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a b s t r a c t

A free particle is constrained to move on a knot obtained by wind-
ing around a putative torus. The classical equations of motion for
this system are solved in a closed form. The exact energy eigen-
spectrum, in the thin torus limit, is obtained by mapping the time-
independent Schrödinger equation to the Mathieu equation. In the
general case, the eigenvalue problem is described by the Hill equa-
tion. Finite-thickness corrections are incorporated perturbatively
by truncating the Hill equation. Comparisons and contrasts be-
tween this problem and the well-studied problem of a particle on
a circle (planar rigid rotor) are performed throughout.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The example of a particle constrained to move along a circle – the so-called planar rigid rotor – is
one of the simplest problems that is discussed in text-books of quantum mechanics. The beguiling
simplicity of this problem is at the heart of many non-trivial ideas that pervade modern physics.
For understanding many issues like the existence of inequivalent quantisations of a given classical
system [1], the role of topology in the definition of the vacuum state in gauge theories [2], band
structure of solids [3], generalised spin and statistics of the anyonic type [4], and the study of
mathematically interesting algebras of quantum observables on spaces with non-trivial topology [5],
the problem of a particle on a circle serves as a toy model.

In this paper, we consider the problem of a particle constrained to move on a torus knot. Besides
adding a new twist to the aforementioned problems, the present system can be thought of as a
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double-rotor (analogous to the double-pendulum, but without the gravitational field) which is a
genuine non-planar generalisation of the planar rotor.

The paper is organised as follows: In the next section we introduce toroidal coordinates in terms
of which the constraints which restrict the motion of the particle to the torus knot are most naturally
incorporated. As a warm-up, we then analyse the particle on a circle in toroidal coordinates. This
prelude allows us to compare and contrast the results of the subsequent sectionswith thewell-known
results for the particle on a circle. The following two sections deal with the classical and quantum
mechanics of a particle on a torus knot. In the penultimate sectionwebriefly touchupon the possibility
of inequivalent quantisations of the particle on a knot. These will be labelled by two parameters, in
contrast to the particle on a circle. The concluding section summarises and presents an outlook.

2. Toroidal coordinates

The toroidal coordinates [6] are denoted by 0 ≤ η < ∞, − π < θ ≤ π, 0 ≤ φ < 2π . Given a
toroidal surface ofmajor radius R andminor radius d, we introduce a dimensional parameter a, defined
by a2 = R2

− d2, and a dimensionless parameter η0, defined by η0 = cosh−1(R/d). The equation η
= constant, say η0, defines a toroidal surface. The combination R/d is called the aspect ratio. Clearly,
larger η0 corresponds to smaller thickness of the torus. In the limit η0 → ∞, the torus degenerates
into a limit circle.

The toroidal coordinates are related to the usual Cartesian coordinates by the equations

x =
a sinh η cosφ
(cosh η − cos θ)

, y =
a sinh η sinφ
(cosh η − cos θ)

, z =
a sin θ

(cosh η − cos θ)
. (1)

The metric coefficients are given by the equations

h1 = h2 =
a

(cosh η − cos θ)
, h3 = h1 sinh η (2)

and the volume element is

dV =
a3 sinh η

(cosh η − cos θ)3
dηdθdφ. (3)

With the help of these basic relations, it is straightforward to rewrite well-known Cartesian expres-
sions in toroidal coordinates.

2.1. A particle constrained to move on a circle

The Lagrangian for a free particle of massm in Cartesian coordinates (x, y, z) is

L =
m
2
(ẋ2 + ẏ2 + ż2). (4)

In the above expression, and henceforth, an overdot refers to a time derivative. After some algebra,
this expression can be rewritten in toroidal coordinates as

L =
m
2
a2
(η̇2 + θ̇2 + sinh2 η φ̇2)

(cosh η − cos θ)2
. (5)

To restrict themotion of the particle to lie on a circle in the xy plane,we impose the constraints η = η0,
a constant, and θ = θ0, another constant. The Lagrangian then takes the form

L =
ma2

2
sinh2 η0φ̇

2

(cosh η0 − cos θ0)2
. (6)

The Euler–Lagrange equation

d
dt


∂L
∂φ̇


=
∂L
∂φ

(7)
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then yields, as expected,

φ̈ = 0 ⇒ φ(t) = ωt + φ0 (8)

where ω is a constant and has the physical interpretation of frequency, and φ0 is a constant of inte-
gration which specifies the position of the particle on the circle at time t = 0—similar to plane polar
coordinates.

Defining a rescaled mass M = m sinh2 η0
(cosh η0−cos θ0)2

, we get the Hamiltonian H =
p2φ

2Ma2
with the

momentum canonically conjugate to φ being given by pφ = Ma2φ̇ as usual. Using this to set up the
Schrödinger equation and solving it, we get, for the eigenvalues and the normalised eigenfunctions
respectively,

En =
n2 h̄2

2Ma2
, ψn(φ) =

1
√
2π

e±inφ n = 0, 1, 2, . . . . (9)

For large η0, the thickness of the putative torus decreases andM → m: we approach the well-known
expressions in plane polar coordinates.

Interestingly, it is also possible to get a particle to move on a circle by imposing the constraints
η = η0, a constant, and φ = φ0, another constant. This however results in a more complicated
Lagrangian viz.

L =
ma2

2
θ̇2

(cosh η0 − cos θ)2
. (10)

The resulting Euler–Lagrange equation is

θ̈ (cosh η0 − cos θ) = − sin θ θ̇2 (11)

which can be re-written as

d
dt

[θ̇ (cosh η0 − cos θ)] = 0

and readily integrated to yield

θ̇ (cosh η0 − cos θ) = κ (12)

κ being a constant. Thus the solution is reduced to quadratures. Thanks to the presence of the factor
(cosh η − cos θ), the solution is not as simple as the one in plane polar coordinates. The Hamiltonian
can be obtained in a straightforward manner and is given by

H =
p2θ

2ma2
(cosh η0 − cos θ)2. (13)

The presence of the θ-dependent multiplicative factor is portentous of additional complications that
arise when we make a transition to quantum mechanics. In particular, the fact that the conjugate
operators pθ and θ do not commute requires us to perform an operator-ordering of the classical
Hamiltonian.

The above analysis shows that while toroidal coordinates are ideally suited to consider the motion
of a particle on a circle in the xy-plane, they are more cumbersome when it comes to handling paths
which stray from the xy-plane. Since a knot is intrinsically non-planar, we should be prepared to
confront the attendant complications. It should be mentioned, however, that these complications
would also be present in other coordinate systems. We choose to work with toroidal coordinates
because of their suitability in imposing the constraints that define a torus knot.
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3. Classical mechanics of a particle on a knot

As already mentioned, the constraint η = η0 defines a toroidal surface. A (p, q) torus knot can be
obtained by considering a closed path that loops p times around one of the cycles of a torus while
looping around the other cycle q times, p, q being relatively prime integers. The desired property can
be enforced by imposing the constraint: pθ + qφ = 0. It is easy to check that θ → θ + 2πq ⇒

φ → φ− 2πp i.e. as we complete q cycles in the θ direction, we are forced to complete p cycles in the
φ direction—as required. Imposing the above two constraints on Eq. (5), we get the Lagrangian for a
particle on a torus knot to be

L =
M
2
f (φ)φ̇2 (14)

where

f (φ) =
a2

(γ − cosαφ)2
and M = m(α2

+ β2) (15)

with

α = −q/p, β = sinh η0, γ = cosh η0. (16)

Themain difference between the Lagrangian in (14) and the one for a particle on a circle viz. Eq. (6), lies
in the appearance of the φ-dependent factor f (φ) in the Lagrangian which contains the information
about the non-trivial embedding of the knot in three dimensions.

The Euler–Lagrange equation is given by

f (φ)φ̈ +
1
2
f ′(φ)φ̇2

= 0 (17)

where the prime denotes a derivative of the function f with respect to its argument φ. Now, using the
above equation of motion, it is straightforward to show that

d
dt

[

f φ̇] = 0 ⇒


f φ̇ = A ⇒ φ̇ =

A

a
(γ − cosαφ) (18)

where A is a constant. Noting that (1 − γ 2) < 0, the latter equation can be integrated to get

φ(t) =
1
α

tan−1


γ − 1
γ + 1

tan


Aαβt
2a


. (19)

In the limit η0 → ∞, the right hand side is linear in t , as expected for a particle on a circle.
The momentum pφ canonically conjugate to φ and the Hamiltonian H can be easily worked out

and are given by the following expressions

pφ = Mf (φ)φ̇, H =
p2φ

2Mf (φ)
. (20)

4. Quantummechanics of a particle on a knot

In principle, once a Hamiltonian is given, it is a straightforward exercise to write down the
Schrödinger equation. In the present case, the classical Hamiltonian involves a term which mixes the
coordinate and the canonically conjugate momentum. Since these canonical pairs will be elevated
to the level of operators in the quantum theory, we need to prescribe an ordering for the operator
products. We choose the so-called Weyl ordering which symmetrises the product as follows:

H =
1
6M


1
f
p2φ + pφ

1
f
pφ + p2φ

1
f


. (21)
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In the above equation, and inwhat follows, we refrain from putting hats, but it should be remembered
that both φ and pφ are operators which obey the canonical commutation relations viz. [φ, pφ]− =

ih̄. Pulling all the momentum terms to the extreme right in preparation to make them act on a
wavefunction, we get

H =
1
2M


1
f


p2 − (ih̄)


1
f

′

p −
h̄2

3


1
f

′′
. (22)

A few comments regarding the above Hamiltonian are in order here. First, as was first pointed out
by Podolsky [7], a ‘natural’ candidate for the Hamiltonian of a free particle in arbitrary curvilinear
coordinates is obtained by replacing the usual Laplace operator in Cartesian coordinates by the so-
called Laplace–Beltrami operator viz. 1

√
g(x)∂a

√
g(x)gab(x)∂b. At the quantum level, this operator is self-

adjoint in the weighted Hilbert space L2(dµ,R) with measure dµ =
√
gdx. From (14), it is obvious

that, in the present one-dimensional problem, the role of
√
g is played by [f (φ)]−1. A straightforward

calculation for the Laplace–Beltrami operator using this metric yields the first two terms of the
Hamiltonian in (22), but not the third term. This term has its origin in the choice of Weyl ordering,
is higher order in h̄, but more importantly, is independent of the momentum operator p and acts
multiplicatively on coordinate wavefunctions. Hence, the full Hamiltonian (22) continues to be self-
adjoint in the weighted Hilbert space L2(dµ, φ) where dµ = [f (φ)]−1dφ. We make this explicit at
the end of this section by presenting the inner product on the Hilbert space obtained by using the
solutions of the Schrödinger equation.

Second, the correction term obtained by Weyl ordering above is very similar to the one obtained
by Ogawa, Fujii, and Kobushukin [8] in a slightly different context. They showed that an additional
term of order h̄2 is needed to describe the Hamiltonian of a particle restricted to move on an
(N−1)-dimensional hyperspace of anN-dimensional Euclidean space and interpreted it as the energy
associated with the fluctuations of the unit vector normal to the hypersurface.

It is possible to make the connection with [8] more concrete. For this we note that a knot is
not just ‘topologically interesting’—it also has rich geometrical properties. These are encoded in the
Frenet–Serret equations which describe how a triad of orthogonal unit vectors is transported along
the curve in terms of the geometrical properties like the curvature and torsion of the curve. For given
parametrisation of a knot, the unit tangent vector at a point is uniquely definedby taking the derivative
of the coordinate with respect to the length of the curve. The principal normal at a point, obtained
by taking the second derivative of the position vector, however, lies in a plane perpendicular to the
tangent vector and is not uniquely defined. Once a principal normal is picked, the binormal—obtained
by taking the cross product of the tangent and the principal normal is uniquely determined. One way
of picking a principal normal at each point of a knot is to choose a knot different from the original
one and construct a two-dimensional strip which is bounded by the two knots under consideration.
This so-called ‘framed knot’ defines a two-dimensional hypersurface in three-dimensional Euclidean
space for which the results of [8] can be applied.We hope to return to this interesting issue elsewhere.

Third, for the sake of completion, we stress that the corrections discussed above depend only on
the embedding of the hypersurface in Euclidean space, and their origin is very different from the
correction to the Podolsky result that was obtained by DeWitt [9] in formulating quantummechanics
over a general curved space. The latter correction is also of order h̄2, is proportional to the curvature
of the space, and is identically zero in cases where the particle moves in Euclidean space.

With the foregoing comments, we can now return to the Hamiltonian (22) which is tailor-made
for constructing the time-independent Schrödinger equation,with the usual prescription for replacing
the momentum by the corresponding differential operator. The resulting Schrödinger equation is

−
h̄2

2M


1
f


d2

dφ2
−

h̄2

2M


1
f

′ d
dφ

−
h̄2

6M


1
f

′′
ψ = Eψ. (23)

The first derivative in φ can be eliminated by the well-known trick of substituting ψ = χΣ in the
above equation and getting rid of terms proportional to dΣ/dφ by choosing χ appropriately. This
yields for χ ,

χ ∝

f . (24)
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The inner product on the weighted Hilbert space L2(dµ, φ), with measure dµ = [f (φ)]−1dφ is

⟨ψ1|ψ2⟩ =


[f (φ)]−1dφ ψ∗

1 (φ)ψ2(φ) =


Σ∗

1 (φ)Σ2(φ)dφ. (25)

The latter equality follows from the factorisation of ψ into χ =
√
f and Σ . This implies that the

solutions of the equation forΣ are orthogonal functions whose inner product is defined by the usual
Lebesgue measure. Indeed, all the explicit solutions we obtain in the following subsections, have this
property. In particular, it is straightforward to check that ⟨ψ1|Hψ2⟩ = ⟨Hψ1|ψ2⟩ for the Hamiltonian
in (22), establishing its self-adjointness on L2(dµ, φ).

Substitutingχ ∝
√
f in (23) and collecting the remaining terms, the Schrödinger equation reduces

to the following equation forΣ
d2

dφ2
+ V (φ)


Σ = 0 (26)

where the ‘potential’ V is defined by

V (φ) =


2f ′′f − f

′2

12f 2
+

2MEf
h̄2


. (27)

V is an even function of φ. Substituting for f from (15), we get after some algebra,

V =
2MEa2/ h̄2

+α2/2 − α2γ cosαφ/3 − α2 cos 2αφ/6
(γ − cosαφ)2

. (28)

Since V (φ) is a periodic function, the above potential can be expanded in a Fourier series and Eq. (26)
gets identified with the Hill differential equation [10].

4.1. The thin-torus approximation

As already mentioned, large values of η0 and hence large values of γ , correspond to a thin torus
aroundwhich the particle’s trajectory winds. In this limit, we can restrict to terms of the order of 1/γ .
Then β2

∼ γ 2, hence M → m, and Eq. (28) simplifies to

V =
α2

4
λ−

α2

3γ
cosαφ (29)

where

λ =
8mEa2

h̄2 α2
. (30)

Eq. (26) now takes the form
d2

dφ2
+
α2

4
λ−

α2

3γ
cosαφ


Σ = 0. (31)

Changing variables such that αφ = 2z, the above equation becomes
d2

dz2
+ λ−

4
3γ

cos 2z

Σ = 0 (32)

which is immediately recognised to be the well-known Mathieu equation [11].
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The solutions Σ of the Mathieu equation with the required periodicity are given by the Mathieu
functions of fractional order ν viz.

ceν(z, γ ) = cos νz −
1
6γ

 cos(ν + 2)z
(ν + 1)

−
cos(ν − 2)z
(ν − 1)


· · · (33)

seν(z, γ ) = sin νz −
1
6γ

 sin(ν + 2)z
(ν + 1)

−
sin(ν − 2)z
(ν − 1)


· · · (34)

which satisfy the usual inner product rules with the standard Lebesgue measure [11]. The complete
solution with two arbitrary coefficients A and B is given by

Σ = Aseν(z, γ )+ Bceν(z, γ ). (35)

Setting ν =
2n
q where n is an integer, we see that the above functions have a periodicity qπ in z,

which translates into the required periodicity 2pπ in φ.
The condition relating λ to ν is given by

λ = ν2 +
2

9γ 2(ν2−1)
· · · (36)

Since we are restricting our attention to 1/γ order, the boxed terms can be neglected. The allowed
values of λ follow by setting ν =

2n
q . These values of λ, in conjunction with Eq. (30), determine the

energy eigenvalues to be

En =
n2 h̄2 α2

2ma2q2
. (37)

Before proceeding further, it is worth recalling that the complete solution of Eq. (23) that we are
trying to solve is given by ψ = χΣ with χ ∝

√
f . The complete solutions for the (un-normalised)

eigenfunctions ψ with the correct boundary conditions are therefore given by

ψ
(n)
+ (φ) =

a
γ − cosαφ

 (38)

×


cos(nαφ/q) −

1
6γ

 cos((n + q)αφ/q)
(2n/q + 1)

−
cos((n − q)αφ/q)
(2n/q − 1)


· · ·


(38)

ψ
(n)
− (φ) =

a
γ − sinαφ

 (39)

×


sin(nαφ/q) −

1
6γ

 sin((n + q)αφ/q)
(2n/q + 1)

−
sin((n − q)αφ/q)
(2n/q − 1)


· · ·


(39)

where we have used 2z = αφ. Further, since we retain only terms of order 1/γ , the boxed terms in
Eqs. (38) and (39) can be neglected.

In passing, we mention that the two independent solutions (33) and (34) can be combined into a
single equation given by [11,12]

Σ = eiνzu (40)

where

u = sin(z − σ)+ a3 cos(3z − σ)+ b3 sin(3z − σ)

+ a5 cos(5z − σ)+ b5 sin(5z − σ)+ · · · (41)

where σ is a new parameter such that σ = π/2 yields the solution (33) and σ = 0 yields the solution
(34). In the above, the coefficients a, b are determined in terms of γ and σ . To order 1/γ that we are
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interested in, only b3 = −
1

12γ , is non-zero. This succinct way of writing the general solution will be
particularly useful in incorporating finite-thickness corrections.

It may be noted that for q = 1, p = −1, and hence α = −1, the above results (36)–(39) reduce
to the well-known results for a particle on a circle. For a (2,3) torus knot, namely, the trefoil, p = 2,
and the eigenfunctions have a period 4π . The general solutions of Mathieu equations with a period
4π were first worked out by Lars Onsager in 1935 in his dissertation for a Ph.D. at Yale [13]. While it
is gratifying to note this, it is also a little disappointing. The energy levels and energy eigenfunctions
are the same as that of a particle on a circle, except for the factor of α. This is a consequence of the fact
that, in the weak coupling limit (large γ ), the putative torus degenerates into a limit circle, with the
attendant vagueness associated with the winding in the θ direction. Correspondingly, the Mathieu
functions degenerate into trigonometric functions. It may be tempting to think that the general
solution (for arbitrary γ ) will be given by Mathieu functions, with the boxed expressions in Eqs. (36)
and (38)–(39) being the next order corrections. The story, however, is slightly more complicated. Our
penchant for boxing negligible pieces relates to this fact.

4.2. The slightly-thick-torus correction

To the next order in 1/γ , the correct expression for the potential is obtained by starting with
Eq. (28), making a binomial expansion of the denominator, and collecting terms up to order 1/γ 2.
This straightforward exercise, followed by the steps that lead up to Eq. (32), yields the so-called
Hill–Whittaker equation [12]

d2

dz2
+Θ0 + 2Θ1 cos 2z + 2Θ2 cos 4z


Σ = 0 (42)

with

Θ0 = λ+
2

3γ 2
, Θ1 = −

2
3γ
, Θ2 = −

1
γ 2

(43)

where now

λ =
8MEa2

h̄2 α2γ 2
. (44)

Following Ince [12], themost general solution of theHill–Whittaker equation can be obtained along
the same lines adopted for solving Mathieu’s equation and yields the following energy eigenvalues

En =
h̄2 α2γ 2

8Ma2


−16n2/q2 +


1 −

4
3γ

cos 2σ −
2
3γ

sin 2σ −
7

9γ 2


. (45)

The corresponding solutions are

Σ (n)
= e2inz/q


sin(z − σ)+

2γ
3

sin(3z − σ)+

 1
108

−
4γ 2

9


sin(5z − σ)

+
2γ
3

cos(3z − σ)−
4γ 2

9
cos(5z − σ)


(46)

where σ is the parameter introduced earlier. Once againmultiplying by the factor χ = N
√
f , expand-

ing the denominator, retaining terms up to order 1/γ 2 and, rewriting everything in terms of φ using
αφ = 2z, gives the final expression for the eigenstate to be

ψ (n)(φ) = Neinαφ/q ×


−

4γ
9


sin

5αφ
2

− σ


+ cos
5αφ

2
− σ


+

2
3


sin

3αφ
2

− σ


+ cos
3αφ

2
− σ


−

2
3
cosαφ


sin

5αφ
2

− σ

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− cos
5αφ

2
− σ


+

1
γ


sin

αφ
2

− σ


+
1

108
sin

5αφ
2

− σ


+
2 cosαφ

3


sin

3αφ
2

− σ


+ cos
3αφ

2
− σ


−

4 cos2 αφ
9


sin

5αφ
2

− σ


+ cos
5αφ

2
− σ


+

1
γ 2


cosαφ


sin

αφ
2

− σ


+
1

108
sin

5αφ
2

− σ


+
2 cos2 αφ

3


sin

3αφ
2

− σ


+ cos
3αφ

2
− σ


−

4 cos3 αφ
9


sin

5αφ
2

− σ


+ cos
5αφ

2
− σ


(47)

where N is a normalisation constant.

4.3. The result for an arbitrarily thick torus

For the sake of completion, we mention that this method can be systematically continued to
arbitrary orders in 1/γ . The corresponding equation satisfied byΣ is the Hill equation given by

d2

dz2
+Θ0 + 2

∞
r=1

Θ2r cos 2rz


Σ = 0. (48)

As in the earlier section, we follow Ince [12], and try a general solution of the form

Σ = eiνzu (49)

where

ν = p1(σ )Θ1 + p2(σ )Θ2 + · · · + q1(σ )Θ2
1 + q2(σ )Θ2

2 + · · · + q12Θ1Θ2

+ q13Θ1Θ3 + q23Θ2Θ3 + · · · + r1(σ )Θ3
1 + · · · (50)

and

u = sin(z − σ)+ A1(z, σ )Θ1 + A2(z, σ )Θ2 · · · + B1(z, σ )Θ2
1 + B2(z, σ )Θ2

2 + · · ·

+ B12(z, σ )Θ1Θ2 + · · · (51)

with σ being determined by the relation

Θ0 = 1 + λ1(σ )Θ1 + λ2(σ )Θ2 · · · + µ1(σ )Θ
2
1 + µ2(σ )Θ

2
2 + · · ·

+µ12(σ )Θ1Θ2 · · · + ν1(σ )Θ
3
1 · · · . (52)

Substituting these expressions in Eq. (48) we can solve for the coefficients to any desired order, and
hence obtain the corresponding eigenvalues and eigenvectors. We do not pursue this exercise since
it does not shed any further light on the solution to the problem.

5. Inequivalent quantisations

Let us briefly recapitulate the interesting consequences that arise if the particle which is
constrained to move on a circle is charged, and if the circle encloses an infinitely long, infinitesimally
thin, and impenetrable solenoid carrying a uniform current. As is well-known, the wavefunction
of the particle picks up a nontrivial phase factor which depends on the net flux enclosed by the
trajectory of the particle as it goes around the circle. Thus the wavefunction is multi-valued, which
is a manifestation of the nontrivial topology of the circle which, in turn, is a consequence of the fact
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that the path cannot be shrunk to a point in the presence of the impenetrable solenoid. Redefining
the wavefunction such that it is single-valuedmodifies the Hamiltonian in such a way that the energy
spectrum depends on the enclosed flux. Given that the corresponding Lagrangians, with and without
the flux, differ only by a total derivative term, the classical theory is unaltered; although different
values of the flux yield different energy spectra, and hence inequivalent quantum theories. It is
reasonable to expect similar features in the case of a chargedparticle constrained tomove along a knot.

For the torus knot of interest, two independent magnetic fluxes can be introduced. The first is the
usual magnetic field obtained by placing a uniform current carrying, long, thin solenoid parallel to
the z-axis and passing through the centre of the putative torus around which the knot winds. Let
us denote the corresponding flux by ΦS . The second flux is obtained by a uniform poloidal current
winding around the torus which produces a magnetic field which has support only inside the torus,
the so-called toroidal magnetic field. Let us denote this flux byΦT .

A particle constrained tomove on a (p, q) torus knot, starts at a point on the surface of the putative
torus and returns to the initial point after completing one circuit of the knot; in the process winding
around the solenoidal flux p times and the toroidal flux q times. The total flux enclosed is therefore:
Φ = pΦS + qΦT . Thus we have the equation which highlights the multi-valued nature of the
wavefunction viz.

ψ(η0, θ + 2πq, φ − 2πp) = exp(iΦ)ψ(η0, θ, φ). (53)

Defining the single-valued wavefunction

ψ̃(η0, θ, φ) = exp


−i
Φ

2pπ
φ


ψ(η0, θ, φ) (54)

and the corresponding Hamiltonian obtained by the transformation

H̃ = exp


−i
Φ

2pπ
φ


H exp


i
Φ

2pπ
φ


(55)

we see that the momentum operator in the Hamiltonian is shifted by iΦ
2pπ , which leads to a corre-

sponding shift in ν and hence the energy spectrum defined in Eqs. (36) and (44). It is noteworthy
that the phase picked up by the wavefunction of the particle, for a given (p, q) knot, is a sum of two
independent fluxes. Thus the inequivalent quantisations are labelled by two parameters.

6. Conclusions and outlook

The classical and quantum mechanics of a particle constrained to move on a torus knot were
studied. The results were compared and contrasted with the well-known results for a particle
constrained tomove on a circle. Defining the knot as a trajectory which winds around a putative torus
in a well-defined fashion, and using toroidal coordinates to parametrise the knot, makes it possible
to rewrite the time-independent Schrödinger equation as a Hill equation which can then be studied
perturbatively in the thickness of the putative torus.

Attributing a charge to the particle and introducing two independent magnetic fields having
supports in physically disconnected, but topologically linked, regions, leads to a two-parameter family
of inequivalent quantisations of the particle moving on a knot.

The model discussed in this paper has several features which are worth discussing further. First, it
would be natural to study the model non-perturbatively i.e. using instanton methods made popular
in [2,3]. Second, it would be interesting to generalise the treatment to more than one particle moving
on the knot. The non-trivial phase factor can then be related to exotic quantum statistics of the
anyonic type. It would also be interesting to construct coherent states and study algebras of quantum
observables associated with a particle on a knot. All these problems have natural analogues for the
corresponding, but much simpler, example of a particle constrained to move on a circle.
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