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The maximal invariance group of Newton’s equations for a free nonrelativistic point particle is
shown to be larger than the Galilei group. It is a semidirect product of the static~nine-parameter!
Galilei group and anSL(2,R) group containing time translations, dilations, and a one-parameter
group of time-dependent scalings calledexpansions. This group was first discovered by Niederer in
the context of the free Schro¨dinger equation. We also provide a road map from the free
nonrelativistic point particle to the equations of fluid mechanics to which the symmetry carries over.
The hitherto unnoticedSL(2,R) part of the symmetry group for fluid mechanics gives a theoretical
explanation for an observed similarity between numerical simulations of supernova explosions and
numerical simulations of experiments involving laser-induced implosions in inertial confinement
plasmas. We also give examples of interacting many-body systems of point particles which have this
symmetry group. ©2001 American Association of Physics Teachers.
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Almost all introductory books on the special theory
relativity mention, at least in passing, that Newton’s eq
tions of motion for a classical free nonrelativistic point pa
ticle are invariant under Galilei transformations. Proba
not many eyebrows would be raised if we jumped from t
fact to the conclusion that the Galilei transformations are
most general coordinate changes under which Newto
equations retain their form. It would therefore come as
considerable surprise to learn that there are other transfo
tions which do the same. A simple example of such trans
mations may be given by noting that a freely moving po
particle, with initial positionx0 and velocityv0 , traverses a
straight linex(t)5x01v0t. This equation may be rewritte
asx/t5v01x0 /t. In this representationt is replaced by 1/t,
lengths are scaled by a factor proportional to time, and
initial position and velocity are interchanged; but the imp
tant point is that the trajectory remains a straight line. Hen
the new variablesx/t, 1/t satisfy the same equations as t
old onesx, t.1 Therefore the following question naturall
arises: What is the maximal invariance group of Newto
equations of motion for a classical free nonrelativistic po
particle? The answer to this question reveals that the m
mal invariance group is a twelve-parameter group consis
of the usual ten-parameter Galilei group, the one-param
group of dilations, and a one-parameter group of tim
dependent scalings calledexpansions, which are nonrelativ-
istic analogues of special conformal transformations. The
istence of these transformations is not merely of acade
interest. As explained in Refs. 1 and 2, such transformati
provide a theoretical explanation for the plausibility of sim
lating astrophysical systems like supernova explosions
performing laser-induced plasma implosions.

In order to find the maximal invariance group of an equ
tion, one has to find the set of all space–time transformati
which leave it form invariant up to a factor.3 This condition
is equivalent to the requirement that the action be invaria
The actionS for a free point particle of massm, in d space
dimensions, at positionxi(t) is given by
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S5
m

2 E dtS dxi

dt D
2

, ~1!

where i 51¯d and the sum over the indexi has been sup-
pressed. Let us now consider a transformation to new c
dinatesj, t,

j i5 f i~x,t !, t5h~x,t !. ~2!

We wish to find the most general functionsf i ,h which leave
the action~1! form invariant:

E dtS dxi

dt D
2

5E dtS dj i

dt D 2

. ~3!

This is achieved by requiring

S ] f i

]xj

dxj

dt
1

] f i

]t D 2

S ]h

]xk

dxk

dt
1

]h

]t D
5S dxi

dt D
2

1
d

dt
F~x,t ! ~4!

for arbitrary functionsxi(t) where F(x,t) is an arbitrary
boundary term and

d

dt
F~x,t !5S ]F

]xi

dxi

dt
1

]F

]t D . ~5!

Comparing powers ofdxi /dt on both sides of~4!, we get

]h

]xi
50⇒t5h~ t !, ~6!

S ] f i

]xj
D S ] f i

]xk
D5

]h

]t
d jk , ~7!

2
] f i

]xj

] f i

]t
5

]F

]xj

]h

]t
, ~8!

S ] f i

]t D 2

5
]F

]t

]h

]t
. ~9!

From ~6! and ~7! it follows that
1039/ajp/ © 2001 American Association of Physics Teachers



t

l,

a
ft-
ie

of

-
—
lu

ri
o

a

s.

for-
ar

s-
ons
r

on-

the
d
f

s-

n

a

t

le
Tl jk1Tlk j50,

where

Tl jk5
]2f i

]xl]xj

] f i

]xk
. ~10!

SubtractingTk jl1Tkl j from the first equation in~10! and
using the symmetry ofTl jk under a permutation of the firs
two indices, it may be shown thatTl jk is a totally symmetric
tensor. ThereforeTi jk50, which implies thatf i is linear inx,

f i~x,t !5 l ~ t !Ri j ~ t !xj1mi~ t !. ~11!

It follows from ~7! thatR can be chosen to be orthogona
RT(t)R(t)51. Further, differentiating~8! with respect toxk
and using the explicit expression forf from ~11! we get

~ l l̇ !dk j1 l 2~RTṘ!k j5
1

2

]2F

]xk]xj
ḣ, ~12!

where the dot refers to a derivative with respect tot. Since
the right-hand side and the first term on the left-hand side
symmetric ink and j, whereas the second term on the le
hand side is antisymmetric, by virtue of being in the L
algebra of the rotation group; we haveṘ50 and thus,R is a
constant~rigid! rotation matrix. It then follows from~7! that

ḣ5 l 2. ~13!

Eliminating F from ~8! and ~9! we get

]2f i

]t2

]h

]t
5

] f i

]t

]2h

]t2 . ~14!

Substituting~11! into this equation and comparing powers
x we find

l l̈ 52~ l̇ !2, ~15!

lm̈i52~ṁi l̇ !. ~16!

Using ~13!, Eq. ~15! can be rewritten in terms ofh(t) and
takes the form

ĥ

ḣ
2

3

2
S ḧ

ḣ
D 2

50. ~17!

The left-hand side of Eq.~17! is called the Schwarzian de
rivative of h and a standard result of complex analysis
although only the real part is relevant here—is that the so
tion of the above differential equation is

h~ t !5
at1b

gt1d
, where ad2bg51, ~18!

wherea, b, g, d are real. These transformations go by va
ous names: fractional linear, projective, and global conf
mal. They form the groupSL(2,R). Substituting the above
result in ~13!, and solving~16! for mi(t) we get

l ~ t !5
1

gt1d
, mi~ t !5

bi

gt1d
1di , ~19!

wherebi anddi are integration constants. From~11! and~18!
we then have, for the most general transformations that le
Newton’s equations invariant,
1040 Am. J. Phys., Vol. 69, No. 10, October 2001
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j i5
Ri j xj1ai1v i t

gt1d
, t5

at1b

gt1d
,

where ad2bg51, RTR51, ~20!

whereai andv i are constants expressible in terms ofbi and
di . It is useful to consider the following two special case

~I! b5g50,a5d51: Connected, Static Galilei Group
G: In this case, we have

g: t5t, j5Rx1a1vt. ~21!

These equations describe connected, static Galilei trans
mations which exclude parity and time reversal. It is cle
from ~21! that this is a nine-parameter group.

~II ! a5v50, R51: SL(2,R) Transformations: In this
case, we have

s: t5
at1b

gt1d
, j5

x

gt1d
, ad2bg51. ~22!

These are theSL(2,R) generalizations of the inversion tran
formations presented in Ref. 1 and include time translati
(g50,a5d51), dilations (b5g50), and a one-paramete
group of time-dependent scalings calledexpansions(a5d
51,b50). Since the parameters are constrained by the c
dition ad2bg51,SL(2,R) is a three-parameter group.

To understand the structure of the group, we study
relationship between theSL(2,R) group and the connecte
static Galilei groupG. Let us first consider a conjugation o
a gPG by asPSL(2,R). By making three successive tran
formations ofx and t we find that

s21~a,b,g,d!g~R,a,v!s~a,b,g,d!5g~R,as ,vs!,
~23!

where

S vs

as
D5S a g

b d D S v
aD , ~24!

which shows thatG is an invariant subgroup. This result ca
be used to determine the product of two general elementssg
ands8g8 of the full group,

sgs8g85ss8g̃g8, where g̃5s821gs8PG. ~25!

This shows that the full group is not a direct, but only
semidirect product

G5SL~2,R!∧G. ~26!

As is apparent from~25!, the two factors in the semidirec
product are on a different footing: WhileG is an invariant
subgroup,SL(2,R) is not. Furthermore, recall thatG itself
takes the form

G5R∧~T^ B!, ~27!

whereR is the rotation group andT andB are translation and
boost groups with parametersa and v, respectively. Since
SL(2,R) commutes withR, G can be expressed as a sing
semidirect product

G5~SL~2,R! ^ R!∧~T^ B!. ~28!

Further it may be noted that the inversionS considered in
Ref. 1 is the special element ofSL(2,R) for which
(a,b,g,d)5(0,21,1,0). Note thatS25P, whereP is the
1040O. Jahn and V. V. Sreedhar
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parity transformation. This observation can be used to giv
novel interpretation to a Galilei transformation. To see t
we consider the coset elementsgS(R,a,v)[Sg(R,a,v),
wheregPG, we have

gS~R8,a8,v8!gS~R,a,v!5gP~R8R,R8a2v8,R8v1a8!

⇒gS
2 ~R,a,v!

5gP~R2,Ra2v,Rv1a!, ~29!

where we have used the obvious notationgP(R,a,v)
5Pg(R,a,v). Since every pair of vectors can be express
as Ra2v and Rv1a for suitablea and v, this shows that
every parity reflected static Galilei transformation is t
square of a coset transformationgS . Therefore every con-
nected static Galilei transformation is the fourth power o
coset transformation.

As is well known, according to Noether’s theorem, the
exists a conserved quantity corresponding to every cont
ous symmetry. The conserved quantities for the usual G
ilean transformations are standard and will not be repea
here. The conserved quantities for theSL(2,R) symmetry
can be derived as follows: The invariance of the action
plies

dL~x,ẋ,t !5
dF
dt

. ~30!

For time-independent LagrangiansL(xi ,ẋi), we have

dL5
]L

]xi
dxi1

]L

] ẋi
d ẋi5

d

dt S ]L

] ẋi
dxi D , ~31!

where the Euler–Lagrange equations have been used in
second equality. Combining the two expressions fordL, we
get a conservation law

d

dt S ]L

] ẋi
dxi2FD50. ~32!

The SL(2,R) transformations are

t→t5
at1b

gt1d
,

~33!

x~ t !→j~t!5
x~ t !

gt1d
5~a2gt!xS dt2b

2gt1a D .

For infinitesimal transformations,a511e andd512e ~to
ensuread2bg51! with infinitesimalb, g, e,

dt5b12et2gt2,
~34!

dx~ t !5~e2gt !x~ t !2~b12et2gt2!ẋ~ t !.

The change ofL5(m/2)ẋ2 is given by

dL5mẋd ẋ5mẋ~2gx2~e2gt !ẋ2~b12et2gt2!ẍ!.
~35!

It is easily seen to be the total time derivative of

F52~b12et2gt2!
mẋ2

2
2g

mx2

2
. ~36!

Therefore, we obtain the conserved quantity
1041 Am. J. Phys., Vol. 69, No. 10, October 2001
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X5mẋdx2F52~b12et2gt2!
mẋ2

2
1~e2gt !mxẋ

1g
mx2

2
. ~37!

Extracting the coefficients ofb, e, andg we get

X52bH1eD1gA, H5
p2

2m
,

~38!

D5pS x2
tp

mD , A5
~ tp2mx!2

2m
,

wherep5mẋ and H, D, A are the conserved quantities r
lated to time translations, dilatations, and expansions, res
tively. The following interesting observation about the co
served quantities can now be made: Noether’s theorem
also be used to show that the conserved quantities co
sponding to the usual translation and boost symmetries
pi5mẋi and Ki5tpi2mxi , respectively; hence it follows
thatA5K2/2m is related toK in the same way as the Hami
tonian is related to the momenta. Mathematically,H, A, and
D52pK/m form the adjoint representation of theSL(2,R),
while p and K transform as a doublet, and rotations are
variant. This concludes the discussion of the symmetries
the classical nonrelativistic point particle.

We shall now consider the quantum mechanical gener
zation of the above results. For this it is convenient to th
of the wave function of the particle as a nonrelativistic fie
For the usual ten-parameter Galilei groupG, it is well known
that, in the field theoretic realization, there is a on
parameter mass groupM that commutes withG. This is
called the central extension and has the effect of modify
the Lie algebra ofG in a nontrivial manner, while at the sam
time preserving the Jacobi identity. It turns out that a simi
feature holds for the twelve-parameter groupG.

In the field representation the conserved quantities ofG are

P52 i“, J52 ixÃ“, K52 i t“2mx, ~39a!

D5 i S 2t
]

]t
1x"“1

3

2D ,

~39b!

A52 i S t2
]

]t
2

m

2
x21tx"“1

3

2
t D , H5 i

]

]t
,

where the factors of 3/2 appear because we have Wey
dered products of position and momentum in the quant
theory and set\51. P, J, K generate translations, rotation
and boosts, respectively, which constitute the connec
static Galilei group~21!. H, D, andA produce time transla-
tions, dilations, andexpansionswhich together constitute the
SL(2,R) group. The central extension of the standard L
algebra of the former,

@Ji ,Jk#5 i e iklJl , @Ji ,Pk#5 i e ikl Pl , @Pi ,Pk#50,

@Ki ,Kk#50, @Ji ,Kk#5 i e ikrKr , @Ki ,Pk#52~ imd ik!,

@Pi ,H#50, @Ki ,H#52 iPi , @Ji ,H#50,

is augmented by the additional relations involving t
SL(2,R) generators
1041O. Jahn and V. V. Sreedhar
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@D,Ji #50, @D,Ki #5 iK i , @D,Pi #52 iPi ,

@A,Ji #50, @A,Ki #50, @A,Pi #5 iK i ,

@D,H#522iH , @A,H#5 iD , @D,A#52iA

to give the Lie algebra of the full groupG. The bracketed
term in the@Ki ,Pj # commutator is the nontrivial modifica
tion that the central extension brings about in the Lie alge
with m—to be physically identified with the mass of th
particle—standing for the value that the generator ofM takes
in the given representation.

Since the existence of the central extension implies th

@Ki ,Pj #52~ imd i j ! ~40!

the groups of translationsT(a)5eia"P and boostsB(v)
5eiv"K no longer form a direct product, but a Heisenber
Weyl group defined by the relation

T~a!B~v!5B~v!T~a!eima"v. ~41!

The action~24! of SL(2,R) on a andv induces the transfor
mations

s21S K
PDs5S a b

g d D S K
PD ~42!

of the generatorsK and P. The commutator~40! does not
change under these transformations because of the cond
ad2bg51. Thus the central extension is compatible w
SL(2,R) and the full invariance group of the quantized sy
tem is the central extension ofG.

Indeed it was in the quantum theory that the groupG was
first discovered by Niederer, who showed that it is the ma
mal kinematical invariance group of the free particle Sch¨-
dinger equation.4 Since the invariance under the Galil
group is well known, it suffices to verify that the Schro¨dinger
equation

i
]c

]t
1

1

2m

]2c

]xi
2 50 ~43!

remains form invariant underSL(2,R). It is easily checked
that this is accomplished by the following transformation
the wave function that is generated byA, H, and D of the
SL(2,R) group:

c~x,t !}~gt2a!3/2expS i
F

2 Dc~j,t!, ~44!

whereF is determined through~8! and ~9!.
As promised, we now sketch a road map to an astroph

cal application of the results of this paper. As is explained
detail in Ref. 2, recent experimental programs try to simul
astrophysical systems like supernova explosions in the la
ratory by creating implosions in inertial confinement pla
mas. This research is inspired by a remarkable simila
which was observed in the results of numerical models
1987A supernova observations and results of numer
simulations of experiments involving plasma implosions. R
ferring the reader to Ref. 2 for further details of this resea
program, we note that this is a puzzling observation beca
the former system involves very large length and time sca
whereas the latter involves very small scales. A theoret
explanation of this intriguing similarity was given in Ref.
and can be traced to the symmetry properties of the fl
dynamic equations5,6 that describe both stellar structure a
1042 Am. J. Phys., Vol. 69, No. 10, October 2001
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the plasma state. As conjectured in Ref. 1, this symmetry
its origin in the symmetries of the free point particle.
particular the symmetry responsible for mapping supern
explosions to plasma implosions is the fluid mechanical a
logue of theexpansiontransformations discussed in this p
per. To make this connection more precise, we note that
analysis of the single free point particle can be carried o
to the noninteracting many particle case in a straightforw
manner. Indeed, using the expression for the Hamiltonian
an ensemble of free point particles labeled byI, and the
expression for the momentapI ,

H5(
I

pI
2

2m
, pI5mẋI , ~45!

it is easy to see that the corresponding Liouville equat
stating the invariance of the density of particlesr along the
flow

dr

dt
5

]r

]t
1$r,H%50 ~46!

also has a maximal invariance group given by~26!. As is
well known, the Liouville equation can be converted into t
Boltzmann equation by expressing all the momenta in te
of the velocities. Therefore, the symmetry group carries o
to the collisionless Boltzmann equation. Further, in the c
tinuum limit, one can use the standard procedure of deriv
the various fluid dynamic equations as moments of the B
zmann equation.7 The simplest example is the set of Eul
equations8

Dr52r“"u, ~47a!

rDu52“p, ~47b!

De52~e1p!“"u, ~47c!

wherer, u, p, ande stand for the density, the velocity vecto
field, the pressure, and the energy density of the fluid,
spectively. The convective derivativeD in the above equa-
tions is defined byD5]/]t1u"“. The above differential
equations of fluid flow are usually augmented by an al
braic condition called the polytropic equation of state whi
relates the pressure to the energy density as follows:

p5~g021!e, ~47d!

whereg0 is a constant called the polytropic exponent. F
the ensemble of free nonrelativistic point particles being c
sidered here,g0 takes the value 5/3. The maximal symmet
group G therefore extends to the fluid dynamic equation
which explains the observed similarity between supern
explosions and plasma implosions.

Although we have considered free particles so far, it
interesting to note that the symmetry group discussed in
paper extends to an interesting class of interacting ma
body problems namely, those for which the potential is
inverse square of the coordinate differences. In one dim
sion these include the so-called Calogero–Moser mod9

with Hamiltonian

H5
1

2 S (
I 51

N

pI
21g2(

IÞJ

1

~xI2xJ!
2D . ~48!

These models are integrable and admitexclusion
statistics—an exciting area of current research.10 In two di-
1042O. Jahn and V. V. Sreedhar
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mensions it may be shown that models with Hamiltonians
the form

H5
1

2 S (
I 51

N

~pI2eA~xI !!2D ,

where

Ak~xI !}(
JÞI

ekl~xI2xJ! l

uxI2xJu2 , ~49!

which describe a gas of anyons—particles having arbitr
spin and statistics—have potentials which admit the sym
try groupG. As is well known, anyons are of interest becau
they appear as excitations in fractional quantum H
systems.11

To conclude, we have investigated the maximal kinem
cal invariance group of a free nonrelativistic point partic
and have found that it is bigger than the Galilei group. It i
semidirect product of the formSL(2,R)∧G, whereG is the
static Galilei group. As shown in this paper, this group is
fact the maximal invariance group of a host of interest
systems in which the physics content is captured by
quintessential free nonrelativistic point particle. Howev
there exists a class of interacting many-particle systems—
which the well-known Calogero—Moser models and t
anyon model are of particular interest—for which this is a
true.

a!Dedicated to the memory of Professor L. O’Raifeartaigh.
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