
Programming in Haskell: Lecture 26

S P Suresh

November 13, 2019

Suresh PRGH 2019: Lecture 26 November 13, 2019 1 / 28

Sudoku

4 5 7
9 4

3 6 8

7 2 6
4 2
8 9 3

4 5 6
5 3
6 1 9

Suresh PRGH 2019: Lecture 26 November 13, 2019 2 / 28

Basic structures

• Basic data structures:
type Digit = Char
type Row a = [a]
type Matrix a = [Row a]
type Grid = Matrix Digit

• Choices for each cell:
type Choices = [Digit]

• Grid entries:
digits = "123456789"
blank :: Digit -> Bool
blank = (== '-')

Suresh PRGH 2019: Lecture 26 November 13, 2019 3 / 28

Basic structures

• Basic data structures:
type Digit = Char
type Row a = [a]
type Matrix a = [Row a]
type Grid = Matrix Digit

• Choices for each cell:
type Choices = [Digit]

• Grid entries:
digits = "123456789"
blank :: Digit -> Bool
blank = (== '-')

Suresh PRGH 2019: Lecture 26 November 13, 2019 3 / 28

Basic structures

• Basic data structures:
type Digit = Char
type Row a = [a]
type Matrix a = [Row a]
type Grid = Matrix Digit

• Choices for each cell:
type Choices = [Digit]

• Grid entries:
digits = "123456789"
blank :: Digit -> Bool
blank = (== '-')
Suresh PRGH 2019: Lecture 26 November 13, 2019 3 / 28

High-level strategy

• Generate the list of all solutions and pick the first one

• Hopefully there is only one solution
• Expand the given grid to all possible valid complete grids

• Fill in each empty cell with all choices
• Expand a matrix of choices to a list of complete grids
• Choose all valid grids from this list

• solve implements this strategy:

solve :: Grid -> [Grid]
solve = filter valid . expand . choices

Suresh PRGH 2019: Lecture 26 November 13, 2019 4 / 28

High-level strategy

• Generate the list of all solutions and pick the first one
• Hopefully there is only one solution

• Expand the given grid to all possible valid complete grids

• Fill in each empty cell with all choices
• Expand a matrix of choices to a list of complete grids
• Choose all valid grids from this list

• solve implements this strategy:

solve :: Grid -> [Grid]
solve = filter valid . expand . choices

Suresh PRGH 2019: Lecture 26 November 13, 2019 4 / 28

High-level strategy

• Generate the list of all solutions and pick the first one
• Hopefully there is only one solution

• Expand the given grid to all possible valid complete grids

• Fill in each empty cell with all choices
• Expand a matrix of choices to a list of complete grids
• Choose all valid grids from this list

• solve implements this strategy:

solve :: Grid -> [Grid]
solve = filter valid . expand . choices

Suresh PRGH 2019: Lecture 26 November 13, 2019 4 / 28

High-level strategy

• Generate the list of all solutions and pick the first one
• Hopefully there is only one solution

• Expand the given grid to all possible valid complete grids
• Fill in each empty cell with all choices

• Expand a matrix of choices to a list of complete grids
• Choose all valid grids from this list

• solve implements this strategy:

solve :: Grid -> [Grid]
solve = filter valid . expand . choices

Suresh PRGH 2019: Lecture 26 November 13, 2019 4 / 28

High-level strategy

• Generate the list of all solutions and pick the first one
• Hopefully there is only one solution

• Expand the given grid to all possible valid complete grids
• Fill in each empty cell with all choices
• Expand a matrix of choices to a list of complete grids

• Choose all valid grids from this list
• solve implements this strategy:

solve :: Grid -> [Grid]
solve = filter valid . expand . choices

Suresh PRGH 2019: Lecture 26 November 13, 2019 4 / 28

High-level strategy

• Generate the list of all solutions and pick the first one
• Hopefully there is only one solution

• Expand the given grid to all possible valid complete grids
• Fill in each empty cell with all choices
• Expand a matrix of choices to a list of complete grids
• Choose all valid grids from this list

• solve implements this strategy:

solve :: Grid -> [Grid]
solve = filter valid . expand . choices

Suresh PRGH 2019: Lecture 26 November 13, 2019 4 / 28

High-level strategy

• Generate the list of all solutions and pick the first one
• Hopefully there is only one solution

• Expand the given grid to all possible valid complete grids
• Fill in each empty cell with all choices
• Expand a matrix of choices to a list of complete grids
• Choose all valid grids from this list

• solve implements this strategy:

solve :: Grid -> [Grid]
solve = filter valid . expand . choices

Suresh PRGH 2019: Lecture 26 November 13, 2019 4 / 28

Filling in all choices

• Filling a cell with choices:
choice :: Digit -> [Digit]
choice d = if blank d then digits else [d]

• map choice fills all cells in a row with choices
• To fill all cells in a grid with choices:

choices :: Grid -> Matrix Choices
choices = map (map choice)

Suresh PRGH 2019: Lecture 26 November 13, 2019 5 / 28

Filling in all choices

• Filling a cell with choices:
choice :: Digit -> [Digit]
choice d = if blank d then digits else [d]

• map choice fills all cells in a row with choices

• To fill all cells in a grid with choices:
choices :: Grid -> Matrix Choices
choices = map (map choice)

Suresh PRGH 2019: Lecture 26 November 13, 2019 5 / 28

Filling in all choices

• Filling a cell with choices:
choice :: Digit -> [Digit]
choice d = if blank d then digits else [d]

• map choice fills all cells in a row with choices
• To fill all cells in a grid with choices:

choices :: Grid -> Matrix Choices
choices = map (map choice)

Suresh PRGH 2019: Lecture 26 November 13, 2019 5 / 28

Expanding list of choices

• We take cartesian product of the matrix of choices using:
cp :: [[a]] -> [[a]]
cp [] = [[]]
cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]

• cp [[1,2], [3,4]] = [[1,3], [1,4], [2,3], [2,4]]

• expand computes the list of all complete grids:

expand :: Matrix Choices -> [Grid]
expand = cp . map cp

Suresh PRGH 2019: Lecture 26 November 13, 2019 6 / 28

Expanding list of choices

• We take cartesian product of the matrix of choices using:
cp :: [[a]] -> [[a]]
cp [] = [[]]
cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]

• cp [[1,2], [3,4]] = [[1,3], [1,4], [2,3], [2,4]]

• expand computes the list of all complete grids:

expand :: Matrix Choices -> [Grid]
expand = cp . map cp

Suresh PRGH 2019: Lecture 26 November 13, 2019 6 / 28

Expanding list of choices

• We take cartesian product of the matrix of choices using:
cp :: [[a]] -> [[a]]
cp [] = [[]]
cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]

• cp [[1,2], [3,4]] = [[1,3], [1,4], [2,3], [2,4]]

• expand computes the list of all complete grids:

expand :: Matrix Choices -> [Grid]
expand = cp . map cp

Suresh PRGH 2019: Lecture 26 November 13, 2019 6 / 28

Valid grids
• In a valid complete grid:

• Each row has distinct entries
• Each column has distinct entries
• Each 3× 3 box has distinct entries

• Checking for distinct entries in a list:
nodups :: Eq a => [a] -> Bool
nodups [] = True
nodups (x:xs) = all (/= x) xs && nodups xs

• all is a built-in function:

all p [] = True
all p (x:xs) = p x && all p xs

Suresh PRGH 2019: Lecture 26 November 13, 2019 7 / 28

Valid grids
• In a valid complete grid:
• Each row has distinct entries

• Each column has distinct entries
• Each 3× 3 box has distinct entries

• Checking for distinct entries in a list:
nodups :: Eq a => [a] -> Bool
nodups [] = True
nodups (x:xs) = all (/= x) xs && nodups xs

• all is a built-in function:

all p [] = True
all p (x:xs) = p x && all p xs

Suresh PRGH 2019: Lecture 26 November 13, 2019 7 / 28

Valid grids
• In a valid complete grid:
• Each row has distinct entries
• Each column has distinct entries

• Each 3× 3 box has distinct entries
• Checking for distinct entries in a list:

nodups :: Eq a => [a] -> Bool
nodups [] = True
nodups (x:xs) = all (/= x) xs && nodups xs

• all is a built-in function:

all p [] = True
all p (x:xs) = p x && all p xs

Suresh PRGH 2019: Lecture 26 November 13, 2019 7 / 28

Valid grids
• In a valid complete grid:
• Each row has distinct entries
• Each column has distinct entries
• Each 3× 3 box has distinct entries

• Checking for distinct entries in a list:
nodups :: Eq a => [a] -> Bool
nodups [] = True
nodups (x:xs) = all (/= x) xs && nodups xs

• all is a built-in function:

all p [] = True
all p (x:xs) = p x && all p xs

Suresh PRGH 2019: Lecture 26 November 13, 2019 7 / 28

Valid grids
• In a valid complete grid:
• Each row has distinct entries
• Each column has distinct entries
• Each 3× 3 box has distinct entries

• Checking for distinct entries in a list:
nodups :: Eq a => [a] -> Bool
nodups [] = True
nodups (x:xs) = all (/= x) xs && nodups xs

• all is a built-in function:

all p [] = True
all p (x:xs) = p x && all p xs

Suresh PRGH 2019: Lecture 26 November 13, 2019 7 / 28

Valid grids
• In a valid complete grid:
• Each row has distinct entries
• Each column has distinct entries
• Each 3× 3 box has distinct entries

• Checking for distinct entries in a list:
nodups :: Eq a => [a] -> Bool
nodups [] = True
nodups (x:xs) = all (/= x) xs && nodups xs

• all is a built-in function:

all p [] = True
all p (x:xs) = p x && all p xs

Suresh PRGH 2019: Lecture 26 November 13, 2019 7 / 28

Valid grids

• A grid is a list of 9 rows

• Each row is a list of 9 digits
• Extracting all rows of a grid:

rows = id

• Extracting all columns:
cols [xs] = [[x] | x <- xs]
cols (xs:xss) = zipWith (:) xs (cols xss)

• cols [[1,2], [3,4], [5,6]] = [[1,3,5], [2,4,6]]

Suresh PRGH 2019: Lecture 26 November 13, 2019 8 / 28

Valid grids

• A grid is a list of 9 rows
• Each row is a list of 9 digits

• Extracting all rows of a grid:
rows = id

• Extracting all columns:
cols [xs] = [[x] | x <- xs]
cols (xs:xss) = zipWith (:) xs (cols xss)

• cols [[1,2], [3,4], [5,6]] = [[1,3,5], [2,4,6]]

Suresh PRGH 2019: Lecture 26 November 13, 2019 8 / 28

Valid grids

• A grid is a list of 9 rows
• Each row is a list of 9 digits

• Extracting all rows of a grid:
rows = id

• Extracting all columns:
cols [xs] = [[x] | x <- xs]
cols (xs:xss) = zipWith (:) xs (cols xss)

• cols [[1,2], [3,4], [5,6]] = [[1,3,5], [2,4,6]]

Suresh PRGH 2019: Lecture 26 November 13, 2019 8 / 28

Valid grids

• A grid is a list of 9 rows
• Each row is a list of 9 digits

• Extracting all rows of a grid:
rows = id

• Extracting all columns:
cols [xs] = [[x] | x <- xs]
cols (xs:xss) = zipWith (:) xs (cols xss)

• cols [[1,2], [3,4], [5,6]] = [[1,3,5], [2,4,6]]

Suresh PRGH 2019: Lecture 26 November 13, 2019 8 / 28

Valid grids

• A grid is a list of 9 rows
• Each row is a list of 9 digits

• Extracting all rows of a grid:
rows = id

• Extracting all columns:
cols [xs] = [[x] | x <- xs]
cols (xs:xss) = zipWith (:) xs (cols xss)

• cols [[1,2], [3,4], [5,6]] = [[1,3,5], [2,4,6]]

Suresh PRGH 2019: Lecture 26 November 13, 2019 8 / 28

Valid grids

• Extracting the 3× 3 boxes:

boxs :: Matrix a -> Matrix a
boxs = map ungroup . ungroup . map cols .

group . map group
group :: [a] -> [[a]]
group [] = []
group xs = take 3 xs:group (drop 3 xs)
ungroup :: [[a]] -> [a]
ungroup = concat

Suresh PRGH 2019: Lecture 26 November 13, 2019 9 / 28

Illustrating boxs on 4× 4

a b c d
e f g h
i j k l
m n o p

Suresh PRGH 2019: Lecture 26 November 13, 2019 10 / 28

Illustrating boxs on 4× 4

a b c d
e f g h
i j k l
m n o p

map group

Suresh PRGH 2019: Lecture 26 November 13, 2019 10 / 28

Illustrating boxs on 4× 4

ab cd
e f g h
i j k l

mn o p

Suresh PRGH 2019: Lecture 26 November 13, 2019 10 / 28

Illustrating boxs on 4× 4

ab cd
e f g h
i j k l

mn o p

group

Suresh PRGH 2019: Lecture 26 November 13, 2019 10 / 28

Illustrating boxs on 4× 4

ab cd
e f g h

i j k l
mn o p

Suresh PRGH 2019: Lecture 26 November 13, 2019 10 / 28

Illustrating boxs on 4× 4

ab cd
e f g h

i j k l
mn o p

map cols

Suresh PRGH 2019: Lecture 26 November 13, 2019 10 / 28

Illustrating boxs on 4× 4

ab e f
cd g h

i j mn
k l o p

Suresh PRGH 2019: Lecture 26 November 13, 2019 10 / 28

Illustrating boxs on 4× 4

ab e f
cd g h

i j mn
k l o p

ungroup

Suresh PRGH 2019: Lecture 26 November 13, 2019 10 / 28

Illustrating boxs on 4× 4

ab e f
cd g h
i j mn
k l o p

Suresh PRGH 2019: Lecture 26 November 13, 2019 10 / 28

Illustrating boxs on 4× 4

ab e f
cd g h
i j mn
k l o p

map ungroup

Suresh PRGH 2019: Lecture 26 November 13, 2019 10 / 28

Illustrating boxs on 4× 4

a b e f
c d g h
i j m n
k l o p

Suresh PRGH 2019: Lecture 26 November 13, 2019 10 / 28

Illustrating boxs on 4× 4

����������
a b c d
e f g h
i j k l
m n o p

���������� −→
����������

a b e f
c d g h
i j m n
k l o p

����������

Suresh PRGH 2019: Lecture 26 November 13, 2019 10 / 28

All valid solutions

boxs :: Matrix a -> Matrix a
boxs = map ungroup . ungroup . map cols . group . map group

valid :: Grid -> Bool
valid g = all nodups (rows g) &&

all nodups (cols g) &&
all nodups (boxs g)

solve = filter valid . expand . choices
solution = head . solve

Suresh PRGH 2019: Lecture 26 November 13, 2019 11 / 28

All valid solutions

puzzle :: Grid
puzzle = ["--4--57--"

, "-----94--"
, "36------8"
, "72--6----"
, "---4-2---"
, "----8--93"
, "4------56"
, "--53-----"
, "--61--9--"
]

Suresh PRGH 2019: Lecture 26 November 13, 2019 12 / 28

Sudoku example

4 5 7
9 4

3 6 8

7 2 6
4 2
8 9 3

4 5 6
5 3
6 1 9

puzzle

Suresh PRGH 2019: Lecture 26 November 13, 2019 13 / 28

Sudoku example

1 8 4 6 2 5 7 3 9
5 7 2 8 3 9 4 6 1
3 6 9 7 4 1 5 2 8

7 2 8 9 6 3 1 4 5
9 5 3 4 1 2 6 8 7
6 4 1 5 8 7 2 9 3

4 1 7 2 9 8 3 5 6
2 9 5 3 7 6 8 1 4
8 3 6 1 5 4 9 7 2

solution puzzle

Suresh PRGH 2019: Lecture 26 November 13, 2019 13 / 28

Remarks on the program

• Our program is useless

• Even with half the grid filled, we have to check 940 grids for validity

• 940 = 147808829414345923316083210206383297601

• Takes forever even for a grid with only 9 blank cells

solution ["-52439817", "8-9165432", "41-872596",
"548-97321", "9315-4768", "26738-945",
"795213-84", "1849562-3", "32674815-"]

["652439817","879165432","413872596"
,"548697321","931524768","267381945"
,"795213684","184956273","326748159"]
(946.02 secs, 703,822,023,848 bytes)

Suresh PRGH 2019: Lecture 26 November 13, 2019 14 / 28

Remarks on the program

• Our program is useless
• Even with half the grid filled, we have to check 940 grids for validity

• 940 = 147808829414345923316083210206383297601
• Takes forever even for a grid with only 9 blank cells

solution ["-52439817", "8-9165432", "41-872596",
"548-97321", "9315-4768", "26738-945",
"795213-84", "1849562-3", "32674815-"]

["652439817","879165432","413872596"
,"548697321","931524768","267381945"
,"795213684","184956273","326748159"]
(946.02 secs, 703,822,023,848 bytes)

Suresh PRGH 2019: Lecture 26 November 13, 2019 14 / 28

Remarks on the program

• Our program is useless
• Even with half the grid filled, we have to check 940 grids for validity
• 940 = 147808829414345923316083210206383297601

• Takes forever even for a grid with only 9 blank cells

solution ["-52439817", "8-9165432", "41-872596",
"548-97321", "9315-4768", "26738-945",
"795213-84", "1849562-3", "32674815-"]

["652439817","879165432","413872596"
,"548697321","931524768","267381945"
,"795213684","184956273","326748159"]
(946.02 secs, 703,822,023,848 bytes)

Suresh PRGH 2019: Lecture 26 November 13, 2019 14 / 28

Remarks on the program

• Our program is useless
• Even with half the grid filled, we have to check 940 grids for validity
• 940 = 147808829414345923316083210206383297601

• Takes forever even for a grid with only 9 blank cells

solution ["-52439817", "8-9165432", "41-872596",
"548-97321", "9315-4768", "26738-945",
"795213-84", "1849562-3", "32674815-"]

["652439817","879165432","413872596"
,"548697321","931524768","267381945"
,"795213684","184956273","326748159"]
(946.02 secs, 703,822,023,848 bytes)

Suresh PRGH 2019: Lecture 26 November 13, 2019 14 / 28

A better strategy?

• Obvious improvement: Try to prune the choices even before
expanding to a list of grids

solve = filter valid . expand . prune . choices
solution = head . solve

• Wewould like prune to satisfy:
filter valid . expand . prune = filter valid . expand

Suresh PRGH 2019: Lecture 26 November 13, 2019 15 / 28

A better strategy?

• Obvious improvement: Try to prune the choices even before
expanding to a list of grids

solve = filter valid . expand . prune . choices
solution = head . solve

• Wewould like prune to satisfy:
filter valid . expand . prune = filter valid . expand

Suresh PRGH 2019: Lecture 26 November 13, 2019 15 / 28

Pruning the choices

• How do we prune the choices?

• Consider a row with three entries and six blank cells
• Let the entries be 1, 5 and 9
• Then the list of choices for the blank cells is [234678]
• If some column has entries 1, 4 and 7, choices further pruned to [2368]
• Similar pruning based on entries in 3× 3 box
• Potentially huge savings!

Suresh PRGH 2019: Lecture 26 November 13, 2019 16 / 28

Pruning the choices

• How do we prune the choices?
• Consider a row with three entries and six blank cells

• Let the entries be 1, 5 and 9
• Then the list of choices for the blank cells is [234678]
• If some column has entries 1, 4 and 7, choices further pruned to [2368]
• Similar pruning based on entries in 3× 3 box
• Potentially huge savings!

Suresh PRGH 2019: Lecture 26 November 13, 2019 16 / 28

Pruning the choices

• How do we prune the choices?
• Consider a row with three entries and six blank cells
• Let the entries be 1, 5 and 9

• Then the list of choices for the blank cells is [234678]
• If some column has entries 1, 4 and 7, choices further pruned to [2368]
• Similar pruning based on entries in 3× 3 box
• Potentially huge savings!

Suresh PRGH 2019: Lecture 26 November 13, 2019 16 / 28

Pruning the choices

• How do we prune the choices?
• Consider a row with three entries and six blank cells
• Let the entries be 1, 5 and 9
• Then the list of choices for the blank cells is [234678]

• If some column has entries 1, 4 and 7, choices further pruned to [2368]
• Similar pruning based on entries in 3× 3 box
• Potentially huge savings!

Suresh PRGH 2019: Lecture 26 November 13, 2019 16 / 28

Pruning the choices

• How do we prune the choices?
• Consider a row with three entries and six blank cells
• Let the entries be 1, 5 and 9
• Then the list of choices for the blank cells is [234678]
• If some column has entries 1, 4 and 7, choices further pruned to [2368]

• Similar pruning based on entries in 3× 3 box
• Potentially huge savings!

Suresh PRGH 2019: Lecture 26 November 13, 2019 16 / 28

Pruning the choices

• How do we prune the choices?
• Consider a row with three entries and six blank cells
• Let the entries be 1, 5 and 9
• Then the list of choices for the blank cells is [234678]
• If some column has entries 1, 4 and 7, choices further pruned to [2368]
• Similar pruning based on entries in 3× 3 box

• Potentially huge savings!

Suresh PRGH 2019: Lecture 26 November 13, 2019 16 / 28

Pruning the choices

• How do we prune the choices?
• Consider a row with three entries and six blank cells
• Let the entries be 1, 5 and 9
• Then the list of choices for the blank cells is [234678]
• If some column has entries 1, 4 and 7, choices further pruned to [2368]
• Similar pruning based on entries in 3× 3 box
• Potentially huge savings!

Suresh PRGH 2019: Lecture 26 November 13, 2019 16 / 28

Pruning the choices

• Note that:
rows . rows = id
cols . cols = id
boxs . boxs = id

• To prune based on boxes, apply boxs
• Now each row is a box of the original grid
• Prune each row
• Apply boxs again to restore order of cells
• Similarly with cols

Suresh PRGH 2019: Lecture 26 November 13, 2019 17 / 28

Pruning the choices

• Note that:
rows . rows = id
cols . cols = id
boxs . boxs = id

• To prune based on boxes, apply boxs

• Now each row is a box of the original grid
• Prune each row
• Apply boxs again to restore order of cells
• Similarly with cols

Suresh PRGH 2019: Lecture 26 November 13, 2019 17 / 28

Pruning the choices

• Note that:
rows . rows = id
cols . cols = id
boxs . boxs = id

• To prune based on boxes, apply boxs
• Now each row is a box of the original grid

• Prune each row
• Apply boxs again to restore order of cells
• Similarly with cols

Suresh PRGH 2019: Lecture 26 November 13, 2019 17 / 28

Pruning the choices

• Note that:
rows . rows = id
cols . cols = id
boxs . boxs = id

• To prune based on boxes, apply boxs
• Now each row is a box of the original grid
• Prune each row

• Apply boxs again to restore order of cells
• Similarly with cols

Suresh PRGH 2019: Lecture 26 November 13, 2019 17 / 28

Pruning the choices

• Note that:
rows . rows = id
cols . cols = id
boxs . boxs = id

• To prune based on boxes, apply boxs
• Now each row is a box of the original grid
• Prune each row
• Apply boxs again to restore order of cells

• Similarly with cols

Suresh PRGH 2019: Lecture 26 November 13, 2019 17 / 28

Pruning the choices

• Note that:
rows . rows = id
cols . cols = id
boxs . boxs = id

• To prune based on boxes, apply boxs
• Now each row is a box of the original grid
• Prune each row
• Apply boxs again to restore order of cells
• Similarly with cols

Suresh PRGH 2019: Lecture 26 November 13, 2019 17 / 28

Pruning the choices

prune = pruneBy boxs .
pruneBy cols . pruneBy rows

pruneBy f = f . map pruneRow . f

pruneRow row = map (remove fixed) row
where fixed = [d | [d] <- row]

remove xs ds = if (length ds == 1) then ds
else ds \\ xs

Suresh PRGH 2019: Lecture 26 November 13, 2019 18 / 28

Performance

• This program performs much better on very easy puzzles
solution ["-52439817", "8-9165432", "41-872596",

"548-97321", "9315-4768", "26738-945",
"795213-84", "1849562-3", "32674815-"]

["652439817","879165432","413872596"
,"548697321","931524768","267381945"
,"795213684","184956273","326748159"]
(0.01 secs, 513,832 bytes)

• But this struggles on even puzzles with 39 entries

• Aborted after running it for 6 hours on my laptop

Suresh PRGH 2019: Lecture 26 November 13, 2019 19 / 28

Performance

• This program performs much better on very easy puzzles
solution ["-52439817", "8-9165432", "41-872596",

"548-97321", "9315-4768", "26738-945",
"795213-84", "1849562-3", "32674815-"]

["652439817","879165432","413872596"
,"548697321","931524768","267381945"
,"795213684","184956273","326748159"]
(0.01 secs, 513,832 bytes)

• But this struggles on even puzzles with 39 entries

• Aborted after running it for 6 hours on my laptop

Suresh PRGH 2019: Lecture 26 November 13, 2019 19 / 28

Performance

• This program performs much better on very easy puzzles
solution ["-52439817", "8-9165432", "41-872596",

"548-97321", "9315-4768", "26738-945",
"795213-84", "1849562-3", "32674815-"]

["652439817","879165432","413872596"
,"548697321","931524768","267381945"
,"795213684","184956273","326748159"]
(0.01 secs, 513,832 bytes)

• But this struggles on even puzzles with 39 entries
• Aborted after running it for 6 hours on my laptop
Suresh PRGH 2019: Lecture 26 November 13, 2019 19 / 28

Further improvements?

• Improved strategy

• Expand one cell at a time
• Interleave expansion and pruning

• Instead of expanding all cells in the matrix of choices …
• expand only one cell at a time.
• A good choice is the smallest non-singleton cell
• We now get a list of matrices

• Each of these matrices contain singleton as well as non-singleton cells

• Prune each of these matrices
• And expand one cell in each incomplete matrix that results

Suresh PRGH 2019: Lecture 26 November 13, 2019 20 / 28

Further improvements?

• Improved strategy
• Expand one cell at a time

• Interleave expansion and pruning
• Instead of expanding all cells in the matrix of choices …
• expand only one cell at a time.
• A good choice is the smallest non-singleton cell
• We now get a list of matrices

• Each of these matrices contain singleton as well as non-singleton cells

• Prune each of these matrices
• And expand one cell in each incomplete matrix that results

Suresh PRGH 2019: Lecture 26 November 13, 2019 20 / 28

Further improvements?

• Improved strategy
• Expand one cell at a time
• Interleave expansion and pruning

• Instead of expanding all cells in the matrix of choices …
• expand only one cell at a time.
• A good choice is the smallest non-singleton cell
• We now get a list of matrices

• Each of these matrices contain singleton as well as non-singleton cells

• Prune each of these matrices
• And expand one cell in each incomplete matrix that results

Suresh PRGH 2019: Lecture 26 November 13, 2019 20 / 28

Further improvements?

• Improved strategy
• Expand one cell at a time
• Interleave expansion and pruning

• Instead of expanding all cells in the matrix of choices …

• expand only one cell at a time.
• A good choice is the smallest non-singleton cell
• We now get a list of matrices

• Each of these matrices contain singleton as well as non-singleton cells

• Prune each of these matrices
• And expand one cell in each incomplete matrix that results

Suresh PRGH 2019: Lecture 26 November 13, 2019 20 / 28

Further improvements?

• Improved strategy
• Expand one cell at a time
• Interleave expansion and pruning

• Instead of expanding all cells in the matrix of choices …
• expand only one cell at a time.

• A good choice is the smallest non-singleton cell
• We now get a list of matrices

• Each of these matrices contain singleton as well as non-singleton cells

• Prune each of these matrices
• And expand one cell in each incomplete matrix that results

Suresh PRGH 2019: Lecture 26 November 13, 2019 20 / 28

Further improvements?

• Improved strategy
• Expand one cell at a time
• Interleave expansion and pruning

• Instead of expanding all cells in the matrix of choices …
• expand only one cell at a time.
• A good choice is the smallest non-singleton cell

• We now get a list of matrices

• Each of these matrices contain singleton as well as non-singleton cells

• Prune each of these matrices
• And expand one cell in each incomplete matrix that results

Suresh PRGH 2019: Lecture 26 November 13, 2019 20 / 28

Further improvements?

• Improved strategy
• Expand one cell at a time
• Interleave expansion and pruning

• Instead of expanding all cells in the matrix of choices …
• expand only one cell at a time.
• A good choice is the smallest non-singleton cell
• We now get a list of matrices

• Each of these matrices contain singleton as well as non-singleton cells
• Prune each of these matrices
• And expand one cell in each incomplete matrix that results

Suresh PRGH 2019: Lecture 26 November 13, 2019 20 / 28

Further improvements?

• Improved strategy
• Expand one cell at a time
• Interleave expansion and pruning

• Instead of expanding all cells in the matrix of choices …
• expand only one cell at a time.
• A good choice is the smallest non-singleton cell
• We now get a list of matrices
• Each of these matrices contain singleton as well as non-singleton cells

• Prune each of these matrices
• And expand one cell in each incomplete matrix that results

Suresh PRGH 2019: Lecture 26 November 13, 2019 20 / 28

Further improvements?

• Improved strategy
• Expand one cell at a time
• Interleave expansion and pruning

• Instead of expanding all cells in the matrix of choices …
• expand only one cell at a time.
• A good choice is the smallest non-singleton cell
• We now get a list of matrices
• Each of these matrices contain singleton as well as non-singleton cells

• Prune each of these matrices

• And expand one cell in each incomplete matrix that results

Suresh PRGH 2019: Lecture 26 November 13, 2019 20 / 28

Further improvements?

• Improved strategy
• Expand one cell at a time
• Interleave expansion and pruning

• Instead of expanding all cells in the matrix of choices …
• expand only one cell at a time.
• A good choice is the smallest non-singleton cell
• We now get a list of matrices
• Each of these matrices contain singleton as well as non-singleton cells

• Prune each of these matrices
• And expand one cell in each incomplete matrix that results

Suresh PRGH 2019: Lecture 26 November 13, 2019 20 / 28

Expanding one cell

• Expanding the smallest non-singleton cell:
expand1 :: Matrix Choices -> [Matrix Choices]
expand1 rows =

[rows1 ++ [row1 ++ [c]:row2] ++ rows2 | c <- cs]
where

(rows1, row:rows2) = break (any smallest) rows
(row1, cs:row2) = break smallest row
smallest cs = length cs == n
n = minimum (counts rows)
counts = filter (/=1) .

map length . concat

Suresh PRGH 2019: Lecture 26 November 13, 2019 21 / 28

Safe grids, complete grids

• Amatrix of choices is safe if none of the singleton cells clash
safe :: Matrix Choices -> Bool
safe m = all ok (rows m) &&

all ok (cols m) && all ok (boxs m)
where

ok row = nodups [d | [d] <- row]

• We can stop expanding if the matrix consists only of singleton entries
complete :: Matrix Choices -> Bool
complete = all (all singleton)

where singleton l = length l == 1

Suresh PRGH 2019: Lecture 26 November 13, 2019 22 / 28

Safe grids, complete grids

• Amatrix of choices is safe if none of the singleton cells clash
safe :: Matrix Choices -> Bool
safe m = all ok (rows m) &&

all ok (cols m) && all ok (boxs m)
where

ok row = nodups [d | [d] <- row]

• We can stop expanding if the matrix consists only of singleton entries
complete :: Matrix Choices -> Bool
complete = all (all singleton)

where singleton l = length l == 1

Suresh PRGH 2019: Lecture 26 November 13, 2019 22 / 28

Searching for safe, complete grids

• Recall:
choices = map (map choice)
choice d = if blank d then digits else [d]

• To find all solutions, we search after creating a matrix of choices
solve :: Grid -> [Grid]
solve = search . choices

Suresh PRGH 2019: Lecture 26 November 13, 2019 23 / 28

Searching for safe, complete grids

• Recall:
choices = map (map choice)
choice d = if blank d then digits else [d]

• To find all solutions, we search after creating a matrix of choices
solve :: Grid -> [Grid]
solve = search . choices

Suresh PRGH 2019: Lecture 26 November 13, 2019 23 / 28

Searching for safe, complete grids

• We alternate pruning and expanding a cell for incomplete grids
search :: Matrix Choices -> [Grid]
search m

| not (safe m') = []
| complete m' = [map (map head) m']
| otherwise = concat (map search (expand1 m'))

where m' = prune m

Suresh PRGH 2019: Lecture 26 November 13, 2019 24 / 28

Performance

• Works very well on easy inputs (39 cells filled in):
solution ["-5-43-81-", "-------3-", "-13--2---",

"--8-9---1", "9-15-4-68", "-67---945",
"795----84", "-8-956---", "32-748-59"]

["652439817","879165432","413872596"
,"548697321","931524768","267381945"
,"795213684","184956273","326748159"]
(0.02 secs, 3,129,904 bytes)

Suresh PRGH 2019: Lecture 26 November 13, 2019 25 / 28

Performance

• Quite well on puzzles of higher difficulty (only 25 cells filled in):
solution ["--1----7-", "--7-18---", "------59-",

"-2-------", "---35-1--", "------963",
"-3--9---5", "4---63---", "59---7-48"]

["261935874","957418236","843276591"
,"329681457","674359182","185742963"
,"732894615","418563729","596127348"]
(0.02 secs, 9,082,360 bytes)

Suresh PRGH 2019: Lecture 26 November 13, 2019 26 / 28

Performance

• Holds its own on against puzzles of very high difficulty (only 17
entries):

solution ["-12--5---", "---3---7-", "---------",
"7--84----", "3-----9--", "------1--",
"-9--12---", "6--5---8-", "---------"]

["812975364","946381572","537264819"
,"751849623","384126957","269753148"
,"498612735","623597481","175438296"]
(14.42 secs, 9,823,352,008 bytes)

Suresh PRGH 2019: Lecture 26 November 13, 2019 27 / 28

Summary

• Incremental design of a non-trivial program

• Reasonably simple logic, close to how a human would solve
• Power of laziness – backtracking is easily programmed

Suresh PRGH 2019: Lecture 26 November 13, 2019 28 / 28

Summary

• Incremental design of a non-trivial program
• Reasonably simple logic, close to how a human would solve

• Power of laziness – backtracking is easily programmed

Suresh PRGH 2019: Lecture 26 November 13, 2019 28 / 28

Summary

• Incremental design of a non-trivial program
• Reasonably simple logic, close to how a human would solve
• Power of laziness – backtracking is easily programmed

Suresh PRGH 2019: Lecture 26 November 13, 2019 28 / 28

