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Complex scalar fields minimally coupled to an abelian Chern-Simons gauge field are
systematically quantized using Dirac’s method for constrained systems. Manifestly gauge
invariant anyon operators are constructed following the line integral prescription of
Schwinger. Stringent consistency conditions like the spin-statistics connection, Poincaré
invariance, and tree level vector current Ward identity are scrutinised. The effect of the
addition of the Maxwell term to the lagrangian density on all the above results is examined.
The gauge invariant anyon operators constructed in this case are shown not to exhibit any
spin or statistics transmutation as one moves from shorter length scales to longer ones, where
the residual coulomb interaction is effectively screened. ¢ 1993 Academic Press, Inc

1. INTRODUCTION

The classification scheme based on spin and statistics, which divides the particle
world in three-dimensional space into bosons and fermions, is one of the pillars
on which the edifice of modern physics rests. This scheme has its mathematical
genesis in the twin facts that the rotation group allows at most double-valued
representations and the permutation group, relevant for statistics, has only two
one-dimensional representations, viz., the identity and the alternating. While
the former implies that the only allowed values of spin are those which are even or
odd integer multiples of one-half, the latter restricts the change in the wavefunction
of identical particles under an arbitrary exchange of their positions, barring
parastatistics, to a mere sign at best.

It is well known, however, that in two space dimensions, unlike in the above
case, spin need not quantized and the wavefunction of identical particles can in
general change by an arbitrary multiplicative phase factor under an exchange of
their positions. The first of these properties is a consequence of the fact that in two
spatial dimensions there is no non-trivial angular momentum algebra, as there is
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only one axis to rotate about. The second result follows from the fact that
the fundamental group of the configuration space of identical particles in two
dimensions, which is obtained by deleting the so-called diagonal points—positions
which can be occupied by two or more particles—from the tensor product of one-
particle configuration spaces and modding out the resultant space by the relevant
permutation group, is not merely the permutation group, but a more complicated
non-abelian group called the braid group whose one-dimensional representations
correspond to arbitrary phase factors e¢”. As a result, spin and statistics in two
spatial dimensions can in general take any arbitrary values, the bosonic and
fermionic incarnations merely corresponding to some special cases of this more
generic mathematical possibility [1]. That the above ad-hoc deletion of the
diagonal points is an inessential assumption was shown by Goldin, Menikoff, and
Sharp who independently discovered these possibilities through their approach
based on diffeomorphism groups and current algebras [2]. Objects which
physically realise these mathematical possibilities are called anyons and they have
attracted a lot of interest in the last few years because of their exotic properties [3].

Motivation for further studies in anyons, however, transcends the esoteric
interests alluded to above. The most striking physical effect for whose theoretical
explanation the existence of anyons is a sine qua non, is the fractional quantum

“Hall effect. The importance of anyons in this context was first elucidated by
Laughlin [4]. It is widely believed that anyons also have an important role to play
in the theoretical explanation of high-T, superconductivity observed in thin CuO
layers. This point of view has received a particularly eloquent advocacy in the work
of Chen er al. [5]. In all such physical applications it is profitable for us to realise
these exotic possibilities in spin and statistics through some dynamical mechanism,
instead of restricting ourselves to quantum kinematics. A simple model which fulfills
this requirement was first introduced by Wilczek [6]. A brief description of this
model is in order at this juncture as it is germane to what follows.

Let us consider a point particle which carries in addition to a charge ¢ a
magnetic flux ¢ in the two-dimensional plane. The associated magnetic field in the
plane has its support only at the position of the particle. There is, however, a
non-trivial vector potential felt by an identical particle at some other position in the
plane. Consequently, when the latter moves round the former, assumed to be held
fixed, the amplitude picks up a Bohm-Aharonov phase [7] with the fixed flux-
carrying particle acting like an impenetrable point solenoid. Now, since the
exchange of two identical particles can always be interpreted as a rotation of one
of them around the other through n, what we have obtained above is essentially the
statistics phase masquerading in the form of a Bohm-Aharonov phase. The physics
of fractional statistics, like that of the Bohm-Aharonov effect, is, therefore, rooted
in the profound principle of non-locality in quantum theory. Any attempts to
construct theories of anyons must, therefore, necessarily prescribe a way of
incorporating this non-locality in a consistent way.

The charge—flux composite that was advanced as a prototype anyon above can
be fabricated in a particularly simple way. This is done by coupling the conserved
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current j* of the point-charged particle to a gauge field A* whose dynamics is
governed by the Chern—Simons (CS) term which is special to 2 + | dimensions [8].
In other words, we add to the lagrangian of the point particle the following terms

AL=qj A, + 0" A, 0, A;, (1.1)

the latter being the CS term. Note that it is gauge invariant up to a boundary term.
More interestingly, it is linear in the derivative of the gauge field. As a result, the
gauge field has no independent dynamics. This can be easily seen by working out
the equation of motion from (1.1),

4j" = — 0" F,,. (12)

Thus, the gauge invariant dynamics of A, is completely determined by j*. For a
point particle of charge ¢, j* has its support only on the world line of the particle
and hence F,; vanishes away from it. Hence, if we integrate the zeroth component
of the above equation over a small spatial disc intersected by the world line of the
particle, we obtain

q=—0¢. (1.3)

This tells us that the charged particle actually behaves like a magnetic flux point.
For most physical applications and to gain a deeper understanding of the
concepts of fractional spin and statistics, however, a straightforward relativistic
quantum field theoretic generalization of the very successful quantum mechanical
picture of representing an anyon as a charged particle, to which a flux line is
attached through the CS mechanism, is of inestimable importance. Unfortunately,
such holistic approaches in the past have been only partially successful. The first
such attempt was made by Semenoff [9] who canonically quantized a variant of
the scalar electrodynamics model in three dimensions in which the CS term replaces
the usual Maxwell term. The operators which carry fractional spin and statistics in
this model are given by multivalued, non-local, composites of the basic fields in the
theory. This model was later extended to include a Maxwell term also [10].
However, there seems to be an internal algebraic inconsistency in this calculation
because of the choice of gauge-fixing conditions. This can be easily seen following
[11]. The gauge-fixing conditions chosen in Refs. [9, 10] are ¢,4,~0 and A;x0.
Is is easy to show that taking the time derivative of the first constraint above leads
to a condition on A, which can be solved to obtain a non-trivial value for A,.
This immediately clashes with the second gauge-fixing condition above. This is a
non-trivial aspect of gauge theories coupled to external sources which clearly
distinguishes them from free theories. In addition one needs to employ some formal
manipulations involving the exchange of a derivative and an integral of a
multivalued function which are mathematically wrong and lead to physically
indefensible conclusions [ 12]. While restoring compatibility of the two gauge-fixing
conditions may not, in itself, be an insurmountable difficulty, the above-mentioned
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unjustifiable manipulations and the fact that the operators advanced to represent
anyons in Refs. [9, 10] are not manifestly gauge invariant, makes it desirable for us
to look for more elegant constructions.

The work of Foerster and Girotti [13], on the other hand, begins by making a
polar decomposition of the fields and using non-local gauge fixing conditions
involving the new fields. In term of the original fields these conditons are not only
non-local but are also highly non-linear. Even if this highly unaesthetic choice of
gauge-fixing conditions is accepted, the change of variables itself is questionable at
least on two grounds. As is only too well known, this decomposition is singular and
creates problems when the modulus field goes to zero. Furthermore, under such
change of variables the effective action defined properly through a functional
integral would pick up contributions from the change in the measure which are
ignored in their analysis. Given this obscure relationship between the model in
terms of the old and new variables, the validity of the results they obtain is certainly
debatable because all their calculations are done in the model in terms of new
variables and only in the end are the results obtained used to reconstruct the
commutators of the old fields. There is yet another problem with this approach. It
is easy to check that their model exhibits completely different constraint structures
when expressed in terms of the original and transformed sets of variables. Such a
difference in terms of the second-class constraints would have been completely
innocuous, but, while their model in terms of the old variables contains two first-
class constraints, in terms of the new variables it contains just one. Such redefinitions
of fields that change the number of first-class constraints of the theory are clearly
inadmissible as they destroy part of the gauge invariance of the theory.

To summarise, therefore, attempts to construct anyon operators in model field
theories have either revolved around construction of complicated, non-local,
multivalued composites of the basic fields or thinking of the basic matter fields
themselves to be composed of some new fields of another theory. All such attempts
have been, however, fraught with inconsistencies and most importantly they have
failed to shed light on a connection with the simple quantum mechanical model of
the anyon based on Wilczek’s holistic principle. This is not very surprising because
the operators purportedly representing anyons in the above theories are not gauge
invariant. One has no option, therefore, except to look askance at the physical
significance of such constructions. The question whether one can give a consistent
particle interpretation to such operators in intimately related to the question
whether anyons are real physical excitations or mere gauge artefacts. This paper is
devoted towards finding answers to these questions.

In the rest of this section we discuss the organization of this paper. In Section 2
we study the canonical quantization of Chern-Simons scalar electrodynamics
defined through complex scalar fields minimally coupled to abelian Chern-Simons
gauge fields. The constraint structure of the theory is analysed in detail and
quantization is carried out using Dirac’s procedure after choosing linear, but,
non-local gauge-fixing conditions. The commutation relations between all the basic
fields of the theory and their canonically conjugate momenta are worked out. In
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Section 3 we construct gauge invariant operators by using Schwinger’s line integral
prescription and show that they pick up a multivalued phase factor under a
permutation. We also work out the momenta canonically conjugate to these
operators and all the commutation relations involving them. We show that the
Fock space constructed using conventional quantum field theoretic techniques
yields a multi-particle state reminiscent of the Laughlin state for quantum Hall
systems. The spin of a one-particle state so obtained is also calculated and a
generalised spin-statistics connection is established. Section 4 examines the effect of
adding a Maxwell term to the lagrangian density, which yields the so-called
topologically massive scalar electrodynamics. It is seen that gauge invariant
variables constructed according to the standard line integral prescription of
Schwinger do not carry fractional spin and statistics as in the pure Chern-Simons
case. Nevertheless, one can construct other manifestly gauge invariant operators
which have all the properties of the gauge invariant operators of the earlier section
and hence behave like anyons. Moreover, these operators reduce to the corresponding
ones in the pure Chern-Simons case as the coupling of the Maxwell term goes to
zero although the two theories are completely unrelated at the level of the algebraic
structure of the basic fields in this limit. In Section 4 we prove that the quantization
scheme developed by us, despite being very different from the conventional ones,
does not disturb the Poincar¢ invariance of the two theories considered by us.
Similarly, the vector current Ward identity for two anyons, vector current three-
point function, is established at the tree level. It is also shown that the gauge fixing
conditions completely fix the local gauge invariance in the theory. In the last section
we summarise all the results obtained by us and conclude presenting the outlook
for the future.

2. CANONICAL QUANTIZATION

The U(1) gauge theory we are considering is defined by the following lagrangian
density in three-dimensional space time:

£ =(D,¢)* (D“¢)+%s"”Aua.,A,~_. (2.1)

Here ¢ is a one-component complex scalar field, 4, is a U(1) gauge field,
D,=0d,+iA4,,e"* is the completely antisymmetric Levi-Civita tensor, and the
covariant current j, = i(¢* D,¢ — ¢(D,$)*) is conserved, ie., 0%, =0. We adopt
the conventions g,, =diag(l, —1, —1) and &°*=¢g,,=1 and sum over repeated
indices without comment.

The canonically conjugate momenta are defined and given by

X%
== = (Dy¢)* 22
"= 5054~ (Do) (2.2a)
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0L

" =5agey = (Do#) (2.2b)
0¥

o 5(avo)=0 (2.2¢)

n; = 63, =—0—e~A". (2.2d)

Unlike Egs. (2.2a) and (2.2b), Egs. (2.2c) and (2.2d) do not involve any velocities
and are merely some relations between coordinates and momenta. Systems with
such complications are called constrained systems and they can be consistently
quantized by using Dirac’s procedure [14]. Thus, to begin with, we have the
following primary constraints:

Py=n,%x0 (2.3a)
— 0 j
Pi:ni—z;t—zsijA x0. (23b)

The canonical hamiltonian density is given by
0 .
H.=n*n+ (D;9)* (D,#)+ Ao jo —m £"(A, 5:'Aj + A4, ajAo), (2.4)

where
Jo(X) = i(n*(x) $*(x) — n(x) #(x)) (2.5)

is the matter charge density. The canonical hamiltonian is H, = [ d°x5,(x). We also
define the hamiltonian that generates translations in time

H=J dX[H(X) + uOPo(x) + v'P,(x)], (2.6)

where 4° and v’ are some arbitrary functions of the coordinates ¢, ¢*, 4, and their
canonically conjugate momenta. In order that the primary constraints are preserved
in time, we require that they have at least weakly vanishing Poisson brackets (PB)
with H. Such a requirement on P, yields the secondary constraint

So(x) = —jo(x)+§%£U6iAj(x)z0, 2.7)

upon using the natural boundary conditions on the gauge fields,

Afx)—-0 as x,—» to(j=12) (2.8)
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It is easy to verify that there are no further secondary constraints in the theory and,
therefore, Eq. (2.7), along with Eqgs. (2.3a), (2.3b} gives the full set of constraints.
A preliminary classification of these constraints is readily done by evaluating the
PBs between them. P, has a vanishing PB with each one of the other constraints
and it is therefore a first-class constraint. The rest are second-class. We called this
a preliminary classification because we might have naively concluded from here that
the theory has one first-class and three second-class constraints. There is, however,
more to it than meets the eye. In the present case it is possible to form a
combination of the second-class constraints which has a vanishing PB with all the
other constraints in the theory and is therefore first-class. It is necessary to embark
on such an exercise because the theory exhibits gauge symmetries generated by the
first-class constraints. Dirac’s procedure relies on eliminating such redundant
degrees of freedom at the classical level by imposing gauge-fixing conditions, which
effectively convert the first-class constraints into second-class ones, before a
transition to the quantum theory is made. It is, therefore, imperative to extract the
maximal set of first-class constraints in the theory. Towards such an end let us
define the following most general linear combination of the second-class constraints
in the theory,

V/’EfleY[Fl(Xs ¥) Pi(y) + Fa(x, y) Po(y) + Fo(x. ¥) So(y) ] = 0. (2.9)

Requiring # to have at least weakly vanishing PBs with P, and P, yields the
following solutions for F|(x, y) and F,(x, y) in terms of Fy(x, y) which is subject to
the boundary condition Fy(x, y)—0 as y,— + o but is otherwise arbitrary:

Fi(x,y)=07 Fo(x, y) (2.10a)
Fy(x,y) =035 Fy(x, y). (2.10b)

Note that since we have been able to construct a new (first-class) constraint from
the three second-class constraints we were having before, we have to throw away
one of them. We decide to throw away Sy(x). We are then left with two first-class
constraints in Eqgs. (2.3a) and (2.9) and two second-class constraints in Eq. (2.3b).
As already mentioned, the theory exhibits gauge symmetries generated by the
first-class constraints and we need to fix them before we proceed further. We
choose the following general class of linear but non-local gauge-fixing conditions
corresponding to the two first-class constraints namely P, and £,

10(x) = [ dy Kofx,¥) Aof(x0, ¥) =0 (211a)

1) = [ 4y K, (%, ¥) A%, ¥) 20, (2.11b)

where kernels K (x, y) and K;(x, y) are, until further commented upon, arbitrary.
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It is also necessary for us to demand that these gauge fixing conditions are
preserved in time:

Folx) =i U dpKo(x, ) Ao(Xo, ¥), H] 0 (2.12a)

X)) =i D d2vK, (X, ¥) A;(X0, ¥), H] —0 (2.12b)

Such a requirement can be easily verified to produce two conditions on the
arbitrary velocities appearing in the hamiltonian (2.6) which can be, in principle,
solved to eliminate two of the three velocities. At first sight, therefore, it might
appear that Eq. (2.11) fix the gauge invariance in the theory only partially. That
this is misleading is easily understood by realising that only two of the three
velocities are really independent. The reason for this can be traced to the fact that
requiring the constraint (2.3b) to be preserved in time also leads to a condition on
the velocities which already fixes one of them in terms of the others. The fact that
there are only two independent arbitrary velocities which need to be fixed by
imposing conditions from outside is a direct reflection of the fact that there are only
two gauge invariances in the theory which are generated by the two first-class
constraints, (2.3a) and (2.9). The stage is now set for the computation of the
commutation relations for the basic fields in the theory.
The DB between two variables A(x) and B(y) is defined as

{A(X), BY) 1 = (A%, B} = [ de, [ da,
X {A(X), 91(11)} Ca/}(zla ZZ){H[f(ZQ)s B(Y)}-

In the above 8,(x) represents the set of all constraints and C,;(x, y) is an element
of the inverse of the matrix of Poisson brackets of the constraints.

We focus our attention on the matter sector first. Using the above definition of
the DB, we obtain

272
{#(x), ¢(y)}*=—9—A(x,y)¢(x)¢(y), (2.13)

where we have used the freedom in choosing the kernels Ky(x, y) and K,(x,y) to
set

VKX, y) =% (x—y). (2.14)
In the above,

A(x, y):szza”K,-(x, 2) K,(y. 7). (2.15)

Obviously, 4(x,y)= - 4(y, x).
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The commutator of the matter fields can now be obtained in the standard way
and it reads

), #(y)] - ———A s Y)[P(x), (¥)] - (2.16a)

In abstracting the above commutator from the classical DB relation we needed to
prescribe an ordering for the bilinear in ¢’s on the r.h.s. of Eq. (2.16a). We adopted
Weyl ordering as it ensures the antisymmetry of the commutator under exchange
x <y, without any further restrictions on 4(x, y). In exactly the same manner all
the other commutators in the matter sector can be extracted from their corre-
sponding DBs. A generic feature of this set of DBs is the fact that the r.hs. is a
bilinear in the fields and/or their momenta. Consistent commutators, however, can
be obtained as in the above example, by symmetrizing the bilinear. Some of the
commutators are recorded below for the convenience of the reader. The others can
be obtained by hermitian conjugation and/or antisymmetry:

.2
[é(x), #*(y)]1_= —l—z.,- 4(x, y)[o(x), ¢*(y)] . (2.16b)
2
[o(x), n(y)]_ = iéz(x—y)—%d(x, Y)é(x), n{y)] . (2.16c)
in?
[#(x), n*(y)] -B—A(x, y)[o(x), n*(y)]. (2.16d)
;2
[m(x), n(y)] - =—9—A(x,y)[n(X), n(y)]. (2.16e)
2
[n(x), n*(y)]_ = —%— A(x, y)[n(x), n*(y)] .. (2.16f)

We now concentrate on the gauge sector. Once again by using the definition of
the DB we can construct the commutators of the gauge fields and their canonically
conjugate momenta. They read as follows:

[A4.(x), 4,()] = —ﬂara, A(x,¥) (2.17a)
[4,(x), m,(y)] = 2 €4 0707 A(x,y) (2.17b)
i, ‘

Note that all the commutators in this sector are equal to c-numbers. As a result
there are no operator ordering problems.
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Finally, we present the details of the commutators in the mixed sector:

2 2
[4(x). 4,(9)] - =5~ [07 4(x, ¥) =, K, (%, )] $(x) (2.18a)
1
[4x), 7,(9)] - = =3 L6} 4(x, ) = K,(x, )] §(x) (2.18b)
2n
[r(x), 4,1 = = [0/ A y)—e, K, V)] x(x)  (2180)
1
[(x), 7,(9)] - =3 [2, 3} (%, ¥) = K, (x, ¥)] 7(x) (2.184)

As in the matter sector the other commutators in this sector can be easily worked
out by using hermiticity and/or antisymmetry.

Before we conclude this section a few general comments are in order. The
structure of the commutators in the matter sector tells us that one can in fact
continuously interpolate between bosonic and fermionic limits by smoothly
varying 0. This is the first signal of the possibility of the matter fields behaving like
anyons. We will return to a detailed discussion of this question in Section 3. It is
“interesting to check the internal consistency of the algebra of the fields in the gauge
sector using the definition of the momenta 7, Such an exercise simply demonstrates
that there is only one independent commutator in the gauge sector—a feature of the
symplectic structure of Chern-Simons theory by virtue of which the two spatial
components of the gauge fields are conjugate to each other. Last, note that if in the
lagrangian defining the model, Eq. (2.1), we make the replacement A, —» 6~ '?4,
then @ appears in the covariant derivative and is therefore a measure of the strength
of the minimal coupling between the matter and gauge fields. Under such a scaling
note that, while 8 disappears from the r.hs. of commutators in the gauge sector, it
remains unaltered in the matter sector and becomes 6 ~ ' in the mixed sector. If we
now look at the limit § — oo, i.e., the limit in which the matter fields decouple from
the gauge fields, we find that the matter fields commute amongst themselves and
also with the gauge fields, as indeed they should. The gauge fields themselves do not
commute amongst themselves which is, again, a consequence of the symplectic
structure of the CS term.

3. SpIN, STATISTICS, AND PARTICLE INTERPRETATION

As mentioned earlier the set of commutation relations presented in the previous
section suggests the possibility of having anyons in our model. In order to explore
this possibility fully, let us recast Eq. (2.16a) in a more suggestive form,

$(x) d(y) = A(x, ¥) 4(y) $(x), (3.1)
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where

_ L+ (in%/0) 4(x, y))
(1 = (in?/0) A(x, ¥))

AMX,y)

Note that, since A(x, ¥y} A*(x, y) = |, the above equations imply

$(x) (y) = [exp iO(x, y)] ¢(y) d(x), (3.3)

where @(x, y) is real. Thus, under a permutation, the product of two basic fields in
the theory picks up a phase factor. As it stands, however, there are several
worrisome aspects of this phase which need to be clarified before we can conclude
that we have anyons in the theory. As is well known from quantum mechanics,
when two anyons are exchanged, for non-trivial results, the phase picked up must
be multivalued. It is natural to expect a similar feature to be reflected at the field
theoretic level we are working. A related point in the comparison with quantum
mechanical result concerns the two possible phases that can occur in quantum
mechanics, depending on the way one particle is rotated around the other, namely,
clockwise or anticlockwise. The above result does not appear to accommodate such
a possibility. Most objectionably, Eq. (3.3) implies that the statistics of the fields
under consideration depends upon their spatial coordinates as well as the choice of
gauge fixing kernels.' This is physically absurd. Tt is, however, not very difficult to
realise that all these problems are rooted in the fact that the basic fields we are
considering do not correspond to physical particles because they are gauge
non-invariant. Choosing the gauge transformation parameter in such a way that the
element of the gauge group goes to the identity at the spatial infinity, gauge
invariant operators in the theory can be constructed according to the standard line
integral prescription of Schwinger and are given by

¢§(x)=P|:expir d:’A,(z)] $(x). (3.4)

The line integral appearing in the above expression is along a spacelike path from
the point at infinity to x, on a fixed time slice. The gauge invariant field, therefore,
depends not only on the point x but also on the whole path. It is completely defined
once the path is prescribed. Hence, to be precise we need to denote the path
dependence of the operator explicitly. The x dependence itself can be spared explicit
mention because it is redundant to specify the end-point of a path when the path
itself is specified completely. Nevertheless, since we are interested in examining the
algebra of the gauge invariant fields, it is sufficient to display the x-dependence
explicit and suppress the explicit display of the path dependence for the sake

! Strictly speaking one has to solve Eq.(2.14) before making such an assertion. As we will see
presently such an exercise reveals that the exponential in Eq. (3.3) actually collapses to unity.
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of brevity. Note that it is necessary to path order the exponential in the above
expression, even in the abelian theory being considered here, because of the
non-commutativity of the gauge fields A4,(z), obvious from Eq. (2.17a). It is now
straightforward to compute the algebra of these gauge-invariant operators. Using
the result of the previous section this works out to be

. ] bz B N
¢(X)¢(Y)=[CXP i0(x, )’)XCXP-B‘L dz) _L‘ dzy 0707 A(zy, 2,)
2nifoex
X exp T(L d='e; K;(y, z)

- d:'s,,K,(x,z))]é(y)qi(x). (3.5)

Although the above algebra looks more complicated than that in Eq. (3.3), the
appearance of the exponentials of the line integrals of the gauge fixings kernels in
the right-hand side augurs well for our cherished goal of obtaining multivaluedness
of the phase factor. All the other problems listed in the context of Eg.(3.3),
however, persist. In order to make any headway, therefore, we now have to solve
Eq. (2.14) for the kernels K(x,y). Towards such an end let us express them
through the relation

Ki(xs Y)E _61‘¢(x9 Y) (36)

Plugging Eq. (3.6) into Eq. (2.14), we find that &(x, y) is merely the two-dimensional
massless propagator and is given by

1
¢(x,y)=5—ln ulx —yl, (3.7)

T
where u is an infrared cutoff. As is well known, the above expression for the
propagator is not unique. In particular, one can always add to the right-hand side
of Eq. (3.7) any arbitrary solution f(x, y) of the two-dimensional Laplace equation.
These merely correspond to the zero modes of the two-dimensional Laplace
operator. However, if we require such solutions to be regular over the entire two-
dimensional space, then the only possible solutions for f(x, y) are constants and
hence they do not alter Eq. (3.6). Let us further define

Gi(x,y)=¢; K, (x,y)= - 07¥P(x, ) (3.8)

and concentrate upon the line integrals in the last exponential on the r.hs. of
Eq. (3.5). They work out to be

Jﬂx dz'e, Ky, z)—'[y dz'e ;K (x, z)

=—¥(y,x)+ P(x,y)+ Py, x)— P(x, ). (3.9)
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It also follows from Egs. (3.6) and (3.8) that
8 d(x,y)=¢; 8! P(X, y) (3.10)

i Oj

Note that this equation is in conflict with Eq. (2.14) if x =y. Hence in what follows
we will always work on the punctured two-dimensional plane which is obtained by
assuming x to be fixed and deleting the above troublesome point from R? This is
an example of the diagonal point alluded to in Section 1. We immediately recognise
the above to be the Cauchy-Riemann equations if we treat y, and y, as the real and
imaginary parts of a complex variable. @(x, y) and ¥(x, y) are then the real and
imaginary parts of an analytic function of such a complex variable. It follows from
the fact that the real part of this analytic function is given by Eq. (3.7) that

1 X, —
¥(x, y) == arc tan (f%—ﬁ) (3.11)
2n X, =

which is just the angle that the x — y vector makes with the x, — y, axis. The first
two terms on the r.hs. of Eq. (3.9), therefore, merely give the relative angle between
the x —y and y — x vectors, apart from the overall factor of 1/2n. Hence,

'1’(x,y)—‘1’(y,x)=—2—17;(7t mod 2n). (3.12)

The remaining terms cancel each other because all lines pointing towards nfinity
are parallel and hence the relative angle between them is zero. This argument can
be formalised as follows: In polar coordinates ¥(x, c0) can be written as

1 x;— Rsina
¥(x, =—1 t ——}, 3.13
(x, ) 2n Rl—l:nao arctan (xl—Rcos a) ( )

where we have introduced the two-dimensional radial vector R = (R sin a, R cos a),
o being the polar angle. For R — o, x, and x, can be neglected and Eq. (3.13)
reduces to

1 Rsina o
Y(x, =—1i = 3.
(x, o) 2n Rl-fnoo arc tan (R cos oz) 2n (3.14)

This term being a constant, precisely cancels with ¥(y, co). Now that the structure
of the gauge-fixing kernels is completely fixed, it is worthwhile computing 4(x, y).
Recall from Eq. (2.15) that

A(x,y) = f d’z¢'K,(x, z) K;(y, z).
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Substituting for K;(x, z) from Eqs. (3.6) and (3.7), we get obtain

2 ij X)(Z y)
A(X, y J'd ¢ _————lz—xlzlz yljz' (3.15)

Although the above integral is superficially logarithmically divergent, the fact that
the higest power of z in the numerator, viz., the z,z, term is zero because it is multi-
plied by &7, makes it convergent. It is then easy to show, following the sequence of
steps z—z2' =24+ (x+Yy)/2, i/, and z—> —z, that

4(x,y)=—4(x,y)=0. (3.16)

The upshot of this result is that in the r.h.s. if Eq. (3.5) the second exponential and
the irksome first exponential both collapse to unity. We therefore arrive at the neat
result

¢(X)¢(Y)—[6Xpl( )(n mod 27!)] ) $(x). (3.17)

The multivalued exponential factor in the above equation is then recognised to be
the one-dimensional representation of the braid group [15]. Thus gauge-invariant
operators in the theory defined in Eq. (3.4) are anyon field operators. Note that the
path ordering in the above definition can now be dropped without ado because the
gauge fields commute. The values 6@ =mn/(2n+ 1), where n is an integer are
particularly interesting because for these values of 4 the gauge invariant operators
anticommute and hence behave like fermions. Similarly, for 8 = n/2n, the gauge
invariant operators commute and behave like bosons. These results may be
compared with the ones obtained in Ref. [16], where the statistics of point particle
sources coupled to an abelian Chern-Simons field was worked out by successfully
computing the ratio between the scattering amplitudes of the exchange and direct
processes within the path integral framework. To return to the present problem we
find that exactly similar results hold for ¢*s. Now we can use the conventional
Fock space methods to construct an N particle state by acting a string of Ng*
operators on the vacuum. This yields

-

-~ - 2.
Fx) §rx) 82000 03 = ep T Pxmx) |1, (3a8)

where | > is a single-valued state. Switching over to complex coordinates
Z,=X; +iX;5, Z,= X,; — iX,,, where i and j run from 1 to N, the above equation can
be recast as

$*(2,,2,) $*(22,2,) - $*(2y, Z4) [0) = n(z —z,)"* |5, (3.19)

where an unimportant factor of [1; |z, — z;] ~™° has been absorbed in the definition
of the single-valued state. The N particle state we have thus obtained is an analogue
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of Laughlin’s ansatz for quantum Hall effect [17]. In terms of this state it is easy
to see that when one particle is taken around another through an angle 2nn, ne Z,
the multivalued state picks up a factor of exp(+i(n/0) nn), depending upon the
rotation being clockwise or anticlockwise. This completes the description of the
conventional Fock space of the theory.

The one-particle state obtained by adopting the above procedure is an eigenstate
of the charge operator with an eigenvalue equal to one as can be easily checked by
using the commutation relations between the basic fields.

0F*(x) 10> = [ d*x'jo(x') $*(x) [0
= §*(x) 10). (3.20)

The stage is now set for discussing the spin of the one anyon state. The angular
momentum operator is defined by

~

sz d*xe¥x; Ty, (x), (3.21)

where T, is an element of the completely covariant and symmetric energy momen-
tum tensor 7, which is obtained by coupling the theory to gravity in the usual way
and considering the variation of the action around the flat metric. By virtue of the
fact that the Chern-Simons term is metric-independent,this definition of the energy
momentum tensor is insensitive to its presence and is independent of 8. It reads

T,.=(D,$)* (D.¢)+(D,$)* (D,4)~g,(D;$)* (D’§). (3.22)
Hence
To;(x)=(Do@)* (D;4) + (D;8)* (Do)
=m(X)(0;¢(x)) + (¢,4*(x)) n*(x)
+iA;(x)(n(x) ¢(X) — ¢*(x) T*(x)). (3.23)

The first two terms are the normal canonical terms that appear for complex scalar
fields. The third term, however, requires more care. Recall that because the time
component of the momentum conjugate to the gauge field vanishes (Eq. 2.2¢), the
Heisenberg equation of motion

to(x)=i[H, Ao(x)] =0

leads to the constraint in Eq. (2.7) which just corresponds to the zeroth component
of Eq. (1.2) in this theory. This equation can be solved formally for 4, and it yields

2r 4

&/
A;(x)= _ngjaf;jo(x)+6,.[(x)a (3.24)
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where f(x) is an arbitrary function. Requiring the above solution to satisfy the
gauge fixing condition in Eq. (2.11b) we obtain

O:jdzxK,(x,y)A,(x)
n 2 ~f 2 ;
= —58,-,-jd“x K;(x,y) nijd zIn u|x—z j,(z)

+ J d*x K,(y, X) & f(x). (3.25)
This yields, upon doing integration by parts in the last two terms and using the
property (2.14),
f(x)=0.
Hence Eq (3.24) reduces to

n R .
Ax)= =T ,0 f dy In 1 1% =yl joly). (3.26)

Therefore, we once again find that the zero modes of the two-dimensional operator
£’ ¢, do not play any role. Substituting for 4,(x) from above in the expression for
the angular momentum operator and concentrating only on the anomalous third
term which we denote by J,, we obtain

2nt . ot
J.\ = 7 J‘dhx Elj'xi.]()(x) (611\’ F.]()(X))

n .
_ 2 2., - o . >
= Ofd XJd YJo(x) x, O Inp [x =y jo(¥)
which reduces, after some simple algebra [18], to

J. = —2”—0 2, (3.27)

The rotation operator acting on the one-particle state is now easily seen to rotate
the state by a phase:

[exp i/, w] ¢* |O>=|:exp—i2%;£:| é* 10>, (3.28)

If the parameter of rotation w takes a value 2m, then it is easy to check that for
8 =n/(2n+ 1) the state picks up a minus sign which is a signal of the fact that the
state is fermionic, while for @ = n/2n, it does not change implying that it is bosonic.
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For other values of # the state does not return to itself, except for a possible sign
change, after a 2n rotation and is therefore anyonic—in agreement with the
conclusions that were drawn from the algebra of the gauge-invariant operators
(3.17). This, therefore, establishes a generalised connection between spin and
statistics within the framework of a relativistic quantum field theory under
consideration here.

We conclude this section presenting the details of the algebra of the remaining
gauge invariant operators. As a first step towards the construction of these
operators it is useful to rewrite the Lagrangian density (2.1) in terms of gauge
invariant operators, as was first done by Mandelstam [197]. Thus, define

-~

d(x, P) = [exp if " dzrA (2 )] #(x) (3.292)

F*(x, P) = ¢*(x) [exp ~if dzﬂA,,(z)] (3.29b)

The above operators share all the properties of the ones defined in Eq. (3.4). We
have therefore adopted the same notation for both. These is, however, a slight
difference between the two because the sum over the repeated index inside the
integral in Eq.(3.29) is over (2+ !)-dimensional spacetime, unlike the one in
Eq. (3.4) which in over two spatial dimensions only. The abuse of notation,
however, is justified since in what follows we will always take the paths to lie on
equal-time planes. In this case the difference referred to above disappears. The
gauge covariant derivatives of ¢ can also be defined, following Mandelstam, as

-~ 7 ) 3 , Pl . ~ ’
a;1¢(xa P) = llm ¢(’C + drl‘ ) ¢(x P)’
dxy 0 dx

(3.30)

n

where the path P’ is obtained from P simply by extending it by dx, in the u
direction. Thus the new path P’ passes through the point x. Moreover, since it does
not enclose any area with the path P, there are no additional contributions coming
from the flux that is enclosed by the area between the two paths P and P’ when the
derivative acts on ¢. In the special case of taking the time derivative of $, we need
to, in principle, allow the paths to have infinitesimal timelike portions. As it turns
out, however, at least in so far as our purposes are concerned, it will not be
necessary for us to ever explicitly compute this. It follows easily then that

d,8(x, P) =D, ¢(x) (3.31)

and Eq. (2.1) takes the form

P ” 7] .
L= @M@+ 507 4,0,4,. (3.32)
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The striking thing about this lagrangian density is that the minimal interaction
between the matter fields and the gauge fields is now eliminated. The price one has
to pay is that the matter fields now become path-dependent, consequently multi-
valued, and have non-trivial statistics. This trade-off between interaction and
statistics is in total conformity with the quantum mechanical example mentioned in
Section 1.
The momentum canonically conjugate to ¢ can now be defined in the usual way
by varying the above lagrangian density with respect to d,¢. Nevertheless, it is more
convenient to invert the relations in Eq (3.29) as shown below:

#(x)= [exp —ir‘ dz”A“(Z)jI #(x) (3.33a)

$*(x) = ¢*(x) [exp zj dzu,,(z)], (3.33b)

where we have suppressed the explicit path dependence once again by appealing to
brevity. Plugging the above equations into Eq. (2.1) yields

¥ = (D;(é*[exp 1L dz‘l‘A#(z,):D)
x (D“([exp —i _E dZ;A\.(Zz):l ﬁ(x)))

0
+ZP£”MA“6VAA. (334)

The momentum canonically conjugate to ¢ can now be calculated as

__ %%
3(dof(x))

- (DO ((,;*(x) [exp lj dz}‘AAz,)])) x [exp —zj dz;A‘,(zz)]

— §*(x) (ao [exp il dzfA“(zl)]) x [exp -if dz;Av(zz)] T (Dod(x))*

(x)

= (Dof))* ¢4 (3) (2o exp =i [ i,z )

= n(x) [exp —i'fx dz"A“(z)jl, (3.35a)
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where we have used, in addition to Eq. (3.33b), the following non-trivial result
which itself is a consequence of an essentially trivial resolution of the identity

0=04(1)=4, ([exp i f =t Az, )][exp _i f d:;A‘(:Z)D

x

= (80 [expi [‘ :1|1A“(:1)])|:exp —ifv d:zA‘.(:z)]
+ [expif' d:‘(A“(:l)](ﬁ(, [exp —if‘ 4= A (=) )

An exactly similar calculation or just hermitian conjugation, also gives the
expression

0L
3(2h(x))*
It is now straightforward to work out the algebra of the gauge-invariant operators

by using the known commutation relations between the basic fields in the theory.
On an equal-time plane, it works out to be the elegant structure displayed below:

A*(x)=

= I:exp i j d:“A‘,(:)] T*(x). (3.35b)

dix) (ﬁmz[expi(g) (x mod 2n)] $y) (x) (3.36)
Fx) () = [exp —z‘(f—)) (x mod 2m] F*(v) d(x) (3.36b)
F(x) 7ly) = 65(x — y) + [exp i (%) (x mod 2n)] Ay fx)  (336c)
$(x) #*(y) = [exp i (%) (x mod 2n)] *(y) $(x) (336d)
#(x) ﬁ(y)=[expf<:—;> (7 mod 2n)] A(y) A(x) (3.36¢)
A(x) #*(y) = [exp — <%) (x mod Zn):l A*(y) R(x). (3.36f)

The rest of the algebra can be obtained by hermitian conjugation.

In this section we have comprehensively demonstrated that the systematic
quantization scheme developed in Section 2 can be used to show that the manifestly
gauge-invariant operators in the theory carry fractional spin and statistics and obey
a generalised connection between them. When expressed in terms of these variables
the matter and gauge sectors, hitherto minimally interacting, become decoupled.
The new gauge-invariant matter field operators are free except for the complicated
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statisical interactions they carry by virtue of their multi-valuedness. The particle
interpretation that can be given by using conventional Fock space methods leads
to a multi-particle state which is analogous to the Laughlin state. It should be
borne in mind, however, that all the results in this section hinge crucially on the
constraint structure of the theory discussed elaborately in the last section. Since
the constraint structure of the model is known to become drastically modified with
the addition of a Maxwell term to the lagrangian density, it is worthwhile to ask
at this juncture, if the same, or similar, constructions still work to produce
manifestly gauge-invariant anyon operators. The next section analyses this issue.

4. ADDITION OF THE MAXWELL TERM

The addition of the Maxwell term to the lagrangian density (2.1) yields what may
be called topologically massive scalar electrodynamics, adapting the terminology of
Deser et al. [20]. The interest in this model emerges because pure Chern-Simons
scalar electrodynamics, dealt with in the previous two sections, can be considered
as a low energy limit of this model. Moreover, it has been argued that, even if the
Maxwell term is absent at the tree level, there is no symmetry which prevents its
generation by quantum corrections. Thus, it is of considerable interest for us to
know if the results obtained in the last section hold even in the presence of the
Maxwell term or whether they are merely low energy artefacts.

The model is defined by

0 ‘; 1 v
L= (D;t¢)* (D“¢)+ZT[_28‘" .A“ FIA/~Z€—2 F;u'F‘ . (41)

We adopt the same conventions as in Section2 and once again the covariant
current is conserved. The canonically conjugate momenta are defined and given by

o5 )
ﬁ=m= (Do¢) (4.2a)
0F
*=5(00¢*)=(D0¢) (4~2b)
0¥
ﬂo=m=0 (420)
n,= 0% . =—0—s--A~’——‘—5F0,. (4.2d)

It is immediately obvious that, unlike the pure Chern—Simons scalar electro-
dynamics model, in the present model, Eqs. (4.2a), (4.2b), (4.2d) define momenta

§95:222:2-9
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in terms of velocities and are, therefore, not constraints. Equation (4.2c), however,
leads to the primary constraint

710 2 0. (4.3)

The fact that the other two primary constraints, present in the pure Chern-Simons
case, are absent here is because the Maxwell term, unlike the Chern-Simons term,
is bilinear in derivatives with respect to the gauge fields. The Hamiltonian of the
model can be worked out as usual and is given by the expression, H = { d’x #'(x),
where

0
Ay 0,A,)

H =n*n+(Dig)* (D)~

1 )
oz FyFY 4 joA°

: 0 : .0 .
—%(ni—“—ﬁsun»’><n’—zpe"‘Ak>+n,~(7'A0. (4.4)

Requiring the primary constraint (4.2¢) to be preserved in time yields the following
secondary constraint:

So=—Jjot15¢" 04+ = 0. (43)
4r°

It is straightforward to check that there are no more constraints in the theory and
that both (4.2c) and (4.5) are first-class constraints. Thus, while the addition of the
Maxwell term drastically alters the constraint structure of the theory in so far as the
second-class constraints are concerned, the number of first-class constraints and,
consequently, the gauge invariances in the two theories are the same. Since our
main motivation is to study the effect of adding the Maxwell term, we will adopt
the same gauge-fixing conditions that were used in Section 2, viz.,

[ 4%y Kolx, y) Aolxo, y) 0
and
[ @y K,(x,y) Aitx0, ) 20,

where the kernels K;(x, y) in the latter equation are again constrained by

K (x,y)=0d%(x, y).
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A rerun of the Dirac bracket machinery yields the following algebra for the basic
fields in the theory:

[¢(x). m(y)] =id*(x—y) (4.6a)

[f(x), 7, (¥y)] = —Ki(x,y)$(x) (4.6b)

[r(x), 7;(y)]. =Ki(x,y)n(x) (4.6c)

[4,(x), m,(y)] =ie,; 3 (x—y)+id7K,(x,y) (4.6d)
i0

[r.(x), m,(y)]. £; 0% (x —y). (4.6¢)

 4n?
The rest of the commutators can be obtained by hermitian conjugation and/or
antisymmetry. The other commutators involving the basic fields which do not
follow from above, e.g., [4,(x), 4,(y)]. are all trivial.

At this juncture it is important to note that, while the lagrangian density (4.1)
and the two first class constraints (4.3) and (4.5) smoothly reduce to the corre-
sponding expressions (2.1), (2.2c), and (2.7) when we take the limit ¢* — oo and use
Eq. (4.2d), the algebraic structure in Eq. (4.6) does not reduce to the corresponding
structure in Section 2. This stems from the fact that the algebra of the gauge non-
invariant basic fields of the theory is determined by the entire constraint structure
of the theory. In the present case the constraint structure of the theory becomes
drastically altered as we take the limit e - oo because the number of second-class
constraints jumps from zero to two. This is a discontinuous change. It is, therefore,
clear why taking this limit is not smooth at the level of the algebra of the basic
fields of the theory. In view of this subtle complication, irrespective of the value of
e?, we have to use the commutation relations in Eq. (4.6) to work out the algebra
of any composite operators we may construct in this theory. Such a construction
is what we turn to now.

Gauge invariant operators as in Section 3 can once again be constructed by
appealing to Schwinger’s line integral prescription. However, since the matter fields
and the gauge fields all commute amongst themselves, it is easy to check that the
operators defined in Section 3 actually have trivial commutation relations. Can one,
therefore, conclude that the Maxwell term incorporates a mechanism for suppres-
sion of fractional statistics in the theory? A little bit of thinking tells us that this is
not quite the end of the story. In fact there exists a plethora of gauge-invariant
operators in the theory, which may still have non-trivial statistics because of the
unconventional algebra in Eq. (4.6). We choose to pick one which has the following
merit: it reduces to the operator presented in Eq. (3.4) in limit ¢? — oc. Tt is given
by

2n%i

) x 0
dx)=P I:exp‘—g—_,- ' (s,_-,-n’(z)—m A,-(z))] #(x)

x 72 :
—p [exp iJr dz (A“(:) — 5 ew,,.,FM(:))] $(x). (4.7)
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The paths that appear in the definition of the above operator share all the
properties of the ones in Eq. (3.4). Using the commutation relations of the basic
fields and all the properties of the kernels discussed in the last section, it is now
straightforward, although tedious, to show that

#(x) &(y) = [CXP <%:) J"‘ dz le dz} 8:_‘/52(11 - zz)]

x[exp (1%) (m mod 271)] é(y)ﬁ(x). (4.8)

The additional phase in the first exponential on the right-hand side of Eq. (4.8) is
a result of the non-commutativity of the exponents in the definition of the @s. It
measures the difference between the right intersections and the left intersections of
the path from oo to x and from oc to y [21]. For paths which do not intersect, the
above algebra reduces to

$(x) dly) = [exp i (6) (7 mod 2n)} dly) $(x) (4.9)

which is identical to the algebra in Eq. (3.36a). Similary, we can define

H*( (x)=o*( x)P[expz—T;* . dz'(e,m'(z) — Z‘%Ai(z)>]
— . X nz
=¢*(x)P|:exp —zf dz"(4,(z)— yer Y i P )):I (4.10)

where P—the anti-path-ordering operator—orders products of operators in the
exponential along the path in exactly the opposite way a normal path-ordering
operator P does. Equations (4.7) and (4.9) can once again be inverted to yield

(e n'(z)— S A, (z)ﬂ #(x)

x 2
:P[exp—if dz“(A,‘(:) ”9 £ FU(2 >]¢(x (4.11a)

(s T (z)——-—A (z)):l

=$*(x)P[expin dz“(A“(z) ”20 s F¥(2) ﬂ (4.11b)

¢(x)=F[

P*(x) = $*(x) P[exp
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Substuting the above expressions in the lagrangian density (4.1) produces

£ = {D;* ((ﬁ*(x) P [exp ijx dz¥ (A“(z,)—:TgeNMFM(:, )>>J)}
X {Du (F [exp —iJﬂ dz% (A,,(zz) — % e,,nﬂFmr(;:))] é(x))}

0 |
o A0 A = S E (4.12)

+

The resolution of the identity used in deriving Eq. (3.35b) generalises to

0=0,(1)=20, {[Pexp z'J.- dz* (A“(Zl)—;%8“\‘;_}7"2(:1))}

_ . 2
x l:P exp —i| df (Ap(zz) -5 a,,,,aFW(zz)ﬂ}

and a repetition of the steps leading to (3.35b) yields
8
X)=——F—
3(do4(x))

Rd 2
=n(x)P [exp —ij dz# (A”(z) — ;35 s,“,iF"”’(z)>]

=m(x) P [exp 27:; r dz! (s,:,n-" - 4—?—1—2 A,(:))]. (4.13)

It is now once again straightforward to work out the commutation relations of the
gauge-invariant operators. They are

2

d(x) d*(y) = [exp _,-%J‘-\‘ dz’ j* dzle, 8(z, _lz)]

o

x[exp —i(g) (x mod 27{)] F*(y) d(x) (4.14a)

$(x) i(y) =82 x—y)
2 X als .
+ {[exp ~z’% L dz, L dzhe,; oz, — ZZ)]

x[exp 4(%) (x mod 2n)]} #(y) $(x) (4.14b)
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. nloex v
¢(x) n*(y)= {[exp "? Jl dz, _(1 dzhe,; 0(z, — 12):|

x[iexpi—g(n mod 2n)j|} ﬁ*(y)qg(x) (4.14¢)

#(x) A(y) = {l:exp 1'7:—) fv d=| fr dz'¢, 0(z, — zz)]

b 1

x [exp i (g) (7 mod 27{)]} A(y) 7(x) (4.14d)

o

7(x) ¥ (y) = {[exp —in(—)- ) dz' fr dz}e, 6(z, —zz)]

x[exp ;f(f—)) (z mod 2n)]}» A*(y) A(X). (4.14¢)

If the paths are chosen to be non-intersecting, it is intercsting to note that the
algebra in Eqgs. (4.8) and (4.14) is exactly identical to that in Eq. (3.36). Moreover,
the gauge-invariant operators presented in this section, as already pointed out,
reduce to the corresponding ones in the previous section, without any problems, as
e’ — . In the process, however, it is important to note that the operators retain
their commutation relations untarnished, although the two theories are completely
unrelated through e at the level of the algebra of the basic fields. This limit,
therefore, is actually smooth! What makes this possible is the fact that the statistics
phase depends not on e, but, only on 0. This is a testimony of the fact that the
Chern-Simons term alone is responsible for non-trivial statistics.

For ¢ finite, although the commutation relations for the gauge invariant fields
presented for the two theorics are identical, a fundamental difference persists. As
discussed in the last section, following Eq. (3.32), in the pure Chern-Simons case,
it is possible to eliminate the minimal interaction between the matter fields and the
gauge fields in favour of non-trivial statistics for gauge-invariant operators. In the
case of topologically massive scalar electrodynamics, however, the gauge-invariant
operators, which have fractional statistics, constructed by us do not completely
eliminate the original interaction in the theory. The reason for this complication
can be traced to the fact that the addition of the Maxwell term does not merely
alter the constraint structure of the theory. It leads to a short-range coulomb
potential between the matter fields. As a consequence of this the gauge invariant
fields have complicated interactions. The fact that the lagrangian density (4.1)
cannot be expressed as a free theory, except for complicated statistical interactions
between the gauge invariant fields implied by the commutation relations, is a
reflection of this fact. It is worth stressing at this stage that there is a fundamental
difference between the conclusions arrived at here and the corresponding ones
known in literature [9,10]. It is well known that the gauge fields of the model
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discussed in this section, as opposed to the ones in the last section, are endowed
with a topological mass. As a result of this the matter fields are now dressed by a
cloud of gauge fields of finite extent rather than one of an infinite extent as in the
pure Chern-Simons case. If the distance between two matter fields is less than the
diameter of this cloud, the fields are interacting. If the distance is larger than the
diameter then the interaction is screened and they behave like free particles. It was
argued in Refs. [9, 10] that in the former case the fields have canonical statistics
while in the latter case they exhibit anyonic behaviour. The gauge invariant
operators we have constructed in this section have fractional statistics irrespective
of whether the coulomb interaction is screened or not.

Before we conclude this section, a discussion of the spin-statistics theorem in
topologically massive scalar electrodynamics is in order. The energy momentum
tensor for this theory can also be worked out by coupling the theory to gravity and
then varying the action with respect to the metric and then setting the metric flat.
It works out to be

1
Ty=(Du$)* (D.¢)+(D.¢)* (D, 4) — 5 FLF,,

1 A
—g,,v{(Dn¢)*(D“¢)—4—F;.,,F""}. (14.15)

ez
Hence
Ty =n(2,6) +7%(2,6)* +F,-,<7r’~4~%53"“/1k)
4 i, (ng — n*G*). (14.16)

The angular momentum operator can be obtained by simply plugging in the above
expression in the definition

J= f d?xe x; Ty,

It is easy to show after some straightforward algebra that the angular momentum
operator can be written as

szdzx [n"(e"x,(‘, Op+ey) A +e%x; {(n 0,0+ m*0,6%)

o )
S e A, 6"'7t,,,)} - 6"’(7rme”.>c,-Aj)]. (14.17)

+A,<—jo+4n

The first two terms represent the angular momentum carried by the gauge fields
and the canonical terms that appear for complex scalar fields, respectively, apart
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from a term that is proportional to the Gauss law constraint. Once again the third
term is anomalous and, as in the last section, we denote it by J,. It is interesting
to note, however, that since this i1s a boundary term, we can freely use the
asymptotic solutions of the gauge fields. Towards such an end note that we can try
the general ansatz

Ai(x)=C, K0, x) + C,G (0, x)

with the functions K, and G, defined as in Eqgs. (3.6), (3.7), and (3.8). Requiring the
above ansatz to satisfy the gauge-fixing condition (2.11b) yields

0=[d*x Ki(y, x) 4,(x) = C, [ d** K.y, %) K, (0, %),

upon using Eq. (3.16). Hence C, =0 and
A;(x)=Cre,K;(0,x) = C,e,;(x/x?). (4.18)

gy
In order to fix the constant C, we can now mimic the arguments of Semenoff and
Sodano, Ref [10]. It is easy to check that the hamiltonian (4.4) yields, upon
integrating out A4, a term which depends on the infrared cutoff u. The fact that the
energy is independent of this cutoff is ensured by the neutrality condition

27’

0
fd&(—h+ M@JJ:& (4.19)

Substituting the expression for the gauge field from Eq. (4.18) into the above
equation produces

Hence,

n x/
Ai(x)=5qu}—2. (4.20)
In conjuction with the Gauss law the neutrality condition also implies
fdh67@=0

Thus there is no net flux escaping across the boundary of the two-dimensional
space which means that the electric field is screened, thus lending credence to the
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qualitative arguments of the last paragraph. The asymptotic form of the momentum
conjugate to the gauge field can also be worked out to be

Q xm
T,=——=—. 421
' 4n x* ( )
The boundary term in the expression for angular momentum can now be explicitly
evaluated and it reduces to the expression, after some simple algebra,

- _ Lo

which is the same as expression (3.27). It is also easy to check that the commutator
of the charge operator with the gauge invariant operator (4.7) is conventional.
Therefore all the arguments delineated in the discussion of spin in the last section
follow here as well. The generalised spin statistics connection found in the last
section, therefore, holds in the present section too. It is worth mentioning that in
deriving the results in this section we have not committed to any particular length
scale. The asymptotic solutions of the gauge fields have been used only because the
anomalous term appearing in the definition of the angular momentum is a
boundary term. Since the gauge fields vanish at spatial infinity, normally such a
term would not have contributed to the angular momentum. However, as discussed
in this section, they do not vanish sufficiently rapidly for the boundary term under
consideration to be unimportant. In fact this very term gives the all-important
fractional spin to the one-particle state. This result, therefore, like the one for
statistics, is exact. Thus the gauge invariant operators presented in this section
authentically represent anyons which do not undergo any spin or statistics trans-
mutations as the length scale is changed.

5. ALGEBRAIC CONSISTENCY CONDITIONS

In the last few sections we have carefully built up a structure of manifestly gauge-
invariant anyon operators within the framework of a prototype relativistic field
theory we have chosen to work with. Although this edifice was constructed by a
straightforward application Dirac’s method of quantization, there are a few
questions on whose answers it is delicately poised. This section is devoted towards
answering these nagging questions.

The foremost question in this regard concerns the fractional spin which follows
from the anomalous piece in the definition of the angular momentum. While it is
important to have this to have a consistent spin—statistics connection, it is equally
important to know whether this anomalous Lorentz generator leaves the theory
Poincaré invariant—a requirement any sensible relativistic quantum field theory
must satisfy. [t may be worth mentioning that Poincaré invariance is by no means
obvious in both the Chern-Simons scalar electrodynamics and topologically
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massive scalar electrodynamics, given the unusual commutation relations of the
basic fields in the theories, presented in Section 2 and 4.

Poincaré generators can be defined from the energy momentum tensor through
the following relations:

P.=[dxT,, (5.1a)
J= f d2x eoyx, T, (5.1b)
K“=J‘d2x %, Too- (5.1¢)

The P,, J, and K, in the above expressions represent translation, rotation, and
boost generators, respectively. The entire Poincaré algebra is given by the
commutation relations between the above generators,

[J;uvﬂ Jprf] = i(g\‘p‘];m - gupJvU + g;m Jr;) — 8o Jpp)
[P, P] =0

and
[P‘“, Jprr] :i(g;tppn_g;mPp)’

where

J = Ju:_J/i:SO[/’JU
” JO[ = _Ji() = Kl"

As was first demonstrated by Schwinger [22], all these relations follow simply by
integrating the three independent relations given below in terms of the unintegrated
components of the energy momentum tensor:

[Too(X), Too(¥)] = i(To,(x)+ Ty (y)) &', 8% (x —y) (5.3a)
[Tyo(x), Toi(y)] =i T,(x)—g;Towly)) ﬁ’\ 52(" -y) (5.3b)
[Toi(x), To,(y)] . =14( To,()’) ﬁ(— + T()j(x) 81»() (Sz(x -y (5.3c)

We first concentrate on the Chern-Simons scalar electrodynamics case. Recalling
the expression for the energy momentum tensor for this theory from Eq. (3.22), we
have

T,.=(D,$)* (D,§)+(D,$)* (D,$)—g,,(D,$)* (D).
Hence,
Too = m*(x) n(x) — (D,$(x))* (D'$(x)) (5.4a)
Ty, = n(x)(D;¢(x)) + n*(x)}(D;$(x))*. (5.4b)
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The corresponding expressions for topologically massive scalar electrodynamics are

T,,=(D,$)* (D.¢)+(D.$)* (D, ¢)— F"

— & {(Dn(ﬁ (D”¢)~—F F’“}

| (5.5a)
Too=n*n— (D,;¢)* (D'¢) + FF”
e’ 7] . 0
o o A [ 'lkA
2(71, 47:28"’A )(n 4" k)
0
T0,.=7r(D,¢)+7z*(D,q§)*-+—F,,<7z’—47[2 g”‘AA). (5.5b)

It 1s now straightforward to compute the commutators between the components of
the energy momentum tensor for each of the two sets (5.4) and (5.5) by using the
commutation relations for the basic fields presented in Sections 2 and 4, respec-
tively. The resulting terms precisely yield the Schwinger conditions in Eq. (5.3),
upon using the various properties of the kernels K;(x, y) and the Gauss law. Thus,
the unconventional commutation relations for the basic fields notwithstanding, the
quantization scheme presented in the previous sections leaves both Chern-Simons
and topologically massive scalar electrodynamics Poincaré invariant, at least on the
physical subspace of the theory which is projected out by the Gauss law.

We next demonstrate that the Ward identity for two anyons coupled to a vector
current holds at the three level. Consider, therefore, the three-point function

G.(p. q)=fd3xfd".v exp{ —ig-x—ip-y} 0|
x T(j,(x) $(1) $*(0)) 0. (5.6)
Upon using standard current algebra manipulations this equation leads to
q"G.(p.q)= —I'J d’x f d’yexp{—iq-x—ip-y} & <0|
x T(j,(x) $(1)4*(0)) 0>
= -ifd"xfd"y expi —ig-x—ip-y}

x {<0| T(8" j (x) ¢(¥) $%(0)) 10
+<0[ T(S(xo — o) in(x), ()1 $*(0)) (0>
+ <0 T(8(xo)[jolX), $*(0)T (1)) [0 . (5.7)
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The first term on the right-hand side vanishes because of current conservation. The
other two terms can be simplified by substituting for the commutator which can be
worked out easily. For both Chern-Simons and topologically massive scalar
electrodynamics this works out to be

Lio(x). $(y)] - =8%(x—y) $(x) (5.8a)
and, similarly,
Lio(x). $*(¥)] - = —8°(x —y) $*(x). (5.8b)
Plugging the above commutators into Eq. (5.7) yields the desired Ward identity,
iq"G(p, q)=A(p+q)— 4(p), (5.9)
where
A(p) = | dx exp(—ip - x)<0] T(d(x) $*(0)) 10> (5.10)

is the anyon propagator. It is trivial to check that an exactly identical result holds
for the basic complex scalar fields. Thus, although the algebraic structures of the
basic commutation relations of the two theories are vastly different and both are
even more drastically different from conventional canonical structures in theories
without Chern-Simons terms, the Ward identies are preserved. This is a
consequence of the fact that both models admit a conserved vector current and the
all-important commutator between the zeroth component of the current and a
matter field is conventional.

We will now show that the gauge fixing conditions in Eq. (2.11) completely fix
the local gauge invariances in the theory. It is easy to check that the actions
corresponding to the lagrangian densities in Eqgs. (2.1) and (4.1) are invariant under
the simultaneous gauge transformations,

B(x) — ¢'(x) = exp{ie(x) } $(x) (5.11a)
$¥(x) > ¢*'(x) = $*'(x) exp{ — ie(x)} (5.11b)

and
A (x)> A (x)=A,—i0,.e(x) (5.11¢)

Requiring the transformed variables, A4/, to satisfy the gauge fixing condition
(2.11b), we obtain

0 = J‘ dz),YKi (x, y) A,{(x.Oi y)

= [ @K, (%, ¥) A4, (x0, ¥) i | 49K, (%, ¥) 8, e(x0, ¥)



ANYON OPERATORS 285

which implies

6(x) =i [ VKX, ¥) 4,(x0, ¥) + 0(xo), (5.12)

where w(x,) is purely a function of time and where we have once again done an
integration by parts and used Eq. (2.14) in arriving at the last equality. The above
requirement, therefore, completely fixes the spatial dependence of the gauge
transformations parameter. The temporal behaviour of ¢ can similarly be fixed by
requiring the transformed variables, Ay, to satisfy the other gauge fixing condition,
Eq. (2.11a), from which we obtain

0= [ d*vKy(x,¥) Aj(x0, ¥)
= f d’yKo(x,¥) Ag(Xo, ¥) — i v( d?yKo(x, y) doe(Xo, ¥)-

Subtituting for ¢ from Eq. (5.12) we obtain

0= [ d2vKo(%, ¥) Aolxo, )
+ [ drKo(x, y) [ @Ky, 2) 04, (x0, 2)
+ [ Ko, Y)(@oe(xo))
= [ d2rKol(x, ¥) Aox0, ¥)+ [ VKX, ¥)(0(x0))
+ [ dvKox,y) [ d*2K(y, 2) Foilxo, 2)
+ [ d2yKo(x, y) [ 22K,y 2) 8, 4%, 7).

After doing an integration by parts in the last term and using the property (2.14),
the above equation reduces to

szyKo(x, y) l:j d’zK.(y, z) Fo(x¢,2) — (80a)(x0))] =0. (5.13)
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Now, because the kernels K,(x, y) are time independent, we have, furthermore,

7(x) = 20 1(%) = [ d*VK, (%, ¥) 39 A, (o, Y)

[ VLK%, ) Forlo, ¥) + K, (%, ¥) 3 Ao(Xo, )]

=~ Ay(X)+ [ 2K (%, ¥) Fo(x0, ¥),

where we have done an integration by parts and used Eq. (2.14) in arriving at the
last equality and the definition of F,;. On comparing with Eq. (2.12b) the above
equation yields

Ao(x) = [ VK. (%, ¥) Fo (X0, ¥). (5.14)
Plugging the above expression into x,(x) produces the identity

[ @Ko, ¥) [ @K (3. 2) Folxo, 2) 20, (5.15)

Upon using this identity, Eq. (5.13) implies that the d,wm(xg) is given by a linear
combination of the constraints in the theory. On the physical subspace, therefore,
this condition fixes « to be a constant in time.

Thus, as advertised, the two gauge-fixing conditions completely fix the local
gauge invariance in the theory. The above analysis gives us an opportunity to
compare our work with related past work. Note that if we naively choose

K(x,y)=2a)3%(x,y) (5.16a)
and

Ko(x,y)=0%(x —y), (5.16b)
the gauge-fixing conditions used by us reduce to the ones used in Ref. [9]. If these
gauge-fixing conditions are to completely eliminate the gauge invariance in the

theory, they must obey the above consistency checks. Substituting them in
Eq. (5.15) we immediately find that

Y Fo(x)=0.
It is only too well known that such an equation is not possible in any theory which
has couplings with external sources such as the ones dealt with in this paper. It is
gratifying to note that the constraint on the kernels K,(x, y) in Eq. (2.14) does not
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allow solutions of the form (5.16) and hence there is no scope for a travesty of
Eq. (5.13). Equations (5.16) are, therefore, naturally forbidden on grounds of
algebraic consistency.

6. CONCLUSIONS AND OUTLOOK

In this paper we have tried to address some issues regarding fractional spin
and statistics in (2 + 1)-dimensional space-time. It may be recalled that these
possibilities within the realm of quantum mechanics have been studied for quite
some time now. All the intricacies of these two fundamental concepts can, however,
emerge only from a thorough understanding of at least one completely relativistic
quantum field theory which supports physical excitations which are anyonic.
Unfortunately, attempts at gaining such an insight through canocical quantization,
in the past, have been either incomplete or have led to contradictory results. The
most glaring intellectual loophole in these attempts owes its existence to the fact
that the operators purportedly representing anyons in these theories do not seem to
be any way related to Wilczek’s holistic approach towards the construction of an
anyon which is at the heart of all quantum mechanical results. Moreover, these
operators are not manifestly gauge invariant, which casts doubts over their
physical status. Other technical problems associated with such attempts have been
mentioned in Section 1. Further details can be obtained in Ref. [12].

It is worth mentioning that there have been other approaches to field theoretic
construction of anyons as well. Notable amongst them are a path-integral approach
developed by Forte and Jolicoeur [23] which mimics the quantum mechanical
construction of Wu [15] and the lattice approach dealt with by Luscher er al. [24].
These lattice models are still incomplete because construction of the continuum
limit and of interpolating operators for asymptotic states are problems which are as
yet unsolved. The solitonic models fashioned by Wilczek and Zee [25] have also
been studied in some detail, but suffer from non-renormalizability. Constructive
field theoretic methods have been developed by Frohlich and Marchetti and by
Schroer [26].

This paper, however, concentrates on the canonical quantization method with
the objective of plugging in the loophole referred to above which renders obscure
any connection between known quantum mechanical results for anyons and the
candidate relativistic quantum field theories advanced to explain them. We
have demonstrated by explicit construction that operators defined according to
Schwinger’s line integral prescription are anyon operators. They are manifestly
gauge invariant and are obvious generalizations of Wilczek’s prototype quantum
mechanical anyons. This is a remarkable departure from the results obtained in
related past work. These operators also create and annihilate particies from the
vacuum through traditional Fock space methods. The multi-particle state
constructed this way is shown to be related to the Laughlin state for fractional
quantum Hall effect. We have also discussed various algebraic consistency
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conditions like Poincaré invariance, Ward identity, and the proof that the local
gauge invariance in the theory is completely fixed by the gauge-fixing conditions
used. We have also argued that, although the theory becomes drastically changed by
the addition of the Maxwell term because of the altered constraint structure, gauge-
invariant anyon operators can still be constructed which smoothly reduce to the
corresponding ones in the pure Chern-Simons case as the coupling of the Maxwell
term goes to zero. All other results are checked against these operators and they
confirm the role played by the Chern-Simons term in imparting fractional spin and
statistics. Of significant interest is the fact that all the technical difficulties faced in
related past work involving the exchange of derivatives and integrals of multivalued
objects are bypassed by using gauge-fixing conditions involving non-local kernels.
It is therefore logical to conclude that this improvement, along with the intrinsic
merit of our anyon operators being manifestly gauge invariant is a pointer in the
direction that one can construct consistent relativistic field theories of anyons.

Pursuing the path shown by this pointer leads to several interesting questions
which deserve further study. An obvious possibility concerns a non-abelian
generalization of the studies made in this paper. Some preliminary results in this
direction have already been obtained by two of us in Ref. [27]. In the following,
however, we list a few of the more important issues which are closer to the abelian
theory discussed here.

It is worth understanding in the first place whether it would still be possible for
us to construct gauge invariant anyon operators similar to the ones presented in
this paper if a mass term and a polynomial potential term for the basic matter fields
are included in the definition of the model. Clearly all the results in this paper
would hold in such a case if there is no spontaneous symmetry breaking. In the
broken phase, however, the gauge fields would pick up a non-topological mass term
and consequently the constraint structure of the theory is likely to be altered. The
impact of such a change on the possibility of constructing anyon operators remains
to be examined. The second question is regarding the addition of fermions. It
appears straightforward to incorporate them within the framework of this paper
and we do not foresee any significant departure from the results obtained here.
The third important issue concerns the working out of gauge invariant anyon
correlation functions in this theory. This problem is presently being pursued by us
and we hope to report the result in the near future. The most promising avenue that
opens out in the wake of the results in this paper is related to the possibility of
constructing and studying theories of anyon electrodynamics. It is tempting to
envisage the following scenario in this context. Suppose the complex scalar fields in
the original model we have considered are coupled to another gauge field in
addition to the Chern-Simons gauge field and let the former gauge field’s dynamics
be governed by the Maxwell term. Using the Chern-Simons interaction to impart
fractional spin and statistics, can one develop a perturbation theory for the
interaction of anyons with the dynamical gauge field so that one can calculate cross
sections for realistic processes involving creation, annihilation, and scattering of
anyons? Presumably the first step towards writing down the Feynman rules for
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such processes would require us to develop a method of handling the exponential
of the line integral of the gauge field in the definition of the anyon operator through
some non-perturbative technique. We are currently exploring ways of doing this
because it would be useful in the problem of computing gauge-invariant anyon
correlation functions referred to above. Finally, properties of anyon S-matrices and
questions regarding renormalization of anyon field theories should serve as a logical
culmination of what appears to be a long impressive agenda.
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