/ stands for the curl-free part of the velocity vector field~u. Let l = 0,1,2,3

and xl be a four-vector under the transformations of the previous section, i.e., xi

with i = 1,2,3 are the components of ~x and x0 = t. Let the infinitesimal variations

in the coordinates and fields be defined as

dxl ¼ xl0 � xl and d/ðxÞ ¼ /0ðx0Þ � /ðxÞ: ð14Þ
Then the variations for translations, rotations, boosts, dilatations, and expansions,

respectively, are given by

dxl ¼ al; dxi ¼ xijxj; dxi ¼ vit; dxi ¼ kxi; dt ¼ 2kt and dxl ¼ �ltxl

ð15Þ
where the parameters k, a0, l are expressible in terms of the SL (2,R) parameters a, b,
c, and d. The field variation is given by

d/ ¼ K ¼ ½cðxþ aÞ � dv�2

2cðct þ dÞ : ð16Þ

The variation in q is not important since no derivatives of q appear in the Lagrang-

ian density. Using these results we find, by a straightforward application of Noe-
ther�s theorem [10], that the following quantities, integrated over all space, are

constants of motion:

Temporal translations : H ¼ q
2
ð~r/Þ2 þ qc0 ; ð17Þ

Spatial translations : ~P ¼ q~r/; ð18Þ

Rotations : ~L ¼ ~P �~x; ð19Þ

Boosts : ~K ¼ ~Pt � q~x; ð20Þ

Dilatations : D ¼ �2tH þ~x �~P ; ð21Þ

Expansions : A ¼ t2H � t~x �~P þ q
~x2: ð22Þ
2
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The conditions of irrotationality and isentropicity can be relaxed easily and one sees

that Euler�s equations

_q ¼ �~r � ðq~uÞ ð23Þ

q _~u ¼ �qð~u � ~rÞ~u� ~rp; ð24Þ

_e ¼ �~r � ðe~uÞ � p~r �~u ð25Þ
can be expressed in the form of conservation laws,

o

ot
q ¼ � o

oxj
ðqujÞ; ð26Þ

o

ot
ðquiÞ ¼ � o

oxj
ðquiuj þ dijpÞ; ð27Þ

o

ot
1

2
q~u2 þ e

� �
¼ � o

oxj

1

2
q~u2 þ eþ p

� �
uj

� �
; ð28Þ

for mass and the translation generators found above. These can be reexpressed suc-

cinctly as follows:

olJ
l
ðqÞ ¼ 0; olJ

l
ð~P Þ ¼ 0; and olJ

l
ðHÞ ¼ 0: ð29Þ

The zeroth components of the above currents, namely q, q~u, and 1
2
q~u2 þ e, give the

charge densities which, when integrated over all space, give the conserved charges.

As is well-known, these are merely statements of mass, momentum flux, and total

energy conservation. The corresponding current densities are

J j
q ¼ quj; ð30Þ

J j
P i
¼ quiuj þ dijp; ð31Þ

J j
H ¼ ð1

2
q~u2 þ eþ pÞuj; ð32Þ

The conservation laws corresponding to rotations, boosts, dilatations, and expan-

sions can be stated similarly

olJ
l
ð~LÞ ¼ 0; olJ

l
ð~KÞ ¼ 0; olJ

l
ðDÞ; and olJ

l
ðAÞ ¼ 0: ð33Þ

The charge densities are shown in (19)–(22) respectively, and the corresponding cur-

rents are

~JLi ¼ �iklxk~JPl ; ð34Þ

~JKi ¼ t~JPi � xi~Jq; ð35Þ

~JD ¼ xi~JPi � 2t~JH ; ð36Þ
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~JA ¼ 1
2
~x2~Jq � txi~JPi þ t2~JH ; ð37Þ

It may be mentioned that the above results are not surprising in the light of [11],

where corresponding results for a free, non-relativistic, point particle were obtained

through a discussion that essentially parallels the above. The noteworthy linear rela-
tions between the currents will, however, play a crucial role in this paper when we

consider flows with discontinuities.
4. Discontinuous flows and jump conditions

As long as the flows are smooth, i.e., the functions q;~u; p; e 2 C1 in their depen-

dence on~x and t, the systems (23)–(25) and (26)–(28) are equivalent. However, real
flows are not always smooth and can develop discontinuities as time elapses. Such

flows are described by weak solutions of differential equations [7]. A weak solution

is generally piecewise smooth. The smooth parts satisfy the differential equation in

the usual, or strong, form, but that does not generally suffice to determine the course

of motion for initial data, and the equation must be supplemented by jump

conditions. The resulting jump conditions are most clearly derived from the conser-

vation laws.

By definition any, possibly non-smooth, function Jlð~x; tÞ that satisfiesZ
olwð~x; tÞJlð~x; tÞd3xdt ¼ 0 ð38Þ

for all test functions wð~x; tÞ is said to be a weak solution of the differential equation

olJ
l = 0.

We now use the above definition to obtain the jump conditions associated with

the system of conservation laws derived in the last section. Suppose Jlð~x; tÞ has a

jump discontinuity across a hypersurface S in~x; t space, while otherwise being con-
tinuously differentiable in some neighbourhood N of S (see Fig. 1). Let wð~x; tÞ be a
Fig. 1. Diagram for the jump condition.
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test function with support in N. Let R be the part of the support of wð~x; tÞ that lies
on one side of S, say the right. Then, by Gauss�s theorem

Z
R

olwJl d3xdt þ
Z
R

wolJl d3xdt ¼
Z
R

olðwJ lÞd3xdt ¼
Z
S

wnlJl d3S ð39Þ

since wð~x; tÞ ¼ 0 on the boundary ofR except onS. The second integral in the above

equation is zero, because the conservation law holds in the strong sense in the inte-

rior of R. Here, nð~x; tÞ is the outward normal vector to the hypersurface S. There-

fore, if we integrate similarly over the left part of the support of w, add the result and

make use of (38), we find that:

0 ¼
Z
S

wnlD JldS; ð40Þ

where Df denotes the difference of the two limiting values of a function f on the two

sides of the hypersurfaceS, i.e., the jump of the function. This result follows because

the vector nl, which by convention points outwards, flips its sign on the left side of

the support. Since w is an arbitrary test function, the above equation implies the

jump condition

nlD Jl ¼ 0 on S: ð41Þ
Applying (41) to the conservation laws (29) for Jl

ðqÞ, J
l
ð~PÞ, and Jl

ðHÞ, we obtain

0 ¼ nlD Jl
ðqÞ; ð42Þ

0 ¼ nlD Jl
ð~P Þ; ð43Þ

0 ¼ nlD Jl
ðHÞ: ð44Þ

From here the standard Rankine–Hugoniot conditions can be derived in their usual

form [7]. Similarly, one can apply (41) to the conservation laws (33) for Jl
ð~LÞ, J

l
ð~KÞ,

Jl
ðDÞ, and Jl

ðAÞ to obtain a new set of jump conditions:
0 ¼ nlD Jl

ð~LÞ; ð45Þ

0 ¼ nlD Jl
ð~KÞ; ð46Þ

0 ¼ nlD Jl
ðDÞ; ð47Þ

0 ¼ nlD Jl
ðAÞ: ð48Þ

Since the coordinates ~x and t are continuous on S, these conditions are all iden-

tically satisfied because of the jump conditions for mass, momentum and energy

conservation, in (42)–(44)—a fact that can be easily verified using (19)–(22) and
(34)–(37).
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5. The dual Rankine–Hugoniot conditions

We have seen that the new set of jump conditions associated with rotations,

boosts, dilatations, and expansions, follow from the jump conditions associated with

mass, momentum and energy. This suggests that the Rankine–Hugoniot conditions
are invariant under the full kinematical invariance group of smooth flows, including

the SL (2,R) part.

To see this explicitly, we consider the transformation properties of the conserved

currents under SL (2,R). Let us begin by considering the simplest of these, namely

the time-component of Jl
ðqÞ, i.e., q. From Eq. (10), now with n = 3,

q0 ¼ ðct þ dÞ3q: ð49Þ

The (ct + d)3 factor is cancelled by an identical factor coming from the change of

variables when we perform an integration over all space. Moreover, the transforma-

tion does not mix q with any other current. Thus, q transforms under the singlet rep-

resentation of SL (2,R) as a scalar density. Let us now consider the transformation of

the time-component of Jl

ð~P Þ, i.e.,
~P ¼ q~u. From (10) it now follows, after a little alge-

bra, that

~P
0 ¼ q0~u0 ¼ ðct þ dÞ3ðd~P þ c~KÞ: ð50Þ
Thus, the transformation of the spatial translation generator mixes it with the

boost generator together with which, it forms a doublet representation of

SL (2,R), with the prefactor (ct + d)3 now making it a vector density. The latter fact

is, in fact, generic to the time-components of all the currents. Likewise, we may

consider the generator of time translations, namely the Hamiltonian, and it follows
that

H 0 ¼ ðct þ dÞ3ðc2A� dcDþ d2HÞ: ð51Þ

Thus, the transformation of the time translation generator mixes it with the genera-

tor of dilatations and expansions, the three of them form the triplet (or adjoint) rep-

resentation. The transformation properties of the rest of the currents can be similarly

worked out and the results summarised as follows: If the (abstract) symmetry gener-

ators Tr transform as

T 0
r � r�1T rr ¼

X
s

MrsðrÞT s ; ð52Þ

where the matrix M(r) is determined by the group structure of SL (2,R)�G, then the

corresponding currents transform as

Jl0
r ðx0Þ ¼ det

ox
ox0

� �
oxl0

oxm
X
s

MrsðrÞJ m
sðxÞ: ð53Þ
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Assembling the currents in a column,

Jl ¼

Jl
ðqÞ

Jl

ð~KÞ

Jl

ð~P Þ

Jl
ðAÞ

Jl
ðDÞ

Jl
ðHÞ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð54Þ

one has for the transformation matrix,

M ¼

1 0 0 0 0 0

0 a b 0 0 0

0 c d 0 0 0

0 0 0 a �ab b2

0 0 0 �2ac ðbcþ adÞ �2bd

0 0 0 c2 �cd d2

0
BBBBBBBB@

1
CCCCCCCCA
: ð55Þ

Using ad � bc = 1, and the fact that the determinant of a block diagonal matrix is

the product of the determinants of the blocks, it is easy to check that the matrix
M has unit determinant. As already pointed out, the fact that the currents transform

like vector densities is reflected in the temporal components picking up a multiplica-

tive factor (ct + d)3. The spatial components follow the example

J i0
ðqÞ ¼ ðct þ dÞnþ1J i

ðqÞ � cxiðct þ dÞnJ 0
ðqÞ ð56Þ

with the same SL (2,R) transformations defined by the matrix M.

The dual Rankine–Hugoniot conditions are now easily obtained. The normal vec-

tor nl appearing in the jump condition (41) transforms like a covector,

n0l /
oxm

oxl0
nm; ð57Þ

so the transformed jump condition for Jr is

n0lD Jl0
r / det

ox
ox0

� �X
s

MrsðrÞnlD Jl
s ðxÞ ¼ 0 on S: ð58Þ

Since the determinant is smooth across the surface S, the factor in front of the sum

can be omitted. The transformed jump condition is, therefore, a linear combination
of the original jump conditions. In particular, the conditions for J(q), J ð~P Þ, and J(H)

(the Rankine–Hugoniot conditions) become linear combinations of the jump condi-

tions for J(q), J ð~PÞ, J ð~KÞ, J(H), J(D), and J(A),

n0lD Jl0
ðqÞ / nlD Jl

ðqÞ; ð59Þ

n0lD Jl0
ð~PÞ / nlðcD Jl

ð~KÞ þ dD Jl
ð~P ÞÞ; ð60Þ
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n0lD Jl0
ðHÞ / nlðd2D Jl

ðHÞ � cdD Jl
ðDÞ þ c2D Jl

ðAÞÞ : ð61Þ

The standard Rankine–Hugoniot conditions (42)–(44), in conjunction with the new
set of jump conditions (45)–(48), then imply that the right-hand side of the above

equations is identically zero, i.e., the Rankine–Hugoniot conditions are form–invari-

ant. In particular, this holds for the Drury–Mendonça transformation tfi �1/t,
~x !~x=t used to relate the explosion and implosion problems. For this,

(a,b,c,d) = (0,�1,1,0) and it follows that:

0 ¼ nlD Jl
ðqÞ; ð62Þ

0 ¼ nlDðxiJl
ðqÞ � tJ l

ðP iÞÞ; ð63Þ

0 ¼ nlDð�t2Jl
ðHÞ þ txiJ

l
ðP iÞ �

1
2
x2Jl

ðqÞÞ; ð64Þ

where we have substituted the explicit expressions for the currents Jl
ð~KÞ and Jl

ðAÞ. The

conditions (62)–(64) are the dual Rankine–Hugoniot conditions. If an explosion is

described by the standard Rankine–Hugoniot conditions, the corresponding implo-

sion, obtained by a Drury–Mendonça transformation, is described by the dual Ran-

kine–Hugoniot conditions (62)–(64).

Since the coordinates~x and t are continuous on S, and crucially because the rela-
tions between the currents are linear, the conditions (62)–(64) are equivalent to the

jump conditions obtained from mass, momentum and energy conservation, in

(42)–(44). In fact, these two sets of equations imply, and are implied by, each other.

In conclusion, the dual set of jump conditions associated with mass, boosts and

expansions, is completely equivalent to the usual Rankine–Hugoniot conditions

and may be used for an independent description of the shock.
6. The entropy condition

For a polytropic gas, by choosing e ¼ vqc0 , we can rewrite Eq. (5) as

Dv ¼ 0: ð65Þ
In [5] we defined an isentropic flow to be one for which v = constant. For a general
flow, it followed that v transforms like a scalar. For a polytropic gas, it is also well-

known [8] that v is related to the specific entropy (entropy per unit mass), S as fol-

lows:

S � S0 ¼ Cv log
�
vðqV Þc0

�
; ð66Þ

where Cv = R/(c0 � 1), R being the universal gas constant divided by the molecular

weight of the particular gas, V the volume and S0 an appropriate constant. It is obvi-
ous from this equation that as a particle of the medium moves about, the specific en-

tropy at the moving particle remains constant under an SL (2,R) transformation.

Hence, under an SL (2,R) transformation, a physical shock gets mapped to a phys-

ical shock.
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We now require the positivity of viscosity to be preserved under an SL (2,R)

transformation—a requirement that guarantees that the shock respects the entropy

condition. As already pointed out (see Eq. (12)), in three-dimensional space, the vis-

cosity fields transform as follows:

g0 ¼
�
ct þ d

�3
g and f0 ¼

�
ct þ d

�3
f: ð67Þ

Thus, the transformation properties of the viscosity fields are similar to q, i.e., they
transform like scalar densities. Hence, if we integrate the viscosity field over all space,

to get the viscosity, it is an invariant under the SL (2,R) transformations. Likewise,
the specific viscosity (viscosity per unit mass), is an invariant. It follows that the pos-

itivity of the viscosity is maintained without any additional restrictions on the

SL (2,R) parameters.
7. Conclusions

In this paper, we extended the analysis of [5] to discuss the symmetries of discon-
tinuous flows in fluid dynamics. The maximal kinematical invariance group of an

ideal, polytropic fluid is G ¼ SLð2;RÞ ^ G, not just for smooth, but for discontinuous

flows also. This is made manifest by writing the fluid equations in their conservation

law form. New conservation laws follow from a direct application of Noether�s the-
orem, enabling us to construct a dual set of Rankine–Hugoniot shock conditions.

The SL (2,R) transformations map the standard Rankine–Hugoniot shock condi-

tions to the dual ones and vice versa. These transformations also respect the entropy

conditions that physical shocks need to satisfy. Hence we conclude that, under these
transformations, an explosion gets mapped to an implosion, thus offering a theoret-

ical explanation for the intriguing observations of [1–3].
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