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Hermann von Helmholtz (1858)

An incompressible, inviscid, fluid of constant density, supports

vortices which are permanent and indestructible.
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An incompressible, inviscid, fluid of constant density, supports

vortices which are permanent and indestructible.

Vortex: a measure of local angular momentum.

Water draining through a sink/bathtub.

Whirlpools in the sea.

Atmospheric disturbances like hurricanes, tornadoes.
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Hermann von Helmholtz (1858)

An incompressible, inviscid, fluid of constant density, supports

vortices which are permanent and indestructible.

Vortex: a measure of local angular momentum.

Water draining through a sink/bathtub.

Whirlpools in the sea.

Atmospheric disturbances like hurricanes, tornadoes.

~u = 1
2(yî− xĵ) ⇒ (~∇× ~u)z =

1
2(

∂ux

∂y − ∂uy

∂x ) = 1

i.e. (~∇× ~u) = k̂: Two-dimensional vortex
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Hermann von Helmholtz (1858)

Water Twists
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Guthrie Tait (1867)

Gave a series of lectures on Helmholtz’s work.
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Guthrie Tait (1867)

Gave a series of lectures on Helmholtz’s work.

“Never, I think, can there have been a more superb demonstrator. I

have his burly figure before me. The small twinkling eyes had a

fascinating gleam in them; he could concentrate them until they held

the object looked at; when they flashed back around the room he

seemed to have drawn a rapier. I have seen a man fall back in alarm

under Tait’s eyes, though there were a dozen benches between

them". – J. M. Barrie (Author of Peter Pan)
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Behaviour of Smoke Rings

Vortex rings behave as independent solids.
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When they collide with each other, they rebound like quivering elastic

solids, like rubber rings.
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Behaviour of Smoke Rings

Vortex rings behave as independent solids.

When they collide with each other, they rebound like quivering elastic

solids, like rubber rings.

They exhibit fascinating vibrational modes about their circular form. If

they both have the same direction of rotation they will proceed in the

same sense, and the ring in front will enlarge itself and move slower,

while the second one will shrink and move faster, if the velocities of

translation are not too different, the second will finally reach the first

and pass through it. Then the same game will be repeated with the

other ring, so the ring will pass alternately one through the other.
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Behaviour of Smoke Rings

Vortex rings behave as independent solids.

When they collide with each other, they rebound like quivering elastic

solids, like rubber rings.

They exhibit fascinating vibrational modes about their circular form. If

they both have the same direction of rotation they will proceed in the

same sense, and the ring in front will enlarge itself and move slower,

while the second one will shrink and move faster, if the velocities of

translation are not too different, the second will finally reach the first

and pass through it. Then the same game will be repeated with the

other ring, so the ring will pass alternately one through the other.

They simply wriggle around a knife trying to cut them, and maintain

their form.
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SIR W Thomson aka Lord Kelvin

Thomson was a brilliant mathematician and physicist: Laid the first

trans-Atlantic telegraph cable, invented the mirror galvanometer,

invented the absolute temperature scale.
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SIR W Thomson aka Lord Kelvin

Thomson was a brilliant mathematician and physicist: Laid the first

trans-Atlantic telegraph cable, invented the mirror galvanometer,

invented the absolute temperature scale.

Formed sweeping conclusions: Radio has no future, heavier-than-air

flying machines are impossible, X-rays will prove to be a hoax.
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trans-Atlantic telegraph cable, invented the mirror galvanometer,

invented the absolute temperature scale.

Formed sweeping conclusions: Radio has no future, heavier-than-air

flying machines are impossible, X-rays will prove to be a hoax.

Rejected: Darwin (the age of the earth), radioactivity, Maxwell’s

theory of electricity and magnetism, atomic theory.
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Thomson to his servant: “Oh, just run down to the Senate House, will

you, and see who is Second Wrangler?”
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SIR W Thomson aka Lord Kelvin

Thomson was a brilliant mathematician and physicist: Laid the first

trans-Atlantic telegraph cable, invented the mirror galvanometer,

invented the absolute temperature scale.

Formed sweeping conclusions: Radio has no future, heavier-than-air

flying machines are impossible, X-rays will prove to be a hoax.

Rejected: Darwin (the age of the earth), radioactivity, Maxwell’s

theory of electricity and magnetism, atomic theory.

Thomson to his servant: “Oh, just run down to the Senate House, will

you, and see who is Second Wrangler?”

Servant to his master: “You are, sir!”
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Sir W Thomson’s Atom

Atoms are knotted and linked vortices in Ether.
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Variety: There is a great variety of knots, just as there is a great

variety of physical atoms.
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Spectrum: Vortex atoms have energy states and vibration modes just

as physical atoms do – A point particularly reinforced by the advent

of quantum theory.
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Stability: Vortex atoms are stable, so are physical atoms.

Variety: There is a great variety of knots, just as there is a great

variety of physical atoms.

Spectrum: Vortex atoms have energy states and vibration modes just

as physical atoms do – A point particularly reinforced by the advent

of quantum theory.

Transmutation: Knotted vortex atoms change their knot type if their

energy is increased beyond a threshold, just as physical atoms

change their atomic structure.
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Sir W Thomson’s Atom

Atoms are knotted and linked vortices in Ether.

Stability: Vortex atoms are stable, so are physical atoms.

Variety: There is a great variety of knots, just as there is a great

variety of physical atoms.

Spectrum: Vortex atoms have energy states and vibration modes just

as physical atoms do – A point particularly reinforced by the advent

of quantum theory.

Transmutation: Knotted vortex atoms change their knot type if their

energy is increased beyond a threshold, just as physical atoms

change their atomic structure.

Intellectual Support: J. C. Maxwell
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Tait and Maxwell

1831: 13, June (Maxwell); 28, April (Tait); 1839: LOP
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Tait and Maxwell

1831: 13, June (Maxwell); 28, April (Tait); 1839: LOP

Code: T (Thomson), T
′

(Tait), T
′′

(Tyndall), C (Clausius), H

(Hamilton), H2 (Helmholtz). (Decode: dp/dt)
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Tait’s Knot Table
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Tait’s Conjectures

An alternating diagram with no nugatory crossing, of an alternating

link realises the minimal number of crossings among all diagrams

representing the link.
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Tait’s Conjectures

An alternating diagram with no nugatory crossing, of an alternating

link realises the minimal number of crossings among all diagrams

representing the link.

Two alternating diagrams, with no nugatory crossings, of the same

oriented link have the same Tait (or writhe) number, i.e. the signed

sum of all crossings of the diagram with the convention that an

overpass being +1 and an underpass being -1.
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Tait’s Conjectures

An alternating diagram with no nugatory crossing, of an alternating

link realises the minimal number of crossings among all diagrams

representing the link.

Two alternating diagrams, with no nugatory crossings, of the same

oriented link have the same Tait (or writhe) number, i.e. the signed

sum of all crossings of the diagram with the convention that an

overpass being +1 and an underpass being -1.

Two alternating diagrams, with no nugatory crossings, of the same

link are related by a sequence of flypes.
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Knot Theory

A knot is a closed, oriented, loop of string in R
3. More formally, a

knot K is defined by the map K : S1 → R
3.
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Knot Theory

A knot is a closed, oriented, loop of string in R
3. More formally, a

knot K is defined by the map K : S1 → R
3.

Two knots are equivalent if one can be wiggled around, stretched,

tangled, untangled, until it coincides with the other.
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Knot Theory

A knot is a closed, oriented, loop of string in R
3. More formally, a

knot K is defined by the map K : S1 → R
3.

Two knots are equivalent if one can be wiggled around, stretched,

tangled, untangled, until it coincides with the other.

The fundamental problem of knot theory is to be able to distinguish

between inequivalent knots.
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Artin and His Braids
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Artin and His Braids

σiσj = σjσi, | i− j |≥ 2; σiσi+1σi = σi+1σiσi+1, ∀ i
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Artin and His Braids

σiσj = σjσi, | i− j |≥ 2; σiσi+1σi = σi+1σiσi+1, ∀ i

Braids classified by braid words: an ordered sequence of σi. The

braid word for (b) is σ2σ
−1
3 σ3σ

−1
1 σ1σ

−1
2 .
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Artin and His Braids

σiσj = σjσi, | i− j |≥ 2; σiσi+1σi = σi+1σiσi+1, ∀ i

Braids classified by braid words: an ordered sequence of σi. The

braid word for (b) is σ2σ
−1
3 σ3σ

−1
1 σ1σ

−1
2 .

Artin’s Theorem (1925): Two braids are isotopic iff their words can be

transformed into each other by a sequence of admissible calculations

(eliminating σiσ
−1
i and σ−1

i σi) from a given word. This method is

called combing.
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Artin and His Braids

σiσj = σjσi, | i− j |≥ 2; σiσi+1σi = σi+1σiσi+1, ∀ i

Braids classified by braid words: an ordered sequence of σi. The

braid word for (b) is σ2σ
−1
3 σ3σ

−1
1 σ1σ

−1
2 .

Artin’s Theorem (1925): Two braids are isotopic iff their words can be

transformed into each other by a sequence of admissible calculations

(eliminating σiσ
−1
i and σ−1

i σi) from a given word. This method is

called combing.

Alexander’s Theorem (1928): Braids related to knots and links

through closure.
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Reidemeister and His Moves

Reidemeister’s Theorem (1926): If two knots K1 and K2 are

equivalent, then their knot diagrams D1 and D2 are connected by a

finite number of operations. The three basic operations are called the

Reidemeister Moves.
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Reidemeister and His Moves

Reidemeister’s Theorem (1926): If two knots K1 and K2 are

equivalent, then their knot diagrams D1 and D2 are connected by a

finite number of operations. The three basic operations are called the

Reidemeister Moves.

J. C. Maxwell had discovered this result earlier, but refused to publish

the results despite his friend Tait’s prodding.
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Alexander and His Polynomial

1. Pick an oriented diagram for the knot K; separately number the n

arcs and crossings of the diagram.
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Alexander and His Polynomial

1. Pick an oriented diagram for the knot K; separately number the n

arcs and crossings of the diagram.

2. Define an n× n matrix with the row index representing a crossing

and the column index an arc. For a right-handed crossing, l, the

entries are: (1− t), (−1), (t) for the li, lj and lk elements, and for

a left-handed crossing the entries are (1− t), t, (−1) respectively.
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Alexander and His Polynomial

1. Pick an oriented diagram for the knot K; separately number the n

arcs and crossings of the diagram.

2. Define an n× n matrix with the row index representing a crossing

and the column index an arc. For a right-handed crossing, l, the

entries are: (1− t), (−1), (t) for the li, lj and lk elements, and for

a left-handed crossing the entries are (1− t), t, (−1) respectively.

3. The (n− 1)× (n− 1) matrix obtained by removing the last row

and column is called the Alexander matrix of K and its determinant

is the Alexander polynomial AK(t).
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Alexander Polynomial of a Trefoil
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Alexander Polynomial of a Trefoil
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Alexander Polynomial of a Trefoil

The Alexander polynomial for a trefoil is: t2 − t+ 1.
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Alexander Polynomial of a Trefoil

The Alexander polynomial for a trefoil is: t2 − t+ 1.

K and K
′

are inequivalent if AK(t) 6= A
′

K(t). Does not distinguish

between mirror images.
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Conway and His Polynomial ( 1960)

Axioms:

1. Invariance: K ∼ K
′ ⇒ ∇(K) = ∇(K

′

)

2. Normalization: ∇(O) = 1

3. Skein Relation: ∇(K+)−∇(K−) = x∇(K0)
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Axioms:

1. Invariance: K ∼ K
′ ⇒ ∇(K) = ∇(K

′

)

2. Normalization: ∇(O) = 1

3. Skein Relation: ∇(K+)−∇(K−) = x∇(K0)

where
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Conway and His Polynomial ( 1960)

Axioms:

1. Invariance: K ∼ K
′ ⇒ ∇(K) = ∇(K

′

)

2. Normalization: ∇(O) = 1

3. Skein Relation: ∇(K+)−∇(K−) = x∇(K0)

where

AK(t) = ∇K(
√
t− 1√

t
)
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Seifert and His Surface (1934)

Fix an oriented diagram for the knot.
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Seifert and His Surface (1934)

Fix an oriented diagram for the knot.

Eliminate all crossings to get a set of oriented, non-intersecting

circles, called Seifert circles.
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Seifert and His Surface (1934)

Fix an oriented diagram for the knot.

Eliminate all crossings to get a set of oriented, non-intersecting

circles, called Seifert circles.

Fill the circles to get discs and connect the discs using twisted bands,

one for each crossing.
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Seifert and His Surface (1934)

Fix an oriented diagram for the knot.

Eliminate all crossings to get a set of oriented, non-intersecting

circles, called Seifert circles.

Fill the circles to get discs and connect the discs using twisted bands,

one for each crossing.

Euler characteristic of the surface:χS = 2− 2gS −m where gS : the

genus, m: the number of components.
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Seifert and His Surface (1934)

Fix an oriented diagram for the knot.

Eliminate all crossings to get a set of oriented, non-intersecting

circles, called Seifert circles.

Fill the circles to get discs and connect the discs using twisted bands,

one for each crossing.

Euler characteristic of the surface:χS = 2− 2gS −m where gS : the

genus, m: the number of components.

Answer equivalent, and related to AK(t).
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Seifert Surfaces
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Schubert and His Decomposition (1949)

If two knots K1 and K2 are given, their connected sum, denoted by

K1#K2 is defined as follows:
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Schubert and His Decomposition (1949)

If two knots K1 and K2 are given, their connected sum, denoted by

K1#K2 is defined as follows:

A nontrivial knot is called a prime knot, if it cannot be decomposed

into a nontrivial connected sum.

A FEW WRONG MEN IN A PARADISE FOR MATHEMATICIANS – p. 19/33



Schubert and His Decomposition (1949)

If two knots K1 and K2 are given, their connected sum, denoted by

K1#K2 is defined as follows:

A nontrivial knot is called a prime knot, if it cannot be decomposed

into a nontrivial connected sum.

The fundamental theorem of arithmetic says that every integer

greater than one, is either a prime itself, or is the product of prime

numbers.
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Schubert and His Decomposition (1949)

If two knots K1 and K2 are given, their connected sum, denoted by

K1#K2 is defined as follows:

A nontrivial knot is called a prime knot, if it cannot be decomposed

into a nontrivial connected sum.

The fundamental theorem of arithmetic says that every integer

greater than one, is either a prime itself, or is the product of prime

numbers.

Schubert’s theorem: Any nontrivial knot has a finite decomposition

into prime knots, and this decomposition is unique up to order.
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Knots and Graphs

Given a knot diagram, it divides the plane into a number of regions.

Colour the outer, unbounded region white.
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Knots and Graphs

Given a knot diagram, it divides the plane into a number of regions.

Colour the outer, unbounded region white.

Cross over any arc into a bounded region and colour it black. Then

colour the the neighbouring region white, and so on.
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Knots and Graphs

Given a knot diagram, it divides the plane into a number of regions.

Colour the outer, unbounded region white.

Cross over any arc into a bounded region and colour it black. Then

colour the the neighbouring region white, and so on.

Place a vertex in each black region. Add an edge between two

vertices iff, there is a crossing that connects the two regions.
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Knots and Graphs

Given a knot diagram, it divides the plane into a number of regions.

Colour the outer, unbounded region white.

Cross over any arc into a bounded region and colour it black. Then

colour the the neighbouring region white, and so on.

Place a vertex in each black region. Add an edge between two

vertices iff, there is a crossing that connects the two regions.
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Knots and Graphs

Given a knot diagram, it divides the plane into a number of regions.

Colour the outer, unbounded region white.

Cross over any arc into a bounded region and colour it black. Then

colour the the neighbouring region white, and so on.

Place a vertex in each black region. Add an edge between two

vertices iff, there is a crossing that connects the two regions.
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Tietze and The Knot Group (1908)

Fundamental Group: In Algebraic Topology, a field whose

foundations were laid down by Poincare, the fundamental group of X

consists of closed paths in X , with multiplication being composition

of paths, and inverses corresponding to reversal of direction. Paths

which are topologically equivalent are identified.
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Tietze and The Knot Group (1908)

Fundamental Group: In Algebraic Topology, a field whose

foundations were laid down by Poincare, the fundamental group of X

consists of closed paths in X , with multiplication being composition

of paths, and inverses corresponding to reversal of direction. Paths

which are topologically equivalent are identified.

Knot Group: Let K be a knot in R
3. Let X be the complement, or

exterior R3 −K. By definition, the fundamental group of X , is called

the knot group.
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Tietze and The Knot Group (1908)

Fundamental Group: In Algebraic Topology, a field whose

foundations were laid down by Poincare, the fundamental group of X

consists of closed paths in X , with multiplication being composition

of paths, and inverses corresponding to reversal of direction. Paths

which are topologically equivalent are identified.

Knot Group: Let K be a knot in R
3. Let X be the complement, or

exterior R3 −K. By definition, the fundamental group of X , is called

the knot group.

The knot group is an invariant of the knots. Tietze showed that the

knot group can be used to distinguish between the unknot and a

trefoil knot. The knot group of the trefoil is the braid group on three

strings.
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Brauner and His Theorem (1928)

Consider two relatively prime integers p, q ≥ 2. Consider a curve C

defined by the equation xp + xq = 0, where x, y are two complex

coordinates.
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Brauner and His Theorem (1928)

Consider two relatively prime integers p, q ≥ 2. Consider a curve C

defined by the equation xp + xq = 0, where x, y are two complex

coordinates.

Consider the intersection of the curve C with the sphere Sǫ defined

by x21 + x22 + x23 + x24 = ǫ2, where we used

x = x1 + ix2, y = x3 + ix4. The resulting real algebraic curve is a

(p, q) knot.
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Brauner and His Theorem (1928)

Consider two relatively prime integers p, q ≥ 2. Consider a curve C

defined by the equation xp + xq = 0, where x, y are two complex

coordinates.

Consider the intersection of the curve C with the sphere Sǫ defined

by x21 + x22 + x23 + x24 = ǫ2, where we used

x = x1 + ix2, y = x3 + ix4. The resulting real algebraic curve is a

(p, q) knot.

For p = 2, q = 3, for example, the curve C is a trefoil knot.
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HELICITY

Helicity: A measure of linkage between two (un)knots. Defined by

H =
∫

~A · ~B dV
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Helicity: A measure of linkage between two (un)knots. Defined by

H =
∫

~A · ~B dV

Hopf link:
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HELICITY

Helicity: A measure of linkage between two (un)knots. Defined by

H =
∫

~A · ~B dV

Hopf link:

∫
~A · ~B dV =

∫ ∫
~A1 · ~B1 dl1dS1 +

∫ ∫
~A2 · ~B2 dl21dS2
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HELICITY

Helicity: A measure of linkage between two (un)knots. Defined by

H =
∫

~A · ~B dV

Hopf link:

∫
~A · ~B dV =

∫ ∫
~A1 · ~B1 dl1dS1 +

∫ ∫
~A2 · ~B2 dl21dS2∫

~A · ~B dV =
∫
A1dl1

∫
B1dS1 +

∫
A2dl2

∫
B2dS2

= Φ2Φ1 + Φ1Φ2 = 2Φ1Φ2
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HELICITY

Helicity: A measure of linkage between two (un)knots. Defined by

H =
∫

~A · ~B dV

Hopf link:

∫
~A · ~B dV =

∫ ∫
~A1 · ~B1 dl1dS1 +

∫ ∫
~A2 · ~B2 dl21dS2∫

~A · ~B dV =
∫
A1dl1

∫
B1dS1 +

∫
A2dl2

∫
B2dS2

= Φ2Φ1 + Φ1Φ2 = 2Φ1Φ2

If the circles are unlinked, clearly H = 0.
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DECOMPOSITION
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DECOMPOSITION

A single trefoil knot has twice the helicity of tube circulation.
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DECOMPOSITION

A single trefoil knot has twice the helicity of tube circulation.

Any knot can be reduced to set of linked unknots.
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DECOMPOSITION

A single trefoil knot has twice the helicity of tube circulation.

Any knot can be reduced to set of linked unknots.

Any linked unknot can be reduced to a set of simply linked unknots

i.e. those which are linked only once.
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DECOMPOSITION

A single trefoil knot has twice the helicity of tube circulation.

Any knot can be reduced to set of linked unknots.

Any linked unknot can be reduced to a set of simply linked unknots

i.e. those which are linked only once.

General Formula for Helicity: H =
∑

ij αijΦiΦj where αij = ±1

for simple links, in general integers.
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GAUSS’S LINKING NUMBER ( 1830)

General Formula for Helicity: H =
∑

ij αijΦiΦj
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GAUSS’S LINKING NUMBER ( 1830)

General Formula for Helicity: H =
∑

ij αijΦiΦj

Analogy: Energy of a current system W = 1
2 ×

∑
ij MijIiIj where

Mij is the mutual inductance, and Ii and Ij are the currents through

the ith and jth circuits.
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GAUSS’S LINKING NUMBER ( 1830)

General Formula for Helicity: H =
∑

ij αijΦiΦj

Analogy: Energy of a current system W = 1
2 ×

∑
ij MijIiIj where

Mij is the mutual inductance, and Ii and Ij are the currents through

the ith and jth circuits.

Physically, MijIi is the flux in the jth loop due to a current Ii in the

ith loop.

A FEW WRONG MEN IN A PARADISE FOR MATHEMATICIANS – p. 25/33



GAUSS’S LINKING NUMBER ( 1830)

General Formula for Helicity: H =
∑

ij αijΦiΦj

Analogy: Energy of a current system W = 1
2 ×

∑
ij MijIiIj where

Mij is the mutual inductance, and Ii and Ij are the currents through

the ith and jth circuits.

Physically, MijIi is the flux in the jth loop due to a current Ii in the

ith loop.

αij ∼ Mij ∼ Φ
I = 1

I

∮
S
~B · ~dS =

∮
C

′

∮
S

1
4π

~dl
′

(~r
′

)× (~r−~r
′

)

|~r−~r
′ |3 ·

~dS(~r)
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GAUSS’S LINKING NUMBER ( 1830)

General Formula for Helicity: H =
∑

ij αijΦiΦj

Analogy: Energy of a current system W = 1
2 ×

∑
ij MijIiIj where

Mij is the mutual inductance, and Ii and Ij are the currents through

the ith and jth circuits.

Physically, MijIi is the flux in the jth loop due to a current Ii in the

ith loop.

αij ∼ Mij ∼ Φ
I = 1

I

∮
S
~B · ~dS =

∮
C

′

∮
S

1
4π

~dl
′

(~r
′

)× (~r−~r
′

)

|~r−~r
′ |3 ·

~dS(~r)

αij =
1
4π

∮
C

′

∮
C

~y·(~t×~t′)
|~y|3 ds

′

ds where ~y = ~r − ~r
′

. αij is called the

Gauss’s Linking Number. It is a topological invariant.
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The Writhing Number

αii =
1
4π

∮
C

∮
C

~y·(~t(s)×~t(t))
|~y|3 dsdt where ~y = ~r(t)− ~r(s).

This integral is called the Writhing Number and is denoted by W .

It is the analogue of the self-inductance.

It is a NOT a topological invariant.
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The Writhing Number

αii =
1
4π

∮
C

∮
C

~y·(~t(s)×~t(t))
|~y|3 dsdt where ~y = ~r(t)− ~r(s).

This integral is called the Writhing Number and is denoted by W .

It is the analogue of the self-inductance.

It is a NOT a topological invariant.

Superficially, logarithmically divergent. Check by expanding x(t)

around t = s. All terms with negative powers of (t− s) in the

denominator vanish because of the triple product.
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The Writhing Number

αii =
1
4π

∮
C

∮
C

~y·(~t(s)×~t(t))
|~y|3 dsdt where ~y = ~r(t)− ~r(s).

This integral is called the Writhing Number and is denoted by W .

It is the analogue of the self-inductance.

It is a NOT a topological invariant.

Superficially, logarithmically divergent. Check by expanding x(t)

around t = s. All terms with negative powers of (t− s) in the

denominator vanish because of the triple product.

First non-vanishing term is: −1
6 | t− s | ~r

′ ·(~r′′×~r
′′′

)(s)

|~r′(s)|3 — Not

divergent as t → s.
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The Writhing Number

αii =
1
4π

∮
C

∮
C

~y·(~t(s)×~t(t))
|~y|3 dsdt where ~y = ~r(t)− ~r(s).

This integral is called the Writhing Number and is denoted by W .

It is the analogue of the self-inductance.

It is a NOT a topological invariant.

Superficially, logarithmically divergent. Check by expanding x(t)

around t = s. All terms with negative powers of (t− s) in the

denominator vanish because of the triple product.

First non-vanishing term is: −1
6 | t− s | ~r

′ ·(~r′′×~r
′′′

)(s)

|~r′(s)|3 — Not

divergent as t → s.

This is not to say that W = 0. For t 6= s, the integral has a finite,

non-zero, answer.
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Digression on Space Curves

A moving reference frame of a triad of orthonormal vectors used to

describe a curve locally at each point ~r(s) is a Frenet-Serret frame.
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Digression on Space Curves

A moving reference frame of a triad of orthonormal vectors used to

describe a curve locally at each point ~r(s) is a Frenet-Serret frame.

Far easier and more natural to describe local properties like

curvature and torsion, in terms of local coordinates.
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Digression on Space Curves

A moving reference frame of a triad of orthonormal vectors used to

describe a curve locally at each point ~r(s) is a Frenet-Serret frame.

Far easier and more natural to describe local properties like

curvature and torsion, in terms of local coordinates.

These are the unit tangent, normal and binormal vectors, denotes by

t̂, n̂, b̂ respectively.
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Digression on Space Curves

A moving reference frame of a triad of orthonormal vectors used to

describe a curve locally at each point ~r(s) is a Frenet-Serret frame.

Far easier and more natural to describe local properties like

curvature and torsion, in terms of local coordinates.

These are the unit tangent, normal and binormal vectors, denotes by

t̂, n̂, b̂ respectively.

The tn- plane is called the osculating plane, the tb-plane is called the

rectifying plane, and the nb-plane is called the normal plane.
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Digression on Space Curves

A moving reference frame of a triad of orthonormal vectors used to

describe a curve locally at each point ~r(s) is a Frenet-Serret frame.

Far easier and more natural to describe local properties like

curvature and torsion, in terms of local coordinates.

These are the unit tangent, normal and binormal vectors, denotes by

t̂, n̂, b̂ respectively.

The tn- plane is called the osculating plane, the tb-plane is called the

rectifying plane, and the nb-plane is called the normal plane.

The Frenet-Serret Equations

dt̂

ds
= κn̂,

dn̂

ds
= −κt̂+ τ b̂,

db̂

ds
= −τ n̂

κ: Curvature, τ : Torsion: Illustration
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Framing

Framing: Given a space curve, we can define another small ribbon

based on it, with width ǫ by the following prescription:
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Framing

Framing: Given a space curve, we can define another small ribbon

based on it, with width ǫ by the following prescription:

~R(s) = ~r(s) + ǫn̂, ǫ > 0
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Framing

Framing: Given a space curve, we can define another small ribbon

based on it, with width ǫ by the following prescription:

~R(s) = ~r(s) + ǫn̂, ǫ > 0

The linking number between the two edges of the ribbon can be

easily obtained using Gauss’s formula. It will be an integer. We can

also actually evaluate the integral in two small steps.
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Framing

Framing: Given a space curve, we can define another small ribbon

based on it, with width ǫ by the following prescription:

~R(s) = ~r(s) + ǫn̂, ǫ > 0

The linking number between the two edges of the ribbon can be

easily obtained using Gauss’s formula. It will be an integer. We can

also actually evaluate the integral in two small steps.

Substitute for the two edges using the above equations, and evaluate

the integral for s− δ ≤ t ≤ s+ δ in the limit ǫ → 0, to get the

following expression:

1

2π

∫ 1

0

dst̂ · n̂× b̂

This is the torsion of the curve.
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Calugareanu-White Theorem

Since the first part of the integration is independent of δ, the

remaining integral can be calculated over the full range, for which the

expression merely gives the writhing number, as already discussed.
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Calugareanu-White Theorem

Since the first part of the integration is independent of δ, the

remaining integral can be calculated over the full range, for which the

expression merely gives the writhing number, as already discussed.

Hence n = T +W : Calugareanu-White Theorem
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Calugareanu-White Theorem

Since the first part of the integration is independent of δ, the

remaining integral can be calculated over the full range, for which the

expression merely gives the writhing number, as already discussed.

Hence n = T +W : Calugareanu-White Theorem

T , W are geometrical, n is topological. Applications in

conformational transformations of long molecules.

E =
∫
C

1
2(ατ

2 + βκ2)ds, E is the elastic energy, α is the torsional

stiffness coefficient, β is the flexural stiffness coefficient.
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Calugareanu-White Theorem

Since the first part of the integration is independent of δ, the

remaining integral can be calculated over the full range, for which the

expression merely gives the writhing number, as already discussed.

Hence n = T +W : Calugareanu-White Theorem

T , W are geometrical, n is topological. Applications in

conformational transformations of long molecules.

E =
∫
C

1
2(ατ

2 + βκ2)ds, E is the elastic energy, α is the torsional

stiffness coefficient, β is the flexural stiffness coefficient.

Suppose a molecule has n = 4, T = 2.5, W = 1.5. Suppose that

β >> α, the molecule will minimise the bending energy (curvature)

by forming a flat circle for which W = 0. But this will be very twisted

i.e. T = 4.
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Calugareanu-White Theorem

Since the first part of the integration is independent of δ, the

remaining integral can be calculated over the full range, for which the

expression merely gives the writhing number, as already discussed.

Hence n = T +W : Calugareanu-White Theorem

T , W are geometrical, n is topological. Applications in

conformational transformations of long molecules.

E =
∫
C

1
2(ατ

2 + βκ2)ds, E is the elastic energy, α is the torsional

stiffness coefficient, β is the flexural stiffness coefficient.

Suppose a molecule has n = 4, T = 2.5, W = 1.5. Suppose that

β >> α, the molecule will minimise the bending energy (curvature)

by forming a flat circle for which W = 0. But this will be very twisted

i.e. T = 4.

This is an example of a twist-to-writhe transformation.
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Knots in Nature

Watson and Crick discovered DNA, the molecule that encodes

genetic information. Defects in DNA rectified by unknotting and

knotting them back by using enzymes called topoisomerases.
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Knots in Nature

Watson and Crick discovered DNA, the molecule that encodes

genetic information. Defects in DNA rectified by unknotting and

knotting them back by using enzymes called topoisomerases.

Schrodinger: What is Life?, Delbruck’s Influence
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Knots in Nature

Watson and Crick discovered DNA, the molecule that encodes

genetic information. Defects in DNA rectified by unknotting and

knotting them back by using enzymes called topoisomerases.

Schrodinger: What is Life?, Delbruck’s Influence
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Knots in Nature Contd.
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Closure

Jones Polynomial: Solution obtained by solving Potts model, a

statistical mechanical model used to understand magnetism.
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Closure

Jones Polynomial: Solution obtained by solving Potts model, a

statistical mechanical model used to understand magnetism.

Witten: Topological Field Theory. QFT generalisation of Helicity
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Closure

Jones Polynomial: Solution obtained by solving Potts model, a

statistical mechanical model used to understand magnetism.

Witten: Topological Field Theory. QFT generalisation of Helicity

Vasiliev: Catastrophe Theory
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Morals

It is not only poets who are inspired by the tresses of beautiful girls!

Physicists and mathematicians are equally susceptible.
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Morals

It is not only poets who are inspired by the tresses of beautiful girls!

Physicists and mathematicians are equally susceptible.

Knot Theory is an eclectic subject which derives heavily from all

branches of mathematics viz. algebra, geometry, combinatorics,

arithmetic, algebraic topology, algebraic geometry etc. But most of all

it derives from the mother of (all) most mathematics, namely physics.

So never ignore your mother!
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Morals

It is not only poets who are inspired by the tresses of beautiful girls!

Physicists and mathematicians are equally susceptible.

Knot Theory is an eclectic subject which derives heavily from all

branches of mathematics viz. algebra, geometry, combinatorics,

arithmetic, algebraic topology, algebraic geometry etc. But most of all

it derives from the mother of (all) most mathematics, namely physics.

So never ignore your mother!

Was Lord Kelvin ahead of his times? If Strings come, can Knots be

far behind?
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Morals

It is not only poets who are inspired by the tresses of beautiful girls!

Physicists and mathematicians are equally susceptible.

Knot Theory is an eclectic subject which derives heavily from all

branches of mathematics viz. algebra, geometry, combinatorics,

arithmetic, algebraic topology, algebraic geometry etc. But most of all

it derives from the mother of (all) most mathematics, namely physics.

So never ignore your mother!

Was Lord Kelvin ahead of his times? If Strings come, can Knots be

far behind?

Genius: Treasure a good idea, nurture it.
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Morals

It is not only poets who are inspired by the tresses of beautiful girls!

Physicists and mathematicians are equally susceptible.

Knot Theory is an eclectic subject which derives heavily from all

branches of mathematics viz. algebra, geometry, combinatorics,

arithmetic, algebraic topology, algebraic geometry etc. But most of all

it derives from the mother of (all) most mathematics, namely physics.

So never ignore your mother!

Was Lord Kelvin ahead of his times? If Strings come, can Knots be

far behind?

Genius: Treasure a good idea, nurture it.

THANKS!
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