Programming in Haskell: Lecture 26

S P Suresh

November 13, 2019

Sudoku

		4			5	7		
					9	4		
3	6							8
7	2			6				
			4		2			
				8			9	3
4							5	6
		5	3					
		6	1			9		

Basic structures

- Basic data structures:

$$
\begin{aligned}
& \text { type Digit = Char } \\
& \text { type Row } a=[a] \\
& \text { type Matrix } a=[\text { Row } a] \\
& \text { type Grid = Matrix Digit }
\end{aligned}
$$

Basic structures

- Basic data structures:

$$
\begin{aligned}
& \text { type Digit = Char } \\
& \text { type Row } a=[a] \\
& \text { type Matrix } a=[\text { Row } a] \\
& \text { type Grid = Matrix Digit }
\end{aligned}
$$

- Choices for each cell:

```
type Choices = [Digit]
```


Basic structures

- Basic data structures:

$$
\begin{aligned}
& \text { type Digit }=\text { Char } \\
& \text { type Row } a=[a] \\
& \text { type Matrix } a=[\text { Row } a] \\
& \text { type Grid }=\text { Matrix Digit }
\end{aligned}
$$

- Choices for each cell:

```
type Choices = [Digit]
```

- Grid entries:

```
digits = "123456789"
blank :: Digit -> Bool
blank = (== '-')
```


High-level strategy

- Generate the list of all solutions and pick the first one

High-level strategy

- Generate the list of all solutions and pick the first one
- Hopefully there is only one solution

High-level strategy

- Generate the list of all solutions and pick the first one
- Hopefully there is only one solution
- Expand the given grid to all possible valid complete grids

High-level strategy

- Generate the list of all solutions and pick the first one
- Hopefully there is only one solution
- Expand the given grid to all possible valid complete grids
- Fill in each empty cell with all choices

High-level strategy

- Generate the list of all solutions and pick the first one
- Hopefully there is only one solution
- Expand the given grid to all possible valid complete grids
- Fill in each empty cell with all choices
- Expand a matrix of choices to a list of complete grids

High-level strategy

- Generate the list of all solutions and pick the first one
- Hopefully there is only one solution
- Expand the given grid to all possible valid complete grids
- Fill in each empty cell with all choices
- Expand a matrix of choices to a list of complete grids
- Choose all valid grids from this list

High-level strategy

- Generate the list of all solutions and pick the first one
- Hopefully there is only one solution
- Expand the given grid to all possible valid complete grids
- Fill in each empty cell with all choices
- Expand a matrix of choices to a list of complete grids
- Choose all valid grids from this list
- solve implements this strategy:

```
solve :: Grid -> [Grid]
solve = filter valid . expand . choices
```


Filling in all choices

- Filling a cell with choices:

```
choice :: Digit -> [Digit]
choice d = if blank d then digits else [d]
```


Filling in all choices

- Filling a cell with choices:

```
choice :: Digit -> [Digit]
choice d = if blank d then digits else [d]
```

- map choice fills all cells in a row with choices

Filling in all choices

- Filling a cell with choices:

```
choice :: Digit -> [Digit]
choice d = if blank d then digits else [d]
```

- map choice fills all cells in a row with choices
- To fill all cells in a grid with choices:

```
choices :: Grid -> Matrix Choices
choices = map (map choice)
```


Expanding list of choices

- We take cartesian product of the matrix of choices using:

```
cp :: [[a]] -> [[a]]
cp [] = [[]]
cp (xs:xss) \(=\) [x:ys | x <- xs, ys <- cp xss]
```


Expanding list of choices

- We take cartesian product of the matrix of choices using:

```
cp :: [[a]] -> [[a]]
cp [] = [[]]
cp (xs:xss) \(=\) [x:ys | \(\mathrm{x}<-\mathrm{xs}, \mathrm{ys}<-\mathrm{cp} \mathrm{xss}]\)
```

- cp $[[1,2],[3,4]]=[[1,3],[1,4],[2,3],[2,4]]$

Expanding list of choices

- We take cartesian product of the matrix of choices using:

```
cp :: [[a]] -> [[a]]
cp[]\(\quad=[[]]\)
cp (xs:xss) \(=\) [x:ys | \(\mathrm{x}<-\mathrm{xs}, \mathrm{ys}<-\mathrm{cp} \mathrm{xss}]\)
```

- cp $[[1,2],[3,4]]=[[1,3],[1,4],[2,3],[2,4]]$
- expand computes the list of all complete grids:
expand :: Matrix Choices -> [Grid]
expand = cp . map cp

Valid grids

- In a valid complete grid:

Valid grids

- In a valid complete grid:
- Each row has distinct entries

Valid grids

- In a valid complete grid:
- Each row has distinct entries
- Each column has distinct entries

Valid grids

- In a valid complete grid:
- Each row has distinct entries
- Each column has distinct entries
- Each 3×3 box has distinct entries

Valid grids

- In a valid complete grid:
- Each row has distinct entries
- Each column has distinct entries
- Each 3×3 box has distinct entries
- Checking for distinct entries in a list:

$$
\begin{aligned}
& \text { nodups :: Eq } a=>[a] \text {-> Bool } \\
& \text { nodups }[] \quad=\text { True } \\
& \text { nodups }(x: x s)=\text { all }(/=x) \text { xs \&\& nodups xs }
\end{aligned}
$$

Valid grids

- In a valid complete grid:
- Each row has distinct entries
- Each column has distinct entries
- Each 3×3 box has distinct entries
- Checking for distinct entries in a list:

```
nodups :: Eq a => [a] -> Bool
nodups [] = True
nodups (x:xs) = all (/= x) xs && nodups xs
```

- all is a built-in function:

```
all p [] = True
all p (x:xs) = p x && all p xs
```


Valid grids

- A grid is a list of 9 rows

Valid grids

- A grid is a list of 9 rows
- Each row is a list of 9 digits

Valid grids

- A grid is a list of 9 rows
- Each row is a list of 9 digits
- Extracting all rows of a grid:

$$
\text { rows }=\mathrm{id}
$$

Valid grids

- A grid is a list of 9 rows
- Each row is a list of 9 digits
- Extracting all rows of a grid:
rows = id
- Extracting all columns:

$$
\begin{array}{ll}
\operatorname{cols}[x s] & =[[x] \mid x<-x s] \\
\operatorname{cols}(x s: x s s) & =\text { zipWith }(:) x s(\operatorname{cols} x s s)
\end{array}
$$

Valid grids

- A grid is a list of 9 rows
- Each row is a list of 9 digits
- Extracting all rows of a grid:

$$
\text { rows }=\mathrm{id}
$$

- Extracting all columns:

$$
\begin{array}{ll}
\operatorname{cols}[x s] & =[[x] \mid x<-x s] \\
\operatorname{cols}(x s: x s s) & =\text { zipWith (:) xs (cols xss) }
\end{array}
$$

- cols $[[1,2],[3,4],[5,6]]=[[1,3,5],[2,4,6]]$

Valid grids

- Extracting the 3×3 boxes:

```
boxs :: Matrix a -> Matrix a
boxs = map ungroup . ungroup . map cols .
                        group . map group
group :: [a] -> [[a]]
group [] = []
group xs = take 3 xs:group (drop 3 xs)
ungroup :: [[a]] -> [a]
ungroup = concat
```


Illustrating boxs on 4×4

$$
\begin{array}{llll}
a & b & c & d \\
e & f & g & b \\
i & j & k & l \\
m & n & o & p
\end{array}
$$

Illustrating boxs on 4×4

$$
\begin{array}{cccc}
a & b & c & d \\
e & f & g & b \\
i & j & k & l \\
m & n & o & p \\
\text { map } & \text { group } &
\end{array}
$$

Illustrating boxs on 4×4

$$
\begin{array}{cc}
a b & c d \\
\text { ef } & \mathrm{gh} \\
\text { ij } & \mathrm{kl} \\
m n & o p
\end{array}
$$

Illustrating boxs on 4×4

```
ab cd
ef gh
ij kl
mnop
group
```


Illustrating boxs on 4×4

$$
\begin{array}{cc}
a b & c d \\
\text { ef } & g h \\
i j & k l \\
m n & o p
\end{array}
$$

Illustrating boxs on 4×4

$$
\begin{gathered}
a b \quad c d \\
e f \quad g h \\
i j \quad k l \\
m n \quad o p \\
\text { map cols }
\end{gathered}
$$

Illustrating boxs on 4×4

$$
\begin{array}{cc}
a b & e f \\
c d & g h \\
& \\
i j & m n \\
k l & o p
\end{array}
$$

Illustrating boxs on 4×4

$$
\begin{array}{cc}
a b & e f \\
c d & g h \\
& \\
i j & m n \\
k l & o p
\end{array}
$$

ungroup

Illustrating boxs on 4×4

$$
\begin{array}{cc}
a b & e f \\
c d & g h \\
i j & m n \\
k l & o p
\end{array}
$$

Illustrating boxs on 4×4

$$
\begin{array}{cc}
a b & e f \\
c d & g h \\
i j & m n \\
k l & o p \\
\text { map ungroup }
\end{array}
$$

Illustrating boxs on 4×4

Illustrating boxs on 4×4

$$
\left|\begin{array}{llll}
a & b & c & d \\
e & f & g & b \\
i & j & k & l \\
m & n & o & p
\end{array}\right| \longrightarrow\left|\begin{array}{cccc}
a & b & e & f \\
c & d & g & b \\
i & j & m & n \\
k & l & o & p
\end{array}\right|
$$

All valid solutions

```
boxs :: Matrix a -> Matrix a
boxs = map ungroup . ungroup . map cols . group . map group
valid :: Grid -> Bool
valid g = all nodups (rows g) &&
        all nodups (cols g) &&
        all nodups (boxs g)
solve = filter valid . expand . choices
solution = head . solve
```


All valid solutions

```
puzzle :: Grid
puzzle = [ "--4--57--"
    "-----94--"
    "36------8"
    "72--6----"
    "---4-2---"
    "----8--93"
    "4------56"
    "--53-----"
    "--61--9--"
]
```


Sudoku example

		4			5	7		
					9	4		
3	6							8
7	2			6				
			4		2			
				8			9	3
4							5	6
		5	3					
		6	I			9		

Sudoku example

Remarks on the program

- Our program is useless

Remarks on the program

- Our program is useless
- Even with half the grid filled, we have to check 9^{40} grids for validity

Remarks on the program

- Our program is useless
- Even with half the grid filled, we have to check 9^{40} grids for validity
- $9^{40}=147808829414345923316083210206383297601$

Remarks on the program

- Our program is useless
- Even with half the grid filled, we have to check 9^{40} grids for validity
- $9^{40}=147808829414345923316083210206383297601$
- Takes forever even for a grid with only 9 blank cells

$$
\begin{aligned}
& \text { solution ["-52439817", "8-9165432", "41-872596", } \\
& \text { "548-97321", "9315-4768", "26738-945", } \\
& \text { "795213-84", "1849562-3", "32674815-"] } \\
& \text { ["652439817", "879165432", "413872596" } \\
& \text {,"548697321", "931524768", "267381945" } \\
& \text {,"795213684", "184956273", "326748159"] } \\
& \text { (946.02 secs, 703,822,023,848 bytes) }
\end{aligned}
$$

A better strategy?

- Obvious improvement: Try to prune the choices even before expanding to a list of grids

```
solve = filter valid . expand . prune . choices
solution = head . solve
```


A better strategy?

- Obvious improvement: Try to prune the choices even before expanding to a list of grids

```
solve = filter valid . expand . prune . choices
solution = head . solve
```

- We would like prune to satisfy:
filter valid . expand . prune = filter valid . expand

Pruning the choices

- How do we prune the choices?

Pruning the choices

- How do we prune the choices?
- Consider a row with three entries and six blank cells

Pruning the choices

- How do we prune the choices?
- Consider a row with three entries and six blank cells
- Let the entries be 1, 5 and 9

Pruning the choices

- How do we prune the choices?
- Consider a row with three entries and six blank cells
- Let the entries be 1, 5 and 9
- Then the list of choices for the blank cells is [234678]

Pruning the choices

- How do we prune the choices?
- Consider a row with three entries and six blank cells
- Let the entries be 1, 5 and 9
- Then the list of choices for the blank cells is [234678]
- If some column has entries 1, 4 and 7, choices further pruned to [2368]

Pruning the choices

- How do we prune the choices?
- Consider a row with three entries and six blank cells
- Let the entries be 1, 5 and 9
- Then the list of choices for the blank cells is [234678]
- If some column has entries 1, 4 and 7, choices further pruned to [2368]
- Similar pruning based on entries in 3×3 box

Pruning the choices

- How do we prune the choices?
- Consider a row with three entries and six blank cells
- Let the entries be 1, 5 and 9
- Then the list of choices for the blank cells is [234678]
- If some column has entries 1, 4 and 7, choices further pruned to [2368]
- Similar pruning based on entries in 3×3 box
- Potentially huge savings!

Pruning the choices

- Note that:

$$
\begin{aligned}
& \text { rows } \cdot \text { rows }=\mathrm{id} \\
& \text { cols } \cdot \operatorname{cols}=\mathrm{id} \\
& \text { boxs } \cdot \text { boxs }=\mathrm{id}
\end{aligned}
$$

Pruning the choices

- Note that:

$$
\begin{aligned}
& \text { rows } \cdot \text { rows }=\text { id } \\
& \text { cols } \cdot \text { cols }=\text { id } \\
& \text { boxs } \cdot \text { boxs }=i d
\end{aligned}
$$

- To prune based on boxes, apply boxs

Pruning the choices

- Note that:

$$
\begin{aligned}
& \text { rows } \cdot \text { rows }=\text { id } \\
& \text { cols } \cdot \operatorname{cols}=\text { id } \\
& \text { boxs } \cdot \text { boxs }=i d
\end{aligned}
$$

- To prune based on boxes, apply boxs
- Now each row is a box of the original grid

Pruning the choices

- Note that:

$$
\begin{aligned}
& \text { rows } \cdot \text { rows }=\text { id } \\
& \text { cols } \cdot \operatorname{cols}=\text { id } \\
& \text { boxs } \cdot \text { boxs }=\text { id }
\end{aligned}
$$

- To prune based on boxes, apply boxs
- Now each row is a box of the original grid
- Prune each row

Pruning the choices

- Note that:

$$
\begin{aligned}
& \text { rows } \cdot \text { rows }=\text { id } \\
& \text { cols } \cdot \operatorname{cols}=\text { id } \\
& \text { boxs } \cdot \text { boxs }=\text { id }
\end{aligned}
$$

- To prune based on boxes, apply boxs
- Now each row is a box of the original grid
- Prune each row
- Apply boxs again to restore order of cells

Pruning the choices

- Note that:

$$
\begin{aligned}
& \text { rows } \cdot \text { rows }=\text { id } \\
& \text { cols } \cdot \operatorname{cols}=\text { id } \\
& \text { boxs } \cdot \text { boxs }=i d
\end{aligned}
$$

- To prune based on boxes, apply boxs
- Now each row is a box of the original grid
- Prune each row
- Apply boxs again to restore order of cells
- Similarly with cols

Pruning the choices

$$
\begin{array}{rl}
\text { prune } & =\text { pruneBy boxs } \cdot \\
& \text { pruneBy cols } \cdot \text { pruneBy rows } \\
\text { pruneBy } \mathrm{f} & \mathrm{f} \cdot \text { map pruneRow } \cdot \mathrm{f} \\
\text { pruneRow row }= & \text { map (remove fixed) row } \\
\text { where fixed }= & {[d \mid[d]<- \text { row }]} \\
\text { remove xs ds }= & \text { if (length ds }==1) \text { then ds } \\
& \text { else ds } \backslash \backslash \mathrm{xs}
\end{array}
$$

Performance

- This program performs much better on very easy puzzles

```
solution ["-52439817", "8-9165432", "41-872596",
    "548-97321", "9315-4768", "26738-945",
    "795213-84", "1849562-3", "32674815-"]
["652439817","879165432","413872596"
,"548697321","931524768","267381945"
,"795213684","184956273","326748159"]
(0.01 secs, 513,832 bytes)
```


Performance

- This program performs much better on very easy puzzles

```
solution ["-52439817", "8-9165432", "41-872596",
    "548-97321", "9315-4768", "26738-945",
    "795213-84", "1849562-3", "32674815-"]
["652439817","879165432","413872596"
,"548697321","931524768","267381945"
,"795213684","184956273","326748159"]
(0.01 secs, 513,832 bytes)
```

- But this struggles on even puzzles with 39 entries

Performance

- This program performs much better on very easy puzzles

```
solution ["-52439817", "8-9165432", "41-872596",
    "548-97321", "9315-4768", "26738-945",
    "795213-84", "1849562-3", "32674815-"]
["652439817","879165432","413872596"
,"548697321","931524768","267381945"
,"795213684","184956273","326748159"]
(0.01 secs, 513,832 bytes)
```

- But this struggles on even puzzles with 39 entries
- Aborted after running it for 6 hours on my laptop

Further improvements?

- Improved strategy

Further improvements?

- Improved strategy
- Expand one cell at a time

Further improvements?

- Improved strategy
- Expand one cell at a time
- Interleave expansion and pruning

Further improvements?

- Improved strategy
- Expand one cell at a time
- Interleave expansion and pruning
- Instead of expanding all cells in the matrix of choices ...

Further improvements?

- Improved strategy
- Expand one cell at a time
- Interleave expansion and pruning
- Instead of expanding all cells in the matrix of choices ...
- expand only one cell at a time.

Further improvements?

- Improved strategy
- Expand one cell at a time
- Interleave expansion and pruning
- Instead of expanding all cells in the matrix of choices ...
- expand only one cell at a time.
- A good choice is the smallest non-singleton cell

Further improvements?

- Improved strategy
- Expand one cell at a time
- Interleave expansion and pruning
- Instead of expanding all cells in the matrix of choices ...
- expand only one cell at a time.
- A good choice is the smallest non-singleton cell
- We now get a list of matrices

Further improvements?

- Improved strategy
- Expand one cell at a time
- Interleave expansion and pruning
- Instead of expanding all cells in the matrix of choices ...
- expand only one cell at a time.
- A good choice is the smallest non-singleton cell
- We now get a list of matrices
- Each of these matrices contain singleton as well as non-singleton cells

Further improvements?

- Improved strategy
- Expand one cell at a time
- Interleave expansion and pruning
- Instead of expanding all cells in the matrix of choices ...
- expand only one cell at a time.
- A good choice is the smallest non-singleton cell
- We now get a list of matrices
- Each of these matrices contain singleton as well as non-singleton cells
- Prune each of these matrices

Further improvements?

- Improved strategy
- Expand one cell at a time
- Interleave expansion and pruning
- Instead of expanding all cells in the matrix of choices ...
- expand only one cell at a time.
- A good choice is the smallest non-singleton cell
- We now get a list of matrices
- Each of these matrices contain singleton as well as non-singleton cells
- Prune each of these matrices
- And expand one cell in each incomplete matrix that results

Expanding one cell

- Expanding the smallest non-singleton cell:

expand1 :: Matrix Choices ->	[Matrix Choices]
expand1 rows	$=$

[rows1 ++ [row1 ++ [c]:row2] ++ rows2 | c <- cs] where

$($ rows1, row:rows2)	$=$ break (any smallest) rows
(row1, cs:row2)	$=$ break smallest row
smallest cs	$=$ length $\mathrm{cs}=\mathrm{n}$
n	$=$ minimum (counts rows)
counts	$=$ filter $(/=1)$.

Safe grids, complete grids

- A matrix of choices is safe if none of the singleton cells clash

```
safe :: Matrix Choices -> Bool
safe m = all ok (rows m) &&
    all ok (cols m) && all ok (boxs m)
    where
\[
\text { ok row }=\text { nodups }[d \mid \quad[d]<- \text { row] }
\]
```


Safe grids, complete grids

- A matrix of choices is safe if none of the singleton cells clash

```
safe :: Matrix Choices -> Bool
safe m = all ok (rows m) &&
    all ok (cols m) && all ok (boxs m)
```

where
ok row = nodups [d | [d] <- row]

- We can stop expanding if the matrix consists only of singleton entries

```
complete : : Matrix Choices -> Bool
complete \(=\) all (all singleton)
    where singleton \(\mathrm{l}=\) length \(\mathrm{l}==1\)
```


Searching for safe, complete grids

- Recall:

```
choices = map (map choice)
choice d = if blank d then digits else [d]
```


Searching for safe, complete grids

- Recall:

```
choices = map (map choice)
choice d = if blank d then digits else [d]
```

- To find all solutions, we search after creating a matrix of choices

$$
\begin{aligned}
& \text { solve : : Grid -> [Grid] } \\
& \text { solve }=\text { search . choices }
\end{aligned}
$$

Searching for safe, complete grids

- We alternate pruning and expanding a cell for incomplete grids

```
search :: Matrix Choices -> [Grid]
search m
    | not (safe m') = []
    | complete m' = [map (map head) m']
    | otherwise = concat (map search (expand1 m'))
        where m' = prune m
```


Performance

- Works very well on easy inputs (39 cells filled in):

```
solution ["-5-43-81-", "-------3-", "-13--2---",
"--8-9---1", "9-15-4-68", "-67---945",
"795----84", "-8-956---", "32-748-59"]
["652439817", "879165432", "413872596"
,"548697321","931524768","267381945"
,"795213684","184956273","326748159"]
(0.02 secs, 3,129,904 bytes)
```


Performance

- Quite well on puzzles of higher difficulty (only 25 cells filled in):

$$
\begin{aligned}
& \text { solution ["--1----7-", "--7-18---", "------59-", } \\
& \text { "-2-------", "---35-1--", "-----963", } \\
& \text { "-3--9---5", "4---63---", "59---7-48"] } \\
& \text { ["261935874", "957418236", "843276591" } \\
& \text {,"329681457", "674359182", "185742963" } \\
& \text {,"732894615", "418563729", "596127348"] } \\
& \text { (0.02 secs, 9,082,360 bytes) }
\end{aligned}
$$

Performance

- Holds its own on against puzzles of very high difficulty (only 17 entries):

$$
\begin{aligned}
& \text { solution ["-12--5---", "---3---7-", "---------", } \\
& \text { "7--84----", "3-----9--", "------1--", } \\
& \text { "-9--12---", "6--5---8-", "---------"] } \\
& \text { ["812975364", "946381572", "537264819" } \\
& \text {,"751849623", "384126957", "269753148" } \\
& \text {,"498612735", "623597481", "175438296"] } \\
& \text { (14.42 secs, 9,823,352,008 bytes) }
\end{aligned}
$$

Summary

- Incremental design of a non-trivial program

Summary

- Incremental design of a non-trivial program
- Reasonably simple logic, close to how a human would solve

Summary

- Incremental design of a non-trivial program
- Reasonably simple logic, close to how a human would solve
- Power of laziness - backtracking is easily programmed

