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Topological Chern-Simons theory coupled to matter  fields is analysed in the frame work of  Dirac's method of quantising 
constrained systems in a general class of  linear, non-local gauges. We show that in the weak coupling limit gauge invariant opera- 
tors in the theory transform under an exchange according to a higher dimensional representation of  the braid group which is built 
out of  the fundamental  representation matrices of  the gauge group and thus behave like anyons. We also discover new solutions 
of  the Yang-Baxter equation which emerges as a consistency condition on the structure functions of  the operator algebra of the 
matter fields. 

Quantum field theories defined by lagrangians 
which are given purely by the Chern-Simons (CS) 
term or along with other terms, have emerged at the 
heart of some profound connections between certain 
seemingly disparate areas of mathematics and phys- 
ics in the last couple of years. Of central importance 
with respect to physics is their connection with an- 
yons - particles and fields with fractional spin and 
statistics [ 1 ]. CS gauge fields in quantum field theo- 
ries become relevant because they naturally induce 
these exotic properties in the sources they couple to 
[ 2 ]. It is our endeavour in this letter to generalise the 
results of ref. [ 2 ] to the non-abelian case and it is in 
this context that a mention of one of the most impor- 
tant properties of the CS term becomes pertinent. 

This has to do with the intimate relationship it 
shares with conformal field theories in (1 + 1 )-di- 
mensional spacetime, first noticed by Witten [ 3 ] and 
elaborated subsequently by several others [ 4,5 ]. It is 
worth mentioning at this juncture that since it has 
been known for some time now that adding certain 
special perturbations to conformally invariant sys- 
tems leads to integrable or exactly solvable systems 
[6], the question whether such systems can be ob- 
tained straight away from CS theory by introducing 
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perturbations which explicitly break the metric-in- 
dependence of the theory is, at once, both interesting 
and important. 

It is compelling to believe, in the light of these 
points, that further surprises are in store for us in the 
study of topological Chern-Simons field theory cou- 
pled to matter. In what follows we offer the reader 
glimpses into the beautiful results that lie dotted along 
this hitherto uncharted terrain. 

Let us therefore begin by considering the following 
three dimensional model: 

~ (D u  q~) * (DUqb) 

+4--~nk ~ u,a Tr (Au 0~Ax + i. ]A~,A ~A~) . ( 1 ) 

Here q0 is an N-component scalar field which trans- 
forms according to the fundamental representation 
of the SU(N) group, Du=0u+iA u, Au=AauT  a where 
the fundamental representation matrices T a are 
traceless and hermitian and 

l ab [ T  a, T b ] _  = i fabcT  c, I T  a, Tb]+ =dabCTC+ ~r6 , 

Tr( T a T  b) = ½t~ ab . 

The components of the gauge fields A ~ transform un- 
der the adjoint representation of the gauge group and 
the trace in the Chern-Simons term is over the fun- 
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damental representation. We adopt the conventions 
e°12=%z2=1, gu~=(1, - 1 ,  - 1 )  and sum over re- 
peated indices without comment. The minimal cou- 
pling to the matter fields through D u makes ( 1 ) met- 
ric dependent and therefore spoils the topological 
nature of the CS theory. Note however, that under a 
trivial scaling, A ~ k -  1/2A, k appears in the covariant 
derivative and it is therefore a measure of the strength 
of the minimal interaction. This is the sense in which 
we call ( 1 ) a perturbed Chern-Simons field theory. 

The canonically conjugate momenta are defined 
and given by 

8L~ _ (0o~b~_i q~A~ T ~ )  ' (2a) 
H . -  8(0o q~) 

H ~ =  8 ( 0 o ¢ ~ ) =  Oo¢ .+ iAgT~, r¢  r , (2b) 

85 ~ 
H~ -- 8(0oAf~) = 0 ,  (2c) 

8L~ k 
H~ - 6(OoA~) - 8~ ~oAa~" (2d) 

Eqs. (2c) and (2d) do not involve any velocities 
and are merely some relations between coordinates 
and momenta. Systems with such complications are 
called constrained systems and they can be consis- 
tently quantised by using Dirac's procedure [7]. 
Thus, to begin with we have the primary constraints 

P~ - H g  ~ 0,  (3a) 

P~ - H ~  - k eoA~J~0. (3b) 

The canonical hamiltonian density is given by 

=H~H,~ + (Oil~)~) (Oi~ot) +A~j~ +A~j~ 

..[- t a a b b ~ pAi T ~Ai  T a y ~  

- ~-~ Tr E~J(Ao O~Aj+A, OjAo+2iAoA,Aj), (4) 

where 

j~=i(  H~ ~ ~-q~,fl-Ip) T ~  , (5a) 

j~ =i  [ ~ , ~ ( 0 ~ )  - (0fl~,,) ~ ]  T ~  (5b) 

are the matter charge-current densities. The canoni- 
cal hamiltonian is H~=f dZx ~e(.r). We also define 

H =  J d2x (.,%~+u,,P'~+#aP a) , (6) 

where ua and v~ are some arbitrary functions of co- 
ordinates and momenta. In order that the primary 
constraints are preserved in time, we require that they 
have at least weakly vanishing Poisson brackets with 
H. Such a requirement on P~ yields the following sec- 
ondary constraint: 

S~(x) - -j '~(x) 

k q" ~ ¢ij[OxA~ (x)  - l-2fbcaAb(x)m~(x) ] 

~ 0 ,  (7) 

upon imposing the boundary conditions on the gauge 
fields, 

A~(x)~O as xj--, + ~ ,  i , j=  1, 2 .  (8) 

It is easy to verify that there are no further secondary 
constraints in the theory and therefore eq. (7) along 
with eqs. (3a) and (3b) gives the full set of con- 
straints. A preliminary classification of these con- 
straints is readily done by evaluating the PBs be- 
tween them. P~ has a vanishing PB with each one of 
the other constraints and it is therefore a first class 
constraint. The rest are second class. We called this a 
preliminary classification because we might have na- 
ively concluded from here that the theory has one first 
class and three second class constraints. There is, 
however, more to it than meets the eye. In the present 
case it is possible to form a combination of the sec- 
ond class constraints which has a vanishing PB with 
all the constraints in the theory and is therefore first 
class. It is this new constraint which contains the germ 
of all that is to unfold. Let us denote this constraint 
by ~a (x ) .  It has the following form: 

~a(x)  = f d2Y [F'{b(x,y)pb(y) 

+F'~b(x,y)pb(y)+F~b(x,y)Sbo(y)]~.O, (9) 

where F~b(x,y) and F'~b(x,y) have the functional 
forms in terms of F~b(x, y) given by 

F~b(x, y) = O~F~b(x, y) +fcbaF~)d(x, y)A~t (y) , 

(lOa) 

F'~b(x, y) = O~F~)b(x, y) + f cbdF~a(X, y)A~(y) , 

(10b) 
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where 

F~b(x, Y) =f~)l (X, y ) f  0b2(y) , (10C) 

withf~l (X, y) andfob=(y) being some arbitrary func- 
tions, such that FSb(x, y) ~ 0  as y~--* _+ ~ .  

Notice that since we have been able to construct a 
new (first class) constraint from the three second 
class constraints we were having before, we have to 
throw away one of them. We decide to throw away 
S~(x). We are then left with two first class con- 
straints in eqs. (3a) and (9) and two second class 
constraints in eq. (3b). Since the theory exhibits 
gauge symmetries generated by the first class con- 
straints, we need to fix the gauge before we proceed 
further. We choose the following general class of lin- 
ear but non-local gauge fixing conditions correspond- 
ing to the two first class constraints we have, namely 
P~ and ~a: 

Z'~(x)- ~ d2yK~b(x,y)Abo(xo,y).~O, ( l l a )  

,~a(x)=" f d2yK']b(x,y)A~(xo,y)~O, ( l l b )  

where the kernels K'~b(x, y) and Kab(x, y) are, until 
further commented upon, arbitrary. This is all the in- 
frastructure we need in order to compute the com- 
mutation relations of the basic fields in the theory. 

Using the definition of the Dirac bracket (DB) [ 7 ], 
we arrive at 

{~.(u), ~p(v)}* 

4 ~ ab lg - ~ A ( , v ) T ~ , u r b a ~ u ( u ) ~ ( v ) ,  (12) 

if we set, for convenience, 

~K'/b(x, y) = O~Kab(x, y) + f cbdAc(y)Kad(x, y) 

=6ab6Z(x-y) . (13) 

In the above we have 

,ffab(u, v) = f dZz eaK'I~(u, 7.)Kb~(v, Z) • (14) 

Obviously, Aab ( u, v)= -- Aba( v, U ). The commutator 
of the matter fields can now be obtained in the stan- 
dard way and it reads 

[~.(u), ¢'p(v) ]_ 

__._ i ~ Afab(tt, V) a b T,~uTa~[~u(U), q~,(v)]+. (15) 

In abstracting the above commutator from the clas- 
sical DB relation we needed to prescribe an ordering 
for the bilinear in q~ 's on the RHS of eq. ( 15 ). We 
adopted Weyl ordering as it ensures the antisymme- 
try of the commutator under the simultaneous ex- 
changes o t~f l  and u,-+v, without any further restric- 
tions o n  dab(It, V). Eq. (15) embodies the central 
result of our analysis and will serve as the spring- 
board for the rest of the exercises we perform. As a 
warm-up let us note that eq. (15) can be rewritten in 
the matrix form 

q~(u)~(v) =R(u, v)~(v)q~(u) , (16) 

where the structure functions of the operator algebra 
of the @'s are given by 

l+iA(u,v) 
R ( u , v ) -  1 - i A ( , ,  v) ' (17) 

with the obvious notational simplification 

,if(u, v)= ~ Aab(U, V) Ta® T b . (18) 

The hermiticity of,~(u, v) in eq. (18) ensures the 
unitarity o fR (u, v) in eq. (17), 

R(u, v)R+ (u, v)=R+ (u, v)R(u, v ) = l ,  (19) 

and therefore eq. ( 16 ) can be recast as 

q~(u)~(v)=exp[iO(u,v)] ~ ( v ) ~ ( u ) .  (20) 

Here O(u, v) is a n  N2XN 2 hermitian matrix con- 
structed out of the fundamental representation ma- 
trices T a. Thus, under a permutation, the product of 
two basic fields in our theory picks up a phase. As it 
stands, however, there are several worrisome aspects 
of this phase which need to be clarified before we can 
conclude that we have anyons in the theory. As is well 
known from quantum mechanics, when two anyons 
are exchanged, for non-trivial results the phase that 
is picked up must be multi-valued. It is natural to ex- 
pect a similar feature to be reflected at the field the- 
oretic level we are working. A related point in the 
comparison with the quantum mechanical result 
concerns the two possible phases that can occur in 
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quantum mechanics depending on the way one par- 
ticle is rotated around the other, namely clockwise or 
anticlockwise. The above result does not appear to 
accommodate such a possibility. Moreover, eq. (20) 
implies that the statistics of the fields under consid- 
eration depends upon their spatial coordinates as well 
as the choice of the gauge fixing kernels. This is phys- 
ically absurd. It is, however, not very difficult to re- 
alise that all these problems are rooted in the fact that 
the basic fields we are considering do not correspond 
to physical particles because they are gauge non-in- 
variant. Scaling the gauge fields A-+k-~/2A for con- 
venience and choosing the gauge transformation pa- 
rameter in such a way that the element of  the gauge 
group goes to the identity at spatial infinity, gauge 
invariant operators in the theory can be constructed 
according to the standard line integral prescription of 
Schwinger and are given by 

c~.(u)=[Pexp(ik-'/2icL'ciA,(x))] q~u(u) , 
O'/1 

(21) 

where the P in front of the exponential refers to path 
ordering. It is now straightforward to compute the al- 
gebra of these gauge invariant operators, in doing so 
we need the expressions for two more commutators 
involving the basic fields. They are recorded here for 
the convenience of the reader: 

[A~(u),AS(v)]_ 

- 2 ~ i  ~ 
- ~ j K /  ( v , z ) ] +  , k d2z E k l [ ~ K { c ( u ' z ) '  ~, bc 

(22) 

[~.(u),Aa(v)]_ 

_ 4zt [ ~3b,~(U, V)_E~jKjO.(U ' v)]T~a~p(u) 
k 

(23) 

As in eq. (13), ~ is the covariant derivative in the 
adjoint representation. Notice that the RHS of eq. 
(22) has been Weyl ordered .just like in eq. ( 15 ) in 
order to ensure the proper antisymmetry of the com- 
mutator. With the help of these results the algebra of 
the gauge invariant operators in eq. (21 ) can be 
worked out. For large k, i.e. in the weak coupling limit, 
the following result holds to first order in k -  ~: 

~ ( u )  qb(v) =exp [ (2 i /k)  (~z mod 2zt) Ta® T a ] 

× 4~(v) ¢b(u).  (24) 

An exactly similar expression can be worked out for 
the qb* operators. Now, an N-particle quantum me- 
chanical state can be produced by conventional Fock 
space methods by acting a string o f N  ~*'s on the vac- 
uum state. The multivaluedness of the operators can 
then be transferred to the definition of the physical 
states. The resulting multivalued state is a non-abe- 
lian generalization of Laughlin's state for the frac- 
tional quantum Hall effect [ 8 ]. In terms of this state 
the particle interpretation as well as the two possible 
phases that are associated with the clockwise or anti 
clockwise rotation by 2g of one particle around the 
other are rendered immediately obvious. Thus the 
multivalued gauge invariant operators in the theory 
are anyon field operators. What is significant is the 
fact that this phase is not merely a number as in ref. 
[2 ] but a matrix and hence it furnishes a higher di- 
mensional representation of the braid group. What 
we have obtained is in fact known to be the monod- 
romy representation of the braid group [ 5 ]. It is most 
instructive to work through the details of the proce- 
dure outlined so far in the simpler case of the abelian 
theory where we get the one-dimensional represen- 
tation of the braid group as an exact answer. The de- 
tails in this regard will be presented in a forthcoming 
publication [ 9 ]. 

Let us now consider the product of  three fields 
tP(u) tP(v) qb(w) and permute it in two ways, viz. 

(1) qb(u) with q~(v), then tP(u) with tP(w) and 
then tP(v) with tP(w); 

(2) tP(v) with ~ (w) ,  then ~ ( u )  with q0(w) and 
then qb(u) with tP(v). 

Demanding associativity produces, upon using the 
result in eq. ( 16 ), 

R.p,,~(u, v)&,yp,.(u, w)R.,ao.(v, w) 

=Rp~,,,(v, w)R . . . .  (u, w)RK~oAu, v ) .  (25) 

In order to write this as a matrix equation, let us con- 
sider the direct product space V~ ®V2®V> where Vi 
( i=  1, 2, 3) are isomorphic vector spaces (in this case 
the representation spaces furnished by the ~ ' s ) .  Then 
define 

Rl2~R[vl®v2®'~lv3, Rz3=-'~[v,®Rlvz®v3, (26) 
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and similarly Rl3. Then, eq. (25) can be recast as 

R12(u, b')'Rla(U, w)'Rz3(V, W) 

=R:3(V, w)'R13(u, w)'Rl2(U, v) . (27) 

This classic equation lies at the heart of  integrability 
of  certain ( 1 + 1 )-dimensional field theories and two- 
dimensional classical statistical mechanical models 
and is called the Yang-Baxter equation (YBE) [ 10 ]. 
Thus we have the important  new result that the struc- 
ture functions o f  the operator algebra of  the matter 
fields coupled to a Chern-Simons gauge field furnish 
solutions o f  the YBE. 

The fact that the arguments o f  R(u,  v) in eq. (27) 
are not scalars and that the functional dependence is 
not through u - v ,  is a crucial difference between these 
solutions and those which fall under the purview of  
the Belavin-Drinfeld classification scheme [ 11 ]. So- 
lutions of  the star-triangle equation of  the chiral Ports 
model involving functions on algebraic curves of  ge- 
nus /> 1 are also known to exhibit a similar qualita- 
tive feature [ 12 ]. 

We conclude by making a few remarks. Firstly, it 
would appear that if normal gauge fixing conditions, 
viz. A 8 ~ 0 and 0~A a ~ 0, were chosen, than all the 
fields in the theory would have normal statistics. It 
is, however, important  to note that the two gauge fix- 
ing conditions in this set are actually incompatible 
with each other in any gauge theory coupled to mat- 
ter fields [ 6 ]. This can be most easily seen by taking 
the time derivative o f  the second condition which 
leads to a new condition which clashes with the first. 
This hurdle can be overcome by smearing out the 
gauge fixing conditions using some non-local distri- 
bution functions KSb(x,y) and K~b(x,y). The in- 
compatibility can now be traded for some conditions 
on these distribution functions. These conditions can 
then be shown to be precisely the ones which com- 
pletely fix the local gauge invariance in the theory. It 
is interesting to note that the condition on K~b(x, y) 
that arises this way and eq. (13) simply does not ad- 
mit solutions which will reduce our gauge fixing con- 
ditions to the conventional ones which are simply 
forbidden on the grounds of  algebraic consistency 
[ 9 ]. We therefore conclude that there exists no spe- 
cial choice of  the gauge fixing kernels for which the 
basic fields in the theory obey a set of  normal com- 
mutation relations. In this sense our results are not 

gauge artefacts. Our set of  gauge fixing conditions is 
merely being used as a tool to unearth the non-trivial 
physics in the model. This fact finds its most elo- 
quent expression in eq. (24),  were gauge invariant 
operators are shown to obey statistics which knows 
nothing about the gauge fixing conditions used. This 
is a remarkable departure from the results in ref. [ 2 ]. 
Another interesting feature to note is that if the ini- 
tial lagrangian density ( 1 ) had a polynomial poten- 
tial term (including possibly a mass term) for the 
scalar field the results would still not change because 
the constraint structure of  the theory remains unal- 
tered. The results therefore are independent o f  the 
details of  the bosonic interaction. 

We plan to discuss the details of  all the results an- 
nounced in this letter, the construction of  exactly 
solvable two-dimensional classical statistical me- 
chanical models and the hamiltonians o f  the under- 
lying quantum spin chains, using our new solutions 
o f  the YBE along with some related aspects like the 
quantum group structure, in a longer publication 
elsewhere. It will be also interesting to know whether 
the statistics phase in eq. (24) receives any higher 
order corrections in powers of  k -  1. 

We are grateful to Dr. Gautam Bhattacharya, Dr. 
Triptesh De, Dr. Anjan Kundu, Dr. Partha Majum- 
dar and especially Dr. Partha Mitra for several inva- 
luable discussions. One of  us (V.V.S.) thanks Dr. 
Sumit Das and Dr. Dipt iman Sen for sharing their 
insight into the problem and the audience at a de- 
partmental seminar for their penetrating questions. 
We also thank the referee for his constructive criti- 
cism and illuminating comments.  

References 

[ 1 ] J.M. Leinaas and J. Myrheim, Nuovo Cimento 37B ( 1977 ) 
1; 
F, Wilczek, Phys. Rev. Lett. 48 (1982) 1144; 49 (1982) 
957. 

[ 2 ] G.W. Semenoff, Phys. Rev. Lett. 61 (1988) 517; 
G.W. Semenoff and P. Sodano, Nucl. Phys. B 328 (1989) 
753; 
A. Foerster and H.O. Girotti, Nucl. Phys. B 342 (1990) 680; 
S. Forte and T. Jolicoeur, Nucl. Phys. B 350 ( 1991 ) 569; 
A. Chatterjee and V.V. Sreedhar, Mod. Phys. Lett. A 6, No. 
5 (1991) 391. 

[3] E. Witten, Commun. Math. Phys. 121 (1989) 351. 

73 



Volume 279, number 1,2 PHYSICS LETTERS B 9 April 1992 

[ 4 ] M. Bos and V.P. Nair, Phys. Lett. B 223 ( 1989 ) 61; 
S. Elitzur, G. Moore, A. Schwimmer and N. Seiberg, Nucl. 
Phys. B 326 (1989) 108; 
J.M.F. Labastida and A.V. Ramallo, Phys. Lett. B 227 
(1989) 92; 
J. Fr6hlich and C. King, Commun. Math. Phys. 126 ( 1989 ) 
167; 
G. Dunne, R. Jackiw and C. Trugenberger, Ann. Phys. 194 
(1989) 197; 
A. Polychronakos, Ann. Phys. 203 (1990) 231. 

[ 5 ] E. Guadagnini, M. Martellini and M. Mintchev, Phys. Lett. 
B 235 (1990) 275; Nucl. Phys. B 336 (1990) 581. 

[6] A.B. Zamolodchikov, JETP Lett. 43 (1986) 730; Sov. J. 
Nucl. Phys. 46 (1988) 1090. 

[7] P.A.M. Dirac, Lectures on quantum mechanics (Belfer 
Graduate School, Yeshiva University, New York, 1964); 
K. Sundermeyer, Lecture Notes in Physics, Vol. 169 
(Springer, Berlin). 

[ 8 ] R. Laughlin, Phys. Rev. Lett. 50 (1983) 1395. 
[9]R. Banerjee, A. Chatterjee and V.V. Sreedhar, to be 

published. 
[ 10] C.N. Yang, Phys. Rev. Lett. 19 (1967) 1312; 

R.J. Baxter, Ann. Phys. 70 (1972) 193. 
[ 11 ] A.A. Belavin and V.G. Drinfeld, Sov. Sci. Rev. C. 4 (1984) 

93. 
[ 12] H. Au-Yang, B.M. McCoy, J.H.H. Perk, S. Tang and M.L. 

Yan, Phys. Lett. A 123 ( 1987 ) 219; 
R.J. Baxter, J.H.H. Perk and H. Au-Yang, Phys. Lett. A 128 
(1988) 138. 

74  


