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ABSTRACT

Simple physics ideas are used to derive an exact expression for a flat connection on
the complement of a torus knot. The result is of some importance in the context of
constructing representations of the knot group — a topological invariant of the knot. It
is also a step forward in the direction of obtaining a generalization of the Aharonov–
Bohm effect in which charged particles moving through force-free regions are scattered
by impenetrable, knotted solenoids.
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1. Introduction

This paper deals with the problem of deriving a flat connection on the complement
of a torus knot. The motivation for undertaking this exercise is two-fold. First,
any exact expression is interesting in its own right. Besides, in the present case, the
result is useful in constructing holonomies and hence the representations of the knot
group — a well-known topological invariant of the knot [1]. Second, the result has
a direct physical application. It is a first step toward generalizing the seminal work
of Aharonov and Bohm, on the quantum mechanical scattering of charged particles
moving through force-free fields [2, 5], to a situation in which the impenetrable
solenoid is knotted [4, 8]. The key idea that is used in this paper to obtain the
result relies on modeling a knot with wires and solenoids carrying steady currents.
The fields associated with these objects can then be calculated in a straightforward
manner by standard methods of classical electrodynamics.

As a prelude to the calculation, it is useful to briefly recapitulate some relevant,
but well-known, mathematical facts about knots [10]. A knot K is a closed, oriented,
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loop of string in R3. It is defined by the map K : S1 → R3. Two knots K1, K2 ∈ R3

are equivalent if there exists an orientation-preserving homeomorphism h : R3 →
R3 such that h(K1) = K2.

Let X be the complement, R3−K, of the knot K. This is a path-connected (non-
compact) 3-manifold. The knot determines the complement. Clearly, equivalent
knots have homeomorphic complements.

The knot group is, by definition, the fundamental group π1(X). Since comple-
ments of equivalent knots are homeomorphic, their fundamental groups are isomor-
phic.

A converse theorem [6] states that knots are determined by their complements.
In other words, two knots having homeomorphic complements are equivalent. A
second converse theorem [14] states that if two prime knots have isomorphic groups,
their complements are homeomorphic which, by virtue of the first theorem, implies
that the two knots are equivalent. Hence, the knot group determines the knot.
It is a topological invariant associated with the knot. In general, knot groups are
nonabelian. The knot group of a trefoil knot, for example, is the braid group on
three strings, B3.

To put the above statements into perspective, let us consider a two-dimensional
analogue. The space relevant to the standard Aharonov–Bohm effect is a plane
with a hole. The fundamental group of this space is the (abelian) additive group of
integers, Z. As is well-known, an exact expression, in Cartesian coordinates, for a
flat connection on this space is given by the formula "A(x, y, z) = Φ

2π(x2+y2) (−y, x, 0),
where Φ is the flux through the hole. What is the corresponding expression for a
flat connection on the complement of a knot? The present exercise answers this
question.

2. A General Expression for a Flat Connection
on a Knot Complement

Consider a small tubular neighborhood of the knot with cross-sectional radius ε.
Imagine a densely packed winding around it, with a wire carrying a constant cur-
rent i per winding. Let n be the number of windings per unit length, and dl′ an
infinitesimal line element at "r ′ along the tube. This knotted solenoid is a simple,
albeit nontrivial, generalization of the more familiar current distributions used in
the study of the Aharonov–Bohm effect viz. the solenoidal and toroidal distributions
in which the winding is done around a cylinder and a torus, respectively. From basic
magnetostatics, the winding produces a magnetic field which has support only inside
the knotted tube. In the complement of the knot, the vector potential (connection)
is non-zero but the magnetic field vanishes imposing the flatness condition.

The brute-force method to calculate the vector potential at any point in the
complement of the knotted solenoid follows the standard technique of adding con-
tributions from the individual loops. This leads to an integral (over the length of the
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knot) of elliptic integrals (contribution from the individual windings). This answer
is not very illuminating: A simplification by way of a reduction in the number of
integrals is desirable.

Strictly speaking, the winding produces a component of the current along the
knot which produces a non-zero magnetic field outside the knotted tube. The result-
ing field can be cancelled by passing an appropriate current through the axis of the
knotted tube, in the opposite direction to the winding. This in turn produces an
additional contribution to the vector potential which should be accounted for.

That is not all: The above current distribution also produces a field due to
contact terms which we call the “knot moments” — analogous to the toroidal
moment, also known as the anapole [15] in the case of a toroidal winding. Such fields
typically have their support only in the source region; nevertheless, they produce
a vector potential outside the sources. This produces a further contribution to the
result.

All the three caveats mentioned above can be circumvented by the following
simple expedient: We let the radius ε of the knot tube to be small. Each winding
can then be approximated by a magnetic dipole of strength µ, at the position "r ′,
pointing in the direction of the tangent to the knot at "r ′. In this limit, the knotted
solenoid reduces to a collection of magnetic moments (magnets) which, for a trefoil
knot, are aligned as shown in Fig. 1.

Each moment contributes a vector potential equal to "µ×"R
R3 at the point "r, where

"R = "r − "r ′ and R = |"R|. The total vector potential is then obtained by integrating
over "r ′. Thus

"A("r ) =
∫

K
dl′ "m("r ′) ×

"R

R3
, (2.1)

Fig. 1. Alignment of magnetic moments.
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where "m is the magnetic dipole moment density, i.e. magnetic dipole moment per
unit length. This expression for the vector potential is identical to the expression
for the magnetic field produced by a knotted wire carrying steady current, given by
the Biot–Savart law, when "m is replaced by current. The vector potential is given
by an expression usually reserved for the magnetic field because the former (in the
Coulomb gauge) satisfies the same equations as the latter in the magnetostatics limit
in the region of interest viz. the source-free complement of the knot. Assuming that
the knot tube is of uniform cross-sectional area, and defining the Hertz potential
"H by

"H("r ) = |"m|
∫

K

"dl′

R
, (2.2)

the expression for the flat connection (2.1) can be obtained by taking the curl of "H ,
"A = "∇× "H . Equation (2.2) is deceptively simple since, although the integration is
over a one-dimensional (filamentary) current, the nontrivial embedding of the knot
makes the description manifestly three-dimensional. The key to evaluating this inte-
gral is to reduce the description to a one-dimensional integral. This simplification is
easily effected for a class of knots called torus knots by using toroidal coordinates.

3. Flat Connections on Torus Knot Complements

A (p, q) torus knot can be obtained by considering a closed path that loops around
one of the cycles of a putative torus p times, while looping around the other cycle
q times, p, q being relatively prime integers. The toroidal coordinates are denoted
by 0 ≤ η < ∞,−π < θ ≤ π, 0 ≤ φ < 2π. Given a toroidal surface of major
radius R and minor radius d, we introduce a dimensional parameter a, defined by
a2 = R2 − d2, and a dimensionless parameter η0, defined by η0 = cosh−1(R/d).
The equation η′ = constant, say η0, defines a toroidal surface. The combination
R/d is called the aspect ratio. Clearly, larger η0 corresponds to smaller thickness of
the putative torus. Further, since we are interested in torus knots, we impose the
constraint: pθ′ + qφ′ = 0, p and q being relatively prime integers. It follows that
θ′ → θ′ + 2πq ⇒ φ′ → φ′ − 2πp, i.e. as we complete q cycles in the θ direction, we
are forced to complete p cycles in the φ direction — as required. These constraints
on the source coordinates effectively reduce the calculation to a one-dimensional
problem.

It should be mentioned that in a different context, namely in the study of helical
windings on a tokomak, this problem has been studied in great detail [3, 11]. For
our purposes the results of [9] are more suitable, and we use them in what follows.

The toroidal coordinates are related to the usual Cartesian coordinates by the
equations x = a sinh η cos φ

(cosh η−cos θ) , y = a sinh η sin φ
(cosh η−cos θ) , z = a sin θ

(cosh η−cos θ) . The metric coef-
ficients are h1 = h2 = a

(cosh η−cos θ) , h3 = h1 sinh η and the volume element is

dV = a3 sinh η
(cosh η−cos θ)3 . These results are useful in expressing the Cartesian compo-

nents of the Hertz potential in terms of the toroidal coordinates.
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Likewise, the Green’s functions, for η′ > η and η′ < η respectively, are readily
expanded in toroidal harmonics as follows:

1
R

=
1
aπ

√
(cosh η′ − cos θ′)(cosh η − cos θ)

×
∞∑

m,n=0

εmεn(−1)m cosm(φ − φ′) cos n(θ − θ′)

×






P−m
n−1/2(cosh η)Qm

n−1/2(cosh η′),

P−m
n−1/2(cosh η′)Qm

n−1/2(cosh η),
(3.1)

where the Neumann factor εn is equal to 1 for n = 0 and 2 for n )= 0, and P−m
n−1/2

and Qm
n−1/2 are generalized associated Legendre functions of the first and second

kind with half-integral degree. Note that since η′ = η0 defines the putative torus
on which the knot (of moments) winds, both η > η′ and η < η′ are coordinates in
the complement of the knot. Hence both solutions are of interest. Substituting the
above results in Eq. (2.2), the Cartesian components of the Hertz potential can be
calculated by first expanding them in toroidal coordinates as follows: Hi(η, θ, φ) =∑∞

n=0

∑∞
m=0 Hi

nm where

Hi
nm =

√
cosh η − cos θDnmQm

n−1/2(cosh η)[αi
nm cosmφ cosnθ

+ βi
nm cosmφ sin nθ + γi

nm sin mφ cosnθ + δi
nm sin mφ sin nθ], (3.2)

for η > η′ and Dnm = εnεm(−1)m/aπ. The coefficients α, β, γ, and δ are obtained
by integrating over the source currents and hence contain the information about
the knot. The expression for αi

nm, for example, is given by

αi
nm =

∫
a3Ji

(cosh η′ − cos θ′)5/2
P−m

n−1/2(cosh η′)sinh η′ cosmφ′ cosnθ′dη′dθ′dφ′.

(3.3)

The βi
nm and γi

nm are obtained from αi
nm by the changes cosnθ′ → sinnθ′ and

cosmφ′ → sin mφ′, respectively. The δi
nm is obtained from αi

nm by making both the
changes mentioned above. The results for η < η′, are simply obtained by exchanging
the roles of P−m

n−1/2 and Qm
n−1/2. The Ji stand for the Cartesian components of the

current density and can be obtained from the corresponding toroidal components
by a change of coordinates viz. Ji =

∑
α γαiJα. Here, i = x, y, z; α = η, θ, φ and

γαi = 1
hα

∂ξi

∂ξα
. The non-vanishing toroidal components of the current are given by

Jφ ∝ cosσδ(η′ − η0)δ(pθ′ + qφ′)(h1h2)−1 (3.4)

and

Jθ ∝ sinσδ(η′ − η0)δ(pθ′ + qφ′)(h1h3)−1. (3.5)
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In the above, σ is the pitch angle of the knot which winds around the torus, with
respect to the azimuthal direction. The delta function in η′ specifies the puta-
tive torus around which the knot (of moments) winds. The angular delta function
enforces the knot constraint pθ′ + qφ′ = 0. The irksome denominator in (3.3) can
be tamed by using the identity [7]

[cosh η − cos θ]−
1
2 =

√
2

π

∞∑

n=0

εnQn−1/2(cosh η)cos nθ. (3.6)

Substituting the above results in (3.3) and performing the integrals gives, for the
x-component of α,

αx
nm =

√
2

1 + Λ2
0

( a

π

)
sinh η0P

−m
n−1/2(cosh η0)

×
∞∑

r=0

εr[(−2Λ0)Q′
r−1/2(cosh η0)I(α)x

rmn (p, q) + Qr−1/2(cosh η0)J (α)x
rmn (p, q)],

(3.7)

where Λ0 = tanσ = − (q/p)
sinh η0

, and the prime on Q denotes a derivative of Q with
respect to η0.

The I(α)x and J (α)x are given by simple integrals over elementary trigonometric
functions, and are easily evaluated. Equation (3.7) holds also for αi

nm with corre-
sponding integrals I(α)i and J (α)i. For the z-component, αz

nm, however, the I and
J integrals pick up the following extra multiplicative factors, respectively.

I → sinh η0I and J → Λ0 coth η0J . (3.8)

The expressions for the I and J integrals for the other cases viz. β, γ, δ can be
worked out similarly.

In evaluating the above integrals, it is useful to let λ = −q/p, and define

a1 = λ(1 − n + r), a2 = λ(1 + n − r),

a3 = λ(1 − n − r), a4 = λ(1 + n + r)
(3.9)

and

b1 = λ(n − r), b2 = λ(n + r). (3.10)

With these definitions, the values of the integrals for the various cases are given
below.

Ix
α =

1
16

4∑

i=1

f(ai)(cos 2πai − 1), (3.11)

Iy
α =

1
16

4∑

i=1

g(ai) sin 2πai, (3.12)
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Iz
α = −1

4

2∑

i=1

h(bi) sin 2πbi, (3.13)

J x
α =

1
8

2∑

i=1

g(bi)(cos 2πbi − 1), (3.14)

J y
α =

1
8

2∑

i=1

f(bi) sin 2πbi, (3.15)

J z
α =

1
4

2∑

i=1

h(bi) sin 2πbi, (3.16)

Ix
β =

1
16

4∑

i=1

f(ai) sin 2πai, (3.17)

Iy
β = − 1

16

4∑

i=1

g(ai)(cos 2πai − 1), (3.18)

Iz
β =

1
4

2∑

i=1

h(bi)(cos 2πbi − 1), (3.19)

J x
β =

1
8

2∑

i=1

g(bi) sin 2πbi, (3.20)

J y
β = −1

8

2∑

i=1

f(bi)(cos 2πbi − 1), (3.21)

J z
β = −1

4

2∑

i=1

h(bi)(cos 2πbi − 1), (3.22)

Ix
γ =

1
16

4∑

i=1

k(ai) sin 2πai, (3.23)

Iy
γ =

1
16

4∑

i=1

l(ai)(cos 2πai − 1), (3.24)

Iz
γ =

1
4

2∑

i=1

h̃(bi)(cos 2πbi − 1), (3.25)

J x
γ = −1

8

2∑

i=1

l(bi) sin 2πbi, (3.26)
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J y
γ = −1

8

2∑

i=1

k(bi)(cos 2πbi − 1), (3.27)

J z
γ = −1

4

2∑

i=1

h̃(bi)(cos 2πbi − 1), (3.28)

Ix
δ = − 1

16

4∑

i=1

k(ai)(cos 2πai − 1), (3.29)

Iy
δ =

1
16

4∑

i=1

l(ai) sin 2πai, (3.30)

Iz
δ =

1
4

2∑

i=1

h̃(bi) sin 2πbi, (3.31)

J x
δ =

1
8

4∑

i=1

l(ai)(cos 2πbi − 1), (3.32)

J y
δ = −1

8

2∑

i=1

k(bi) sin 2πbi, (3.33)

J z
δ = −1

4

2∑

i=1

h̃(bi) sin 2πbi. (3.34)

In the above equations f(x), h(x), l(x) are odd functions and g(x), h̃(x) and k(x)
are even functions defined by the following combinations

f(x) =
1

x + m + 1
+

1
x + m − 1

+
1

x − m + 1
+

1
x − m − 1

, (3.35)

g(x) =
1

1 − x − m
+

1
1 + x + m

+
1

1 + x − m
+

1
1 − x + m

, (3.36)

h(x) =
1

x + m
+

1
x − m

, h̃(x) =
1

x + m
− 1

x − m
, (3.37)

k(x) =
1

m + x + 1
+

1
m − x + 1

+
1

m + x − 1
+

1
m − x − 1

, (3.38)

l(x) =
1

m + 1 − x
+

1
m − 1 + x

+
1

−m + x + 1
+

1
−m − x − 1

. (3.39)

This completes the derivation of the Hertz potential (2.2) for an arbitrary torus
knot.

To develop some insight into the result, we now specialize to the case of a
trefoil knot. As mentioned earlier, a trefoil is a (2, 3) torus knot. Substituting
λ = −p/q = −3/2 in the expressions (3.9)–(3.34), the coefficients α, β, γ, δ can
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be evaluated explicitly and we find that only two of them are non-zero for each
component. Plugging the results into Eq. (2.2), the Hertz potential is found to have
the following form:

Hx =
∞∑

m,n=0

Hx
nm

=
√

cosh η − cos θ
∞∑

m,n=0

DnmQm
n−1/2(cosh η)

× [Xnm(η0)cosmφ cos nθ + X̃nm(η0)sin mφ sin nθ], (3.40)

Hy =
∞∑

m,n=0

Hy
nm

=
√

cosh η − cos θ
∞∑

m,n=0

DnmQm
n−1/2(cosh η)

× [Ynm(η0)cosmφ sin nθ + Ỹnm(η0)sin mφ cos nθ], (3.41)

Hz =
∞∑

m,n=0

Hz
nm

=
√

cosh η − cos θ
∞∑

m,n=0

DnmQm
n−1/2(cosh η)

× [Znm(η0)cosmφ sin nθ + Z̃nm(η0)sin mφ cos nθ] (3.42)

for η > η′ and Dnm = εnεm(−1)m/aπ. The coveted expression for the flat connec-
tion can then be obtained by taking the curl of the Hertz potential given by the
following generic expressions for the curl of a vector field in toroidal coordinates.

Aη =
(cosh η − cos θ)

a

[
−sinφ

∂Hx

∂θ
+ cosφ

∂Hy

∂θ

]

+
(sin θ)

a

[
cosφ

∂Hx

∂φ
+ sinφ

∂Hy

∂φ

]
+

(1 − cosh η cos θ)
a sinh η

∂Hz

∂φ
, (3.43)

Aθ =
(1 − cosh η cos θ)

a sinh η

[
cosφ

∂Hx

∂φ
+ sin φ

∂Hy

∂φ

]
− (sin θ)

a

∂Hz

∂φ

− (cosh η − cos θ)
a

[
−sin φ

∂Hx

∂η
+ cosφ

∂Hy

∂η

]
, (3.44)

Aφ = − (1 − cosh η cos θ)
a

[
cosφ

∂Hx

∂θ
+ sin φ

∂Hy

∂θ
+

∂Hz

∂η

]

− (sinh η sin θ)
a

[
cosφ

∂Hx

∂η
+ sin φ

∂Hy

∂η
− ∂Hz

∂θ

]
. (3.45)
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4. Summary and Outlook

To summarize, we have derived an exact expression for a flat connection on the
complement of a torus knot. The derivation relies on successfully mapping the
mathematical problem into a simple physics problem in magnetostatics. We con-
clude by noting that the results for the Hertz potential and the flat connection can
be taken over to represent the vector potential and the magnetic field respectively,
produced by a knotted wire of the same size and shape carrying steady current.

A few other problems — some readily doable, and some harder — naturally
come to mind. First, it may be of interest in engineering, for some special purposes,
to design knotted antennae [13]. This would require going beyond the magneto-
static limit discussed in this paper to time-dependent situations. Second, it would
be interesting to study multipole expansions of knot currents in general and, in
particular, construct the generalization of the toroidal moment (anapole) for knot-
ted solenoids. Third, it would be of considerable mathematical interest to work
out analogous results on the complement of a figure-eight knot (which is not a
torus knot). This is an example of a three-dimensional hyperbolic space and plays
an important role in Thurston’s geometrization programme [12]. Next, some effort
needs to be devoted toward generalizing the ideas to the nonabelian case. Finally,
it would be of considerable interest to study the diffraction and scattering effects
of knotted solenoids on electrons, both theoretically and experimentally; thus gen-
eralizing the work initiated by Ehrenberg, Siday, Aharonov and Bohm. I hope to
return to these issues elsewhere.
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