The maximal invariance group of Newton’s equations
for a free point particle 2)

0. Jahn and V. V. Sreedhar”
School of Theoretical Physics, Dublin Institute for Advanced Studies, 10, Burlington Road, Dublin 4,
Ireland

(Received 22 February 2001; accepted 9 April 2001

The maximal invariance group of Newton's equations for a free nonrelativistic point particle is
shown to be larger than the Galilei group. It is a semidirect product of the étetie-parameter

Galilei group and arSL(2,R) group containing time translations, dilations, and a one-parameter
group of time-dependent scalings callexpansionsThis group was first discovered by Niederer in

the context of the free Schidinger equation. We also provide a road map from the free
nonrelativistic point particle to the equations of fluid mechanics to which the symmetry carries over.
The hitherto unnotice®L(2,R) part of the symmetry group for fluid mechanics gives a theoretical
explanation for an observed similarity between numerical simulations of supernova explosions and
numerical simulations of experiments involving laser-induced implosions in inertial confinement
plasmas. We also give examples of interacting many-body systems of point particles which have this
symmetry group. ©2001 American Association of Physics Teachers.
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Almost all introductory books on the special theory of m dx\?
relativity mention, at least in passing, that Newton’s equa- S= 5f dt H) ,
tions of motion for a classical free nonrelativistic point par-
ticle are invariant under Galilei transformations. Probablywherei=1---d and the sum over the indéxhas been sup-
not many eyebrows would be raised if we jumped from thispressed. Let us now consider a transformation to new coor-
fact to the conclusion that the Galilei transformations are thélinatesg, ,
most general coordinate changes under which Newton’s &=1.(x,t), 7=h(xt). )
equations retain their form. It would therefore come as a ] ] i .
considerable surprise to learn that there are other transform¥/e wish to find the most general functiofish which leave
tions which do the same. A simple example of such transforth® action(1) form invariant:

mations may be given by noting that a freely moving point f (dXi 2 f (dgi)2
= drl—]| . 3
dr

particle, with initial positionxy and velocityv,, traverses a t at
straight linex(t) =Xq+ vgt. This equation may be rewritten . ) .
asx/t=vy+Xq/t. In this representatiohis replaced by 1/ This is achieved by requiring
lengths are scaled by a factor proportional to time, and the of; dx;  of; 2
initial position and velocity are interchanged; but the impor- a_)(j gt E) dx\?2

tant point is that the trajectory remains a straight line. Hence, —(9h): (H) + &F(X,t) (4)

the new variables/t, 14 satisfy the same equations as the ﬁ %Jr —
old onesx, t.! Therefore the following question naturally dx dt -t
arises: What is the maximal invariance group of Newton'sfor arbitrary functionsx;(t) where F(x,t) is an arbitrary
equations of motion for a classical free nonrelativistic pointhoundary term and

particle? The answer to this question reveals that the maxi-

mal invariance group is a twelve-parameter group consisting —F(x,t)= i % + ﬁ) (5)
of the usual ten-parameter Galilei group, the one-parameter dt ax; dt = at

group of dilations, and a one-parameter group of time'Comparing powers aofix; /dt on both sides of4), we get

dependent scalings callexkpansionswhich are nonrelativ-

istic analogues of special conformal transformations. The ex- dh 0=7=h 6
istence of these transformations is not merely of academic gx; =7=h(), ®
interest. As explained in Refs. 1 and 2, such transformations

provide a theoretical explanation for the plausibility of simu- ('Lfn) (5_fl) _ ﬂ S @
lating astrophysical systems like supernova explosions by ax;)\ax) ot gk

performing laser-induced plasma implosions. of, af.  oF ah

In order to find the maximal invariance group of an equa- L (8)
tion, one has to find the set of all space—time transformations ~ 9Xj dt  dJx; dt
which leave it form invariant up to a factdiThis condition of\2 OF oh
is equivalent to the requirement that the action be invariant. ((9—{) = (9)

The actionS for a free point particle of mass, in d space
dimensions, at positior;(t) is given by From (6) and (7) it follows that
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T|jk+T|kj:01 _Rinj+a.i+Uit at—i—ﬂ

where Y =k
_ _ Tp—
. &f, {9_f| 10 where aé—By=1, R'R=1, (20)
Ik X IXj Xy wherea; andv; are constants expressible in termsbpfand

d;. It is useful to consider the following two special cases.
(I) B=vy=0,a=6=1: Connected, Static Galilei Group
G: In this case, we have

SubtractingTy + Ty; from the first equation ir{10) and
using the symmetry ol under a permutation of the first
two indices, it may be shown thajj, is a totally symmetric
tensor. Thereford;;, =0, which implies thaf; is linear inx, g: 7=t, &=Rx+atwvt. (22)

fi(x,t)=1(1)R;; (D) x;+ mi(1). (11)  These equations describe connected, static Galilei transfor-

mations which exclude parity and time reversal. It is clear
It follows from (7) thatR can be chosen to be orthogonal, from (21) that this is a nine-parameter group.

RT(t)R(t)=1. Further, differentiating8) with respect tax (I a=v=0,R=1:SL(2,R) Transformations In this
and using the explicit expression fbfrom (11) we get case, we have
PF . at+ B

(12 o7

(||)5KJ+|2(RTR)k]:1

E an&Xj ' a5—ﬁ’y=1. (22)

Coyt+46’ &= yt+ 6’
where the dot refers to a derivative with respect.t§ince  These are th&L(2,R) generalizations of the inversion trans-
the right-hand side and the first term on the left-hand side argyrmations presented in Ref. 1 and include time translations
symmetric ink andj, whereas the second term on the left- (y=0,a=6=1), dilations (8= y=0), and a one-parameter
hand side is antisymmetric, by virtue of being in the Lie group of time-dependent scalings calledpansionga= &
algebra of the rotation group; we hale=0 and thusRisa =1 g=0). Since the parameters are constrained by the con-
constant(rigid) rotation matrix. It then follows front7) that  jition ad—By=1,SL(2,R) is a three-parameter group.
h=12 (13) To understand the structure of the group, we study the
' relationship between th8L(2,R) group and the connected
Eliminating F from (8) and(9) we get static Galilei groupG. Let us first consider a conjugation of
26 ah ¢ 22h age G by ace SL(2,R). By making three successive trans-
Q ’9_ _ Q ’9_ (14) formations ofx andt we find that
e ot ot gt

o Ha,B,7,99(Rav)o(a,B,7,8)=9(Ra,V,),

Substituting(11) into this equation and comparing powers of (23
x we find
where

R

IH=2(1)%, (15) (Vu’ _(a 'y) v 24

I, =2(mjl). (16) a,) \g s/\a)
Using (13), Eq. (15) can be rewritten in terms di(t) and which shows thaG is an invariant subgroup. This result can
takes the i‘orm be used to determine the product of two general elemegts

X ando’g’ of the full group,

E_%(E) —0. 1 ogo'g'=00'Jg’, whereg=o' lgo’'eG. (25

h 2\h This shows that the full group is not a direct, but only a
The left-hand side of Eq.17) is called the Schwarzian de- semidirect product
rivative of h and a standa(d result of compllex analysis—  g=SL(2R)0G. (26)
although only the real part is relevant here—is that the solu- ) . o
tion of the above differential equation is As is apparent fron25), the two factors in the semidirect

product are on a different footing: Whilé is an invariant

_at+p _ subgroup,SL(2,R) is not. Furthermore, recall th& itself
h(t)= —yt+ 5 where a6—By=1, (18 takes the form
wherea, B, vy, 8 are real. These transformations go by vari- G=RO(T®B), (27)

ous names: fractional linear, projective, and global confor

o ‘whereR is the rotation group and andB are translation and
mal. They form the grouSL(2,R). Substituting the above 1),,qt groups with parametessand v, respectively. Since
result in(13), and solving(16) for m;(t) we get

SL(2,R) commutes withR, G can be expressed as a single
semidirect product

G=(SL2R)®R)(T®B). (28

whereb; andd; are integration constants. Fraihl) and(18) Further it may be noted that the inversi@nconsidered in
we then have, for the most general transformations that leavidef. 1 is the special element o8L(2,R) for which
Newton’s equations invariant, (a,8,7,8)=(0,—1,1,0). Note thal?>=P, whereP is the

mi(t):—i+div (19

IV yt+ 6

:'yt+6’
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parity transformation. This observation can be used to give a
novel interpretation to a Galilei transformation. To see this

we consider the coset elements (R,a,v)=2g(R,aV),
whereg e G, we have

gs(R",a",v)gs(R,av)=gp(R'R,R'a~Vv',R'v+a’)

:>g§(R,a,v)
=gp(R?Ra—V,Rv+a), (29

where we have used the obvious notatigp(R,a,v)

=Pg(R,a,v). Since every pair of vectors can be expressed
as Ra—v and Rv+a for suitablea and v, this shows that

every parity reflected static Galilei transformation is the
square of a coset transformatigr . Therefore every con-
nected static Galilei transformation is the fourth power of

coset transformation.

As is well known, according to Noether’s theorem, there
exists a conserved quantity corresponding to every contin
ous symmetry. The conserved quantities for the usual Gal
ilean transformations are standard and will not be repeate
here. The conserved quantities for t8&(2,R) symmetry
can be derived as follows: The invariance of the action im

plies

SL(x,X,t)= ((jj_]t: (30)

For time-independent Lagrangiah$x; ,x;), we have

oL o AL »
(9Xi i (9X| i~ . Xi | ( )

. mx3 .
X=mxéx— F=—(B+2et— yt?) 74—(6— yt)mxx

m>2
ty—o (37)

Extracting the coefficients g8, €, andy we get

2
_ P
X=—BH+eD+ A, H__Zm’
(39

t tp—mx)?
p>, o (tp=mY
m

D=p<x—— 2m

wherep=mX andH, D, A are the conserved quantities re-

Jated to time translations, dilatations, and expansions, respec-

tively. The following interesting observation about the con-
served quantities can now be made: Noether’s theorem can

ponding to the usual translation and boost symmetries are
i=m¥ and K;=tp;—mx, respectively; hence it follows
that A=K?/2m is related toK in the same way as the Hamil-

L%Iso be used to show that the conserved quantities corre-

tonian is related to the momenta. Mathematicdtly,A, and

D= — pK/m form the adjoint representation of tisd(2,R),
while p andK transform as a doublet, and rotations are in-
variant. This concludes the discussion of the symmetries of
the classical nonrelativistic point particle.

We shall now consider the quantum mechanical generali-
zation of the above results. For this it is convenient to think
of the wave function of the particle as a nonrelativistic field.
For the usual ten-parameter Galilei gro@pit is well known
that, in the field theoretic realization, there is a one-

where the Euler—Lagrange equations have been used in tiparameter mass groull that commutes withG. This is

second equality. Combining the two expressionsdbor we

get a conservation law

d(?L&( F|=0 32
at | ax o =0. (32

The SL(2,R) transformations are

_ at+ 8
T s
B X(t) B o6t— B (33
X(O—é(n=—=(amynX| .

For infinitesimal transformationgy=1+¢€ and §=1—€ (to
ensuread— By=1) with infinitesimal 8, v, ¢,

5t=ﬂ+26t—yt2,

34
OX(t)=(e— y)X(t)— (B+ 2et— yt2)X(t). (34
The change of. =(m/2)x? is given by

SL=mxéx=mxX(— yx— (e— yt)X— (B+2et— yt?)X).

(35
It is easily seen to be the total time derivative of
, M mx
]-"=—(B+26t—yt )T_’}/T. (36)

Therefore, we obtain the conserved quantity

1041 Am. J. Phys., Vol. 69, No. 10, October 2001

called the central extension and has the effect of modifying
the Lie algebra of5 in a nontrivial manner, while at the same
time preserving the Jacobi identity. It turns out that a similar
feature holds for the twelve-parameter graup

In the field representation the conserved quantities arfe

P=—-iV, J=—-ixXV, K=-itV—mx, (393

b—il 2 d 3
! t&t X 2
(39b)

, H:E’

A= —i(tzﬁ— stV Et
a2 2

where the factors of 3/2 appear because we have Weyl or-
dered products of position and momentum in the quantum
theory and set.=1. P, J, K generate translations, rotations,
and boosts, respectively, which constitute the connected
static Galilei group(21). H, D, andA produce time transla-
tions, dilations, an@xpansionsvhich together constitute the
SL(2,R) group. The central extension of the standard Lie
algebra of the former,

[Ji.dd=i€wdi, [Jdi,P=i€wP, [Pi,P=0,
[Ki,Ki]=0, [Ji,Kil=i€ K, [Ki,P]=—(imd&y),
[PirH]:Oi [KiiH]:_iPil [Ji,H]:O,

is augmented by the additional relations involving the
SL(2,R) generators
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[D,J]=0, [D,K]=iK;, [D,Pj]=-iP;, the plasma state. As conjectured in Ref. 1, this symmetry has
its origin in the symmetries of the free point particle. In
[AJ]=0, [AK]=0, [APi]=iK;, particular the symmetry responsible for mapping supernova
A . . explosions to plasma implosions is the fluid mechanical ana-
[D.H]==2H, [AH]=ID, [D.A]=2A logue of theexpansiortransformations discussed in this pa-
to give the Lie algebra of the full groug. The bracketed per. To make this connection more precise, we note that the
term in the[K; ,P;] commutator is the nontrivial modifica- analysis of the single free point particle can be carried over
tion that the central extension brings about in the Lie algebrd0 the noninteracting many particle case in a straightforward
with m—to be physically identified with the mass of the manner. Indeed, using th_e expre_ssion for the Hamiltonian of
particle—standing for the value that the generatoidkes an ensemble of free point particles labeled Ibyand the

in the given representation. expression for the momenga,
Since the existence of the central extension implies that 2
i H=> 2L p=ms (45)
[Ki,Pj]=—(ims;) (40 T 4om P
ia-P

the groups of translationd(a)=e and boostsB(v)
=¢e'VK no longer form a direct product, but a Heisenberg—
Weyl group defined by the relation

it is easy to see that the corresponding Liouville equation
stating the invariance of the density of particeslong the

flow
T(a)B(v)=B(v)T(a)e'm", (47 dp 4
L e HI=0 (46)
The action(24) of SL(2,R) on a andv induces the transfor- dt ~ ot {pH}=
mations
also has a maximal invariance group given (28). As is
K
-1

7P

a B\(K well known, the Liouville equation can be converted into the
o= y & ( p (42) " Boltzmann equation by expressing all the momenta in terms
of the velocities. Therefore, the symmetry group carries over
of the generator& and P. The commutato40) does not to the collisionless Boltzmann equation. Further, in the con-
change under these transformations because of the conditigifuum limit, one can use the standard procedure of deriving
adé— By=1. Thus the central extension is compatible withthe various fluid dynamic equations as moments of the Bolt-
SL(2,R) and the full invariance group of the quantized sys-zmann equatio.The simplest example is the set of Euler
tem is the central extension ¢f equation$

Indeed it was in the quantum theory that the gréuwas

first discovered by Niederer, who showed that it is the maxi- PP~ —pV-u, (473
mal kinematical invariance group of the free particle Sehro Du=-V 47D
dinger equatiof. Since the invariance under the Galilei pUu . @70
group is well known, it suffices to verify that the ScHinger De=—(e+p)V-u, (470
equation

wherep, u, p, ande stand for the density, the velocity vector
Yy 1 (921/f_0 43 field, the pressure, and the energy density of the fluid, re-
HJ“ 2m ,9_)(i2_ (43 spectively. The convective derivativi@ in the above equa-
] ] ] . ) tions is defined byD=4/dt+u-V. The above differential
remains form invariant undeBL(2,R). It is easily checked equations of fluid flow are usually augmented by an alge-
that this is accomplished by the following transformation of prajc condition called the polytropic equation of state which

the wave function that is generated By H, andD of the  relates the pressure to the energy density as follows:
SL(2,R) group:

. p=(vo—1e, (479
(X, ) (yT— a)3’2exp(i 5) w(é, 1), (44)  where y, is a constant called the polytropic exponent. For
the ensemble of free nonrelativistic point particles being con-
whereF is determined througkB) and(9). sidered herey, takes the value 5/3. The maximal symmetry

As promised, we now sketch a road map to an astrophysigroup G therefore extends to the fluid dynamic equations,
cal application of the results of this paper. As is explained inyhich explains the observed similarity between supernova
detail in Ref. 2, recent experimental programs try to simulatexplosions and plasma implosions.
astrophysical systems like supernova explosions in the labo- Although we have considered free particles so far, it is
ratory by creating implosions in inertial confinement plas-interesting to note that the symmetry group discussed in this
mas. This research is inspired by a remarkable similaritypaper extends to an interesting class of interacting many-
which was observed in the results of numerical models Obody problems namely, those for which the potential is an
1987A supernova observations and results of numericghverse square of the coordinate differences. In one dimen-

simulations of experiments involving plasma implosions. Ression these include the so-called Calogero—Moser mddels
ferring the reader to Ref. 2 for further details of this researchyith Hamiltonian

program, we note that this is a puzzling observation because

the former system involves very large length and time scales 1 & 1
i i H=>| > p?+g?> ———— (48)
whereas the latter involves very small scales. A theoretical 2\ & Pr—g = —xy)2)

explanation of this intriguing similarity was given in Ref. 1
and can be traced to the symmetry properties of the fluiThese models are integrable and adméxclusion
dynamic equatior’® that describe both stellar structure and statistics—an exciting area of current resear@in two di-
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