
Programming in Haskell: Lecture 25

S P Suresh

November 11, 2019

Suresh PRGH 2019: Lecture 25 November 11, 2019 1 / 22

Priority queues

• Priority queue: a queue, with each element having a priority

• Elements exit the queue by priority, not in the order they entered
• Each element in a priority queue is a pair (p,v), where p is the priority
and v is the value
• The priorities are values of some type a belonging to the class Ord
• We only show how to maintain priorities, not the values
• We assume priorities are distinct

• Tie breaker: the time at which element entered the queue

• Priority queue operations

• insert – insert an element into the queue
• deleteMax – delete the maximum element from the queue

Suresh PRGH 2019: Lecture 25 November 11, 2019 2 / 22

Priority queues

• Priority queue: a queue, with each element having a priority
• Elements exit the queue by priority, not in the order they entered

• Each element in a priority queue is a pair (p,v), where p is the priority
and v is the value
• The priorities are values of some type a belonging to the class Ord
• We only show how to maintain priorities, not the values
• We assume priorities are distinct

• Tie breaker: the time at which element entered the queue

• Priority queue operations

• insert – insert an element into the queue
• deleteMax – delete the maximum element from the queue

Suresh PRGH 2019: Lecture 25 November 11, 2019 2 / 22

Priority queues

• Priority queue: a queue, with each element having a priority
• Elements exit the queue by priority, not in the order they entered
• Each element in a priority queue is a pair (p,v), where p is the priority
and v is the value

• The priorities are values of some type a belonging to the class Ord
• We only show how to maintain priorities, not the values
• We assume priorities are distinct

• Tie breaker: the time at which element entered the queue

• Priority queue operations

• insert – insert an element into the queue
• deleteMax – delete the maximum element from the queue

Suresh PRGH 2019: Lecture 25 November 11, 2019 2 / 22

Priority queues

• Priority queue: a queue, with each element having a priority
• Elements exit the queue by priority, not in the order they entered
• Each element in a priority queue is a pair (p,v), where p is the priority
and v is the value
• The priorities are values of some type a belonging to the class Ord

• We only show how to maintain priorities, not the values
• We assume priorities are distinct

• Tie breaker: the time at which element entered the queue

• Priority queue operations

• insert – insert an element into the queue
• deleteMax – delete the maximum element from the queue

Suresh PRGH 2019: Lecture 25 November 11, 2019 2 / 22

Priority queues

• Priority queue: a queue, with each element having a priority
• Elements exit the queue by priority, not in the order they entered
• Each element in a priority queue is a pair (p,v), where p is the priority
and v is the value
• The priorities are values of some type a belonging to the class Ord
• We only show how to maintain priorities, not the values

• We assume priorities are distinct

• Tie breaker: the time at which element entered the queue

• Priority queue operations

• insert – insert an element into the queue
• deleteMax – delete the maximum element from the queue

Suresh PRGH 2019: Lecture 25 November 11, 2019 2 / 22

Priority queues

• Priority queue: a queue, with each element having a priority
• Elements exit the queue by priority, not in the order they entered
• Each element in a priority queue is a pair (p,v), where p is the priority
and v is the value
• The priorities are values of some type a belonging to the class Ord
• We only show how to maintain priorities, not the values
• We assume priorities are distinct

• Tie breaker: the time at which element entered the queue
• Priority queue operations

• insert – insert an element into the queue
• deleteMax – delete the maximum element from the queue

Suresh PRGH 2019: Lecture 25 November 11, 2019 2 / 22

Priority queues

• Priority queue: a queue, with each element having a priority
• Elements exit the queue by priority, not in the order they entered
• Each element in a priority queue is a pair (p,v), where p is the priority
and v is the value
• The priorities are values of some type a belonging to the class Ord
• We only show how to maintain priorities, not the values
• We assume priorities are distinct
• Tie breaker: the time at which element entered the queue

• Priority queue operations

• insert – insert an element into the queue
• deleteMax – delete the maximum element from the queue

Suresh PRGH 2019: Lecture 25 November 11, 2019 2 / 22

Priority queues

• Priority queue: a queue, with each element having a priority
• Elements exit the queue by priority, not in the order they entered
• Each element in a priority queue is a pair (p,v), where p is the priority
and v is the value
• The priorities are values of some type a belonging to the class Ord
• We only show how to maintain priorities, not the values
• We assume priorities are distinct
• Tie breaker: the time at which element entered the queue

• Priority queue operations

• insert – insert an element into the queue
• deleteMax – delete the maximum element from the queue

Suresh PRGH 2019: Lecture 25 November 11, 2019 2 / 22

Priority queues

• Priority queue: a queue, with each element having a priority
• Elements exit the queue by priority, not in the order they entered
• Each element in a priority queue is a pair (p,v), where p is the priority
and v is the value
• The priorities are values of some type a belonging to the class Ord
• We only show how to maintain priorities, not the values
• We assume priorities are distinct
• Tie breaker: the time at which element entered the queue

• Priority queue operations
• insert – insert an element into the queue

• deleteMax – delete the maximum element from the queue

Suresh PRGH 2019: Lecture 25 November 11, 2019 2 / 22

Priority queues

• Priority queue: a queue, with each element having a priority
• Elements exit the queue by priority, not in the order they entered
• Each element in a priority queue is a pair (p,v), where p is the priority
and v is the value
• The priorities are values of some type a belonging to the class Ord
• We only show how to maintain priorities, not the values
• We assume priorities are distinct
• Tie breaker: the time at which element entered the queue

• Priority queue operations
• insert – insert an element into the queue
• deleteMax – delete the maximum element from the queue

Suresh PRGH 2019: Lecture 25 November 11, 2019 2 / 22

Priority queue – implementations

• Unsorted lists

• insert –O(1) time
• deleteMax –O(n) time

• Sorted lists – descending order of priority

• insert –O(n) time
• deleteMax –O(1) time

• AVL trees

• insert –O(log n) time
• deleteMax –O(log n) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 3 / 22

Priority queue – implementations

• Unsorted lists
• insert –O(1) time

• deleteMax –O(n) time
• Sorted lists – descending order of priority

• insert –O(n) time
• deleteMax –O(1) time

• AVL trees

• insert –O(log n) time
• deleteMax –O(log n) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 3 / 22

Priority queue – implementations

• Unsorted lists
• insert –O(1) time
• deleteMax –O(n) time

• Sorted lists – descending order of priority

• insert –O(n) time
• deleteMax –O(1) time

• AVL trees

• insert –O(log n) time
• deleteMax –O(log n) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 3 / 22

Priority queue – implementations

• Unsorted lists
• insert –O(1) time
• deleteMax –O(n) time

• Sorted lists – descending order of priority

• insert –O(n) time
• deleteMax –O(1) time

• AVL trees

• insert –O(log n) time
• deleteMax –O(log n) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 3 / 22

Priority queue – implementations

• Unsorted lists
• insert –O(1) time
• deleteMax –O(n) time

• Sorted lists – descending order of priority
• insert –O(n) time

• deleteMax –O(1) time
• AVL trees

• insert –O(log n) time
• deleteMax –O(log n) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 3 / 22

Priority queue – implementations

• Unsorted lists
• insert –O(1) time
• deleteMax –O(n) time

• Sorted lists – descending order of priority
• insert –O(n) time
• deleteMax –O(1) time

• AVL trees

• insert –O(log n) time
• deleteMax –O(log n) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 3 / 22

Priority queue – implementations

• Unsorted lists
• insert –O(1) time
• deleteMax –O(n) time

• Sorted lists – descending order of priority
• insert –O(n) time
• deleteMax –O(1) time

• AVL trees

• insert –O(log n) time
• deleteMax –O(log n) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 3 / 22

Priority queue – implementations

• Unsorted lists
• insert –O(1) time
• deleteMax –O(n) time

• Sorted lists – descending order of priority
• insert –O(n) time
• deleteMax –O(1) time

• AVL trees
• insert –O(log n) time

• deleteMax –O(log n) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 3 / 22

Priority queue – implementations

• Unsorted lists
• insert –O(1) time
• deleteMax –O(n) time

• Sorted lists – descending order of priority
• insert –O(n) time
• deleteMax –O(1) time

• AVL trees
• insert –O(log n) time
• deleteMax –O(log n) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 3 / 22

Heaps

• A heap is another way to implement priority queues

• To determine the maximum, it is not necessary that elements be sorted
• We need to keep track of the maximum
• Also the possible second maximum, to be installed as the new
maximum after deleteMax
• The next maximum…
• We look at max-heaps in this lecture, min-heaps are analogous

Suresh PRGH 2019: Lecture 25 November 11, 2019 4 / 22

Heaps

• A heap is another way to implement priority queues
• To determine the maximum, it is not necessary that elements be sorted

• We need to keep track of the maximum
• Also the possible second maximum, to be installed as the new
maximum after deleteMax
• The next maximum…
• We look at max-heaps in this lecture, min-heaps are analogous

Suresh PRGH 2019: Lecture 25 November 11, 2019 4 / 22

Heaps

• A heap is another way to implement priority queues
• To determine the maximum, it is not necessary that elements be sorted
• We need to keep track of the maximum

• Also the possible second maximum, to be installed as the new
maximum after deleteMax
• The next maximum…
• We look at max-heaps in this lecture, min-heaps are analogous

Suresh PRGH 2019: Lecture 25 November 11, 2019 4 / 22

Heaps

• A heap is another way to implement priority queues
• To determine the maximum, it is not necessary that elements be sorted
• We need to keep track of the maximum
• Also the possible second maximum, to be installed as the new
maximum after deleteMax

• The next maximum…
• We look at max-heaps in this lecture, min-heaps are analogous

Suresh PRGH 2019: Lecture 25 November 11, 2019 4 / 22

Heaps

• A heap is another way to implement priority queues
• To determine the maximum, it is not necessary that elements be sorted
• We need to keep track of the maximum
• Also the possible second maximum, to be installed as the new
maximum after deleteMax
• The next maximum…

• We look at max-heaps in this lecture, min-heaps are analogous

Suresh PRGH 2019: Lecture 25 November 11, 2019 4 / 22

Heaps

• A heap is another way to implement priority queues
• To determine the maximum, it is not necessary that elements be sorted
• We need to keep track of the maximum
• Also the possible second maximum, to be installed as the new
maximum after deleteMax
• The next maximum…
• We look at max-heaps in this lecture, min-heaps are analogous

Suresh PRGH 2019: Lecture 25 November 11, 2019 4 / 22

Heaps

• A heap is a binary tree satisfying the heap property

• Heap property –The value at every node is larger than the value at its
two children
• In a heap, the largest element is always at the root

Suresh PRGH 2019: Lecture 25 November 11, 2019 5 / 22

Heaps

• A heap is a binary tree satisfying the heap property
• Heap property –The value at every node is larger than the value at its
two children

• In a heap, the largest element is always at the root

Suresh PRGH 2019: Lecture 25 November 11, 2019 5 / 22

Heaps

• A heap is a binary tree satisfying the heap property
• Heap property –The value at every node is larger than the value at its
two children
• In a heap, the largest element is always at the root

Suresh PRGH 2019: Lecture 25 November 11, 2019 5 / 22

Example heaps

6

5

3 4

2

1

• These three heaps are also leftist heaps

Suresh PRGH 2019: Lecture 25 November 11, 2019 6 / 22

Example heaps

6

5

3 4

2

1

6

4

3 2

5

1

• These three heaps are also leftist heaps

Suresh PRGH 2019: Lecture 25 November 11, 2019 6 / 22

Example heaps

6

5

3 4

2

1

6

4

3 2

5

1

6

3

1 2

5

4

• These three heaps are also leftist heaps

Suresh PRGH 2019: Lecture 25 November 11, 2019 6 / 22

Example heaps

6

5

3 4

2

1

6

4

3 2

5

1

6

3

1 2

5

4
• These three heaps are also leftist heaps

Suresh PRGH 2019: Lecture 25 November 11, 2019 6 / 22

Leftist Heaps

• Leftist heap – At every node, the size of the left subtree is greater than
or equal to the size of the right subtree

• Denote by lrs(h) the length of the right spine of a heap h
• Let size(h) = n and h1 and h2 be the left and right subtrees of h

• n = size(h1)+ size(h2)+ 1 and size(h1)≥ size(h2)• So size(h2)≤ n/2

• lrs(h) = 1+ lrs(h2)

• Claim: If size(h) = n, lrs(h)≤ log n+ 1

Suresh PRGH 2019: Lecture 25 November 11, 2019 7 / 22

Leftist Heaps

• Leftist heap – At every node, the size of the left subtree is greater than
or equal to the size of the right subtree
• Denote by lrs(h) the length of the right spine of a heap h

• Let size(h) = n and h1 and h2 be the left and right subtrees of h

• n = size(h1)+ size(h2)+ 1 and size(h1)≥ size(h2)• So size(h2)≤ n/2

• lrs(h) = 1+ lrs(h2)

• Claim: If size(h) = n, lrs(h)≤ log n+ 1

Suresh PRGH 2019: Lecture 25 November 11, 2019 7 / 22

Leftist Heaps

• Leftist heap – At every node, the size of the left subtree is greater than
or equal to the size of the right subtree
• Denote by lrs(h) the length of the right spine of a heap h
• Let size(h) = n and h1 and h2 be the left and right subtrees of h

• n = size(h1)+ size(h2)+ 1 and size(h1)≥ size(h2)• So size(h2)≤ n/2

• lrs(h) = 1+ lrs(h2)

• Claim: If size(h) = n, lrs(h)≤ log n+ 1

Suresh PRGH 2019: Lecture 25 November 11, 2019 7 / 22

Leftist Heaps

• Leftist heap – At every node, the size of the left subtree is greater than
or equal to the size of the right subtree
• Denote by lrs(h) the length of the right spine of a heap h
• Let size(h) = n and h1 and h2 be the left and right subtrees of h
• n = size(h1)+ size(h2)+ 1 and size(h1)≥ size(h2)

• So size(h2)≤ n/2

• lrs(h) = 1+ lrs(h2)

• Claim: If size(h) = n, lrs(h)≤ log n+ 1

Suresh PRGH 2019: Lecture 25 November 11, 2019 7 / 22

Leftist Heaps

• Leftist heap – At every node, the size of the left subtree is greater than
or equal to the size of the right subtree
• Denote by lrs(h) the length of the right spine of a heap h
• Let size(h) = n and h1 and h2 be the left and right subtrees of h
• n = size(h1)+ size(h2)+ 1 and size(h1)≥ size(h2)• So size(h2)≤ n/2

• lrs(h) = 1+ lrs(h2)

• Claim: If size(h) = n, lrs(h)≤ log n+ 1

Suresh PRGH 2019: Lecture 25 November 11, 2019 7 / 22

Leftist Heaps

• Leftist heap – At every node, the size of the left subtree is greater than
or equal to the size of the right subtree
• Denote by lrs(h) the length of the right spine of a heap h
• Let size(h) = n and h1 and h2 be the left and right subtrees of h
• n = size(h1)+ size(h2)+ 1 and size(h1)≥ size(h2)• So size(h2)≤ n/2

• lrs(h) = 1+ lrs(h2)

• Claim: If size(h) = n, lrs(h)≤ log n+ 1

Suresh PRGH 2019: Lecture 25 November 11, 2019 7 / 22

Leftist Heaps

• Leftist heap – At every node, the size of the left subtree is greater than
or equal to the size of the right subtree
• Denote by lrs(h) the length of the right spine of a heap h
• Let size(h) = n and h1 and h2 be the left and right subtrees of h
• n = size(h1)+ size(h2)+ 1 and size(h1)≥ size(h2)• So size(h2)≤ n/2

• lrs(h) = 1+ lrs(h2)

• Claim: If size(h) = n, lrs(h)≤ log n+ 1

Suresh PRGH 2019: Lecture 25 November 11, 2019 7 / 22

Right spine of a leftist heap

• Claim: If size(h) = n, lrs(h)≤ log n+ 1

• Proof: If n = 1, lrs(h) = 1≤ log1+ 1

• If n > 1 and h2 is the right subheap of h ,

lrs(h) = 1+ lrs(h2)

≤ 1+(log n/2+ 1)

≤ 1+(log n− 1+ 1)

= log n+ 1

Suresh PRGH 2019: Lecture 25 November 11, 2019 8 / 22

Right spine of a leftist heap

• Claim: If size(h) = n, lrs(h)≤ log n+ 1

• Proof: If n = 1, lrs(h) = 1≤ log1+ 1

• If n > 1 and h2 is the right subheap of h ,

lrs(h) = 1+ lrs(h2)

≤ 1+(log n/2+ 1)

≤ 1+(log n− 1+ 1)

= log n+ 1

Suresh PRGH 2019: Lecture 25 November 11, 2019 8 / 22

Right spine of a leftist heap

• Claim: If size(h) = n, lrs(h)≤ log n+ 1

• Proof: If n = 1, lrs(h) = 1≤ log1+ 1

• If n > 1 and h2 is the right subheap of h ,

lrs(h) = 1+ lrs(h2)

≤ 1+(log n/2+ 1)

≤ 1+(log n− 1+ 1)

= log n+ 1

Suresh PRGH 2019: Lecture 25 November 11, 2019 8 / 22

A heap module

• Just as we stored the height at every node of an AVL tree …

• we store the size of the tree at each node of a leftist heap
module Heap(Heap, emptyHeap, isEmpty,

union, insert, findMax, deleteMax,
createHeap, toList) where

data Heap a = Nil | Node Int a (Heap a) (Heap a)
emptyHeap :: Heap a
emptyHeap = Nil
isEmpty :: Heap a -> Bool
isEmpty Nil = True
isEmpty _ = False

Suresh PRGH 2019: Lecture 25 November 11, 2019 9 / 22

A heap module

• Just as we stored the height at every node of an AVL tree …
• we store the size of the tree at each node of a leftist heap

module Heap(Heap, emptyHeap, isEmpty,
union, insert, findMax, deleteMax,

createHeap, toList) where
data Heap a = Nil | Node Int a (Heap a) (Heap a)
emptyHeap :: Heap a
emptyHeap = Nil
isEmpty :: Heap a -> Bool
isEmpty Nil = True
isEmpty _ = False

Suresh PRGH 2019: Lecture 25 November 11, 2019 9 / 22

A heap module

size Nil = 0
size (Node s _ _ _) = s
root (Node _ x _ _) = x

isHeap :: Ord a => Heap a -> Bool
isHeap Nil = True
isHeap (Node s x hl hr) = s == 1 + sl + sr && sl >= sr &&

(isEmpty hl || x >= root hl) &&
(isEmpty hr || x >= root hr) &&
isHeap hl && isHeap hr

where (sl, sr) = (size hl, size hr)

Suresh PRGH 2019: Lecture 25 November 11, 2019 10 / 22

Union of leftist heaps

• Union of two leftist heaps of size m and n

• The right spines are of lengthO(log m) andO(log n)
• Union is implemented by walking down the right spines

• Works inO(log m+ log n) time

• Violation of leftist property at root is handled as follows:
realign :: Heap a -> Heap a
realign Nil = Nil
realign h@(Node s x hl hr)

| size hl >= size hr = h
| otherwise = Node s x hr hl

Suresh PRGH 2019: Lecture 25 November 11, 2019 11 / 22

Union of leftist heaps

• Union of two leftist heaps of size m and n

• The right spines are of lengthO(log m) andO(log n)

• Union is implemented by walking down the right spines

• Works inO(log m+ log n) time

• Violation of leftist property at root is handled as follows:
realign :: Heap a -> Heap a
realign Nil = Nil
realign h@(Node s x hl hr)

| size hl >= size hr = h
| otherwise = Node s x hr hl

Suresh PRGH 2019: Lecture 25 November 11, 2019 11 / 22

Union of leftist heaps

• Union of two leftist heaps of size m and n

• The right spines are of lengthO(log m) andO(log n)
• Union is implemented by walking down the right spines

• Works inO(log m+ log n) time

• Violation of leftist property at root is handled as follows:
realign :: Heap a -> Heap a
realign Nil = Nil
realign h@(Node s x hl hr)

| size hl >= size hr = h
| otherwise = Node s x hr hl

Suresh PRGH 2019: Lecture 25 November 11, 2019 11 / 22

Union of leftist heaps

• Union of two leftist heaps of size m and n

• The right spines are of lengthO(log m) andO(log n)
• Union is implemented by walking down the right spines
• Works inO(log m+ log n) time

• Violation of leftist property at root is handled as follows:
realign :: Heap a -> Heap a
realign Nil = Nil
realign h@(Node s x hl hr)

| size hl >= size hr = h
| otherwise = Node s x hr hl

Suresh PRGH 2019: Lecture 25 November 11, 2019 11 / 22

Union of leftist heaps

• Union of two leftist heaps of size m and n

• The right spines are of lengthO(log m) andO(log n)
• Union is implemented by walking down the right spines
• Works inO(log m+ log n) time

• Violation of leftist property at root is handled as follows:
realign :: Heap a -> Heap a
realign Nil = Nil
realign h@(Node s x hl hr)

| size hl >= size hr = h
| otherwise = Node s x hr hl

Suresh PRGH 2019: Lecture 25 November 11, 2019 11 / 22

Union of leftist heaps

union :: Ord a => Heap a -> Heap a -> Heap a
union h Nil = h
union Nil h = h
union h1@(Node s1 x h1l h1r) h2@(Node s2 y h2l h2r)

| x >= y = realign
(Node (s1+s2) x h1l (union h1r h2))

| otherwise = realign
(Node (s1+s2) y h2l (union h1 h2r))

Suresh PRGH 2019: Lecture 25 November 11, 2019 12 / 22

Heap operations

• Important heap operations implemented using union

• insert and deleteMax takeO(log n) time

insert :: Ord a => a -> Heap a -> Heap a
findMax :: Heap a -> Maybe a
deleteMax :: Ord a => Heap a -> (Maybe a, Heap a)

insert x h = union (Node 1 x Nil Nil) h
findMax h = if isEmpty h then Nothing

else Just (root h)
deleteMax Nil = (Nothing, Nil)
deleteMax (Node _ x hl hr) = (Just x, union hl hr)

Suresh PRGH 2019: Lecture 25 November 11, 2019 13 / 22

Heap operations

• Important heap operations implemented using union
• insert and deleteMax takeO(log n) time

insert :: Ord a => a -> Heap a -> Heap a
findMax :: Heap a -> Maybe a
deleteMax :: Ord a => Heap a -> (Maybe a, Heap a)

insert x h = union (Node 1 x Nil Nil) h
findMax h = if isEmpty h then Nothing

else Just (root h)
deleteMax Nil = (Nothing, Nil)
deleteMax (Node _ x hl hr) = (Just x, union hl hr)

Suresh PRGH 2019: Lecture 25 November 11, 2019 13 / 22

Creating heaps from lists

• We can form a leftist heap from a list in linear time

• Strategy – Create a size-balanced leftist tree
• Restore heap property
• Creating a leftist tree is just the linear time createTree
• Since createTree produces a size-balanced tree, height is log n

Suresh PRGH 2019: Lecture 25 November 11, 2019 14 / 22

Creating heaps from lists

• We can form a leftist heap from a list in linear time
• Strategy – Create a size-balanced leftist tree

• Restore heap property
• Creating a leftist tree is just the linear time createTree
• Since createTree produces a size-balanced tree, height is log n

Suresh PRGH 2019: Lecture 25 November 11, 2019 14 / 22

Creating heaps from lists

• We can form a leftist heap from a list in linear time
• Strategy – Create a size-balanced leftist tree
• Restore heap property

• Creating a leftist tree is just the linear time createTree
• Since createTree produces a size-balanced tree, height is log n

Suresh PRGH 2019: Lecture 25 November 11, 2019 14 / 22

Creating heaps from lists

• We can form a leftist heap from a list in linear time
• Strategy – Create a size-balanced leftist tree
• Restore heap property
• Creating a leftist tree is just the linear time createTree

• Since createTree produces a size-balanced tree, height is log n

Suresh PRGH 2019: Lecture 25 November 11, 2019 14 / 22

Creating heaps from lists

• We can form a leftist heap from a list in linear time
• Strategy – Create a size-balanced leftist tree
• Restore heap property
• Creating a leftist tree is just the linear time createTree
• Since createTree produces a size-balanced tree, height is log n

Suresh PRGH 2019: Lecture 25 November 11, 2019 14 / 22

Creating a leftist tree

leftistTree :: [a] -> Heap a
leftistTree l = fst (go (length l) l)

go :: Int -> [a] -> (Heap a, [a])
go 0 xs = (Nil, xs)
go n xs = (Node s y hl hr, zs)

where
m = n `div` 2
(hl, y:ys) = go m xs
(hr, zs) = go (n-m-1) ys
s = 1 + size hl + size hr

Suresh PRGH 2019: Lecture 25 November 11, 2019 15 / 22

Repairing heaps

x

y

t1 t21

z

t22 t3

• Assume that subtrees rooted at y and z are heaps
• How to ensure that tree rooted at x is a heap?
• If x >= max y z all is okay
• Else swap xwith max y z, say z
• The heap property is satisfied at the root
• The left subtree is untouched
• But the right subtree may no longer be a heap
• Recursively repair it – sifting

Suresh PRGH 2019: Lecture 25 November 11, 2019 16 / 22

Repairing heaps

x

y

t1 t21

z

t22 t3

• Assume that subtrees rooted at y and z are heaps

• How to ensure that tree rooted at x is a heap?
• If x >= max y z all is okay
• Else swap xwith max y z, say z
• The heap property is satisfied at the root
• The left subtree is untouched
• But the right subtree may no longer be a heap
• Recursively repair it – sifting

Suresh PRGH 2019: Lecture 25 November 11, 2019 16 / 22

Repairing heaps

x

y

t1 t21

z

t22 t3

• Assume that subtrees rooted at y and z are heaps
• How to ensure that tree rooted at x is a heap?

• If x >= max y z all is okay
• Else swap xwith max y z, say z
• The heap property is satisfied at the root
• The left subtree is untouched
• But the right subtree may no longer be a heap
• Recursively repair it – sifting

Suresh PRGH 2019: Lecture 25 November 11, 2019 16 / 22

Repairing heaps

x

y

t1 t21

z

t22 t3

• Assume that subtrees rooted at y and z are heaps
• How to ensure that tree rooted at x is a heap?
• If x >= max y z all is okay

• Else swap xwith max y z, say z
• The heap property is satisfied at the root
• The left subtree is untouched
• But the right subtree may no longer be a heap
• Recursively repair it – sifting

Suresh PRGH 2019: Lecture 25 November 11, 2019 16 / 22

Repairing heaps

x

y

t1 t21

z

t22 t3

• Assume that subtrees rooted at y and z are heaps
• How to ensure that tree rooted at x is a heap?
• If x >= max y z all is okay
• Else swap xwith max y z, say z

• The heap property is satisfied at the root
• The left subtree is untouched
• But the right subtree may no longer be a heap
• Recursively repair it – sifting

Suresh PRGH 2019: Lecture 25 November 11, 2019 16 / 22

Repairing heaps

x

y

t1 t21

z

t22 t3

• Assume that subtrees rooted at y and z are heaps
• How to ensure that tree rooted at x is a heap?
• If x >= max y z all is okay
• Else swap xwith max y z, say z
• The heap property is satisfied at the root

• The left subtree is untouched
• But the right subtree may no longer be a heap
• Recursively repair it – sifting

Suresh PRGH 2019: Lecture 25 November 11, 2019 16 / 22

Repairing heaps

x

y

t1 t21

z

t22 t3

• Assume that subtrees rooted at y and z are heaps
• How to ensure that tree rooted at x is a heap?
• If x >= max y z all is okay
• Else swap xwith max y z, say z
• The heap property is satisfied at the root
• The left subtree is untouched

• But the right subtree may no longer be a heap
• Recursively repair it – sifting

Suresh PRGH 2019: Lecture 25 November 11, 2019 16 / 22

Repairing heaps

x

y

t1 t21

z

t22 t3

• Assume that subtrees rooted at y and z are heaps
• How to ensure that tree rooted at x is a heap?
• If x >= max y z all is okay
• Else swap xwith max y z, say z
• The heap property is satisfied at the root
• The left subtree is untouched
• But the right subtree may no longer be a heap

• Recursively repair it – sifting

Suresh PRGH 2019: Lecture 25 November 11, 2019 16 / 22

Repairing heaps

x

y

t1 t21

z

t22 t3

• Assume that subtrees rooted at y and z are heaps
• How to ensure that tree rooted at x is a heap?
• If x >= max y z all is okay
• Else swap xwith max y z, say z
• The heap property is satisfied at the root
• The left subtree is untouched
• But the right subtree may no longer be a heap
• Recursively repair it – sifting

Suresh PRGH 2019: Lecture 25 November 11, 2019 16 / 22

Violation of heap property

• badness tells us how the heap property is violated at the root:

data Badness = NoBad | LeftBad | RightBad
badness :: Ord a => Heap a -> Badness
badness (Node _ x hl hr)

| x >= m = NoBad
| y >= m = LeftBad
| z >= m = RightBad
where

y = if isEmpty hl then x else root hl
z = if isEmpty hr then x else root hr
m = maximum [x,y,z]

• Constant time operation

Suresh PRGH 2019: Lecture 25 November 11, 2019 17 / 22

Violation of heap property

• badness tells us how the heap property is violated at the root:

data Badness = NoBad | LeftBad | RightBad
badness :: Ord a => Heap a -> Badness
badness (Node _ x hl hr)

| x >= m = NoBad
| y >= m = LeftBad
| z >= m = RightBad
where

y = if isEmpty hl then x else root hl
z = if isEmpty hr then x else root hr
m = maximum [x,y,z]

• Constant time operation
Suresh PRGH 2019: Lecture 25 November 11, 2019 17 / 22

Exchange operations

• To restore the heap property, we need to exchange the root with either
the left or right child

• Constant time exchange operations:
xchngLeft :: Heap a -> Heap a
xchngLeft (Node s x (Node sl y hll hlr) hr)

= Node s y (Node sl x hll hlr) hr

xchngRight :: Heap a -> Heap a
xchngRight (Node s x hl (Node sr y hrl hrr))

= Node s y hl (Node sr x hrl hrr)

Suresh PRGH 2019: Lecture 25 November 11, 2019 18 / 22

Exchange operations

• To restore the heap property, we need to exchange the root with either
the left or right child
• Constant time exchange operations:

xchngLeft :: Heap a -> Heap a
xchngLeft (Node s x (Node sl y hll hlr) hr)

= Node s y (Node sl x hll hlr) hr

xchngRight :: Heap a -> Heap a
xchngRight (Node s x hl (Node sr y hrl hrr))

= Node s y hl (Node sr x hrl hrr)

Suresh PRGH 2019: Lecture 25 November 11, 2019 18 / 22

Repairing heaps – sift

• Recursively sift the root down the tree till there is no badness
sift :: Ord a => Heap a -> Heap a
sift Nil = Nil
sift h = case badness h of

NoBad -> h
LeftBad -> let Node s1 x1 hl1 hr1 = xchngLeft h

in Node s1 x1 (sift hl1) hr1
RightBad -> let Node s2 x2 hl2 hr2 = xchngRight h

in Node s2 x2 hl2 (sift hr2)

• Running time isO(height of heap)
• Applied on a size-balanced tree, it isO(log n)

Suresh PRGH 2019: Lecture 25 November 11, 2019 19 / 22

Repairing heaps – sift

• Recursively sift the root down the tree till there is no badness
sift :: Ord a => Heap a -> Heap a
sift Nil = Nil
sift h = case badness h of

NoBad -> h
LeftBad -> let Node s1 x1 hl1 hr1 = xchngLeft h

in Node s1 x1 (sift hl1) hr1
RightBad -> let Node s2 x2 hl2 hr2 = xchngRight h

in Node s2 x2 hl2 (sift hr2)

• Running time isO(height of heap)

• Applied on a size-balanced tree, it isO(log n)

Suresh PRGH 2019: Lecture 25 November 11, 2019 19 / 22

Repairing heaps – sift

• Recursively sift the root down the tree till there is no badness
sift :: Ord a => Heap a -> Heap a
sift Nil = Nil
sift h = case badness h of

NoBad -> h
LeftBad -> let Node s1 x1 hl1 hr1 = xchngLeft h

in Node s1 x1 (sift hl1) hr1
RightBad -> let Node s2 x2 hl2 hr2 = xchngRight h

in Node s2 x2 hl2 (sift hr2)

• Running time isO(height of heap)
• Applied on a size-balanced tree, it isO(log n)

Suresh PRGH 2019: Lecture 25 November 11, 2019 19 / 22

Repairing heaps – heapify

• heapify transforms a tree into a heap

heapify :: Ord a => Heap a -> Heap a
heapify Nil = Nil
heapify (Node s x hl hr)

= sift (Node s x
(heapify hl)
(heapify hr))

createHeap :: Ord a => [a] -> Heap a
createHeap = heapify . leftistTree

• Applied on a size-balanced tree, heapify takesO(n) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 20 / 22

Repairing heaps – heapify

• heapify transforms a tree into a heap

heapify :: Ord a => Heap a -> Heap a
heapify Nil = Nil
heapify (Node s x hl hr)

= sift (Node s x
(heapify hl)
(heapify hr))

createHeap :: Ord a => [a] -> Heap a
createHeap = heapify . leftistTree

• Applied on a size-balanced tree, heapify takesO(n) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 20 / 22

Time complexity of heapify

• Proof: On size-balanced trees, choose c such that

• T (1)≤ c
• T (n)≤ c log n+ 2T (n/2)

• Letting n = 2k ,

T (2k) = ck + 2T (2k−1) = ck + 2[c(k − 1)+ 2T (2k−2)]

= ck + 2c(k − 1)+ 22[c(k − 2)+ 2T (2k−3)]

= · · ·
= ck + 2c(k − 1)+ 22c(k − 2)+ · · ·+ 2k−1[c(k − k + 1)+ 2T (2k−k)]

= c[k + 2(k − 1)+ 22(k − 2)+ · · ·+ 2k−1(k − k + 1)+ 2k]

Suresh PRGH 2019: Lecture 25 November 11, 2019 21 / 22

Time complexity of heapify

• Proof: On size-balanced trees, choose c such that
• T (1)≤ c

• T (n)≤ c log n+ 2T (n/2)

• Letting n = 2k ,

T (2k) = ck + 2T (2k−1) = ck + 2[c(k − 1)+ 2T (2k−2)]

= ck + 2c(k − 1)+ 22[c(k − 2)+ 2T (2k−3)]

= · · ·
= ck + 2c(k − 1)+ 22c(k − 2)+ · · ·+ 2k−1[c(k − k + 1)+ 2T (2k−k)]

= c[k + 2(k − 1)+ 22(k − 2)+ · · ·+ 2k−1(k − k + 1)+ 2k]

Suresh PRGH 2019: Lecture 25 November 11, 2019 21 / 22

Time complexity of heapify

• Proof: On size-balanced trees, choose c such that
• T (1)≤ c
• T (n)≤ c log n+ 2T (n/2)

• Letting n = 2k ,

T (2k) = ck + 2T (2k−1) = ck + 2[c(k − 1)+ 2T (2k−2)]

= ck + 2c(k − 1)+ 22[c(k − 2)+ 2T (2k−3)]

= · · ·
= ck + 2c(k − 1)+ 22c(k − 2)+ · · ·+ 2k−1[c(k − k + 1)+ 2T (2k−k)]

= c[k + 2(k − 1)+ 22(k − 2)+ · · ·+ 2k−1(k − k + 1)+ 2k]

Suresh PRGH 2019: Lecture 25 November 11, 2019 21 / 22

Time complexity of heapify

• Proof: On size-balanced trees, choose c such that
• T (1)≤ c
• T (n)≤ c log n+ 2T (n/2)

• Letting n = 2k ,

T (2k) = ck + 2T (2k−1) = ck + 2[c(k − 1)+ 2T (2k−2)]

= ck + 2c(k − 1)+ 22[c(k − 2)+ 2T (2k−3)]

= · · ·
= ck + 2c(k − 1)+ 22c(k − 2)+ · · ·+ 2k−1[c(k − k + 1)+ 2T (2k−k)]

= c[k + 2(k − 1)+ 22(k − 2)+ · · ·+ 2k−1(k − k + 1)+ 2k]

Suresh PRGH 2019: Lecture 25 November 11, 2019 21 / 22

Time complexity of heapify

• Proof: On size-balanced trees, choose c such that

• T (1)≤ c
• T (n)≤ c log n+ 2T (n/2)

• Letting n = 2k ,

T (2k) = c[k +2(k − 1) +22(k − 2) + · · ·+2k−1(k − k + 1) + 2k]

2T (2k) = c[2(k − 0) +22(k − 1) + · · ·+2k−1(k − k + 2) +2k · 1 +2k+1]

T (2k) = c[−k +2 +22 + · · ·+2k−1 +2k +2k]

= c[−k +2k+1− 2 +2k]

= c[− log n +2n− 2 +n]

=O(n)

Suresh PRGH 2019: Lecture 25 November 11, 2019 22 / 22

Time complexity of heapify

• Proof: On size-balanced trees, choose c such that
• T (1)≤ c

• T (n)≤ c log n+ 2T (n/2)
• Letting n = 2k ,

T (2k) = c[k +2(k − 1) +22(k − 2) + · · ·+2k−1(k − k + 1) + 2k]

2T (2k) = c[2(k − 0) +22(k − 1) + · · ·+2k−1(k − k + 2) +2k · 1 +2k+1]

T (2k) = c[−k +2 +22 + · · ·+2k−1 +2k +2k]

= c[−k +2k+1− 2 +2k]

= c[− log n +2n− 2 +n]

=O(n)

Suresh PRGH 2019: Lecture 25 November 11, 2019 22 / 22

Time complexity of heapify

• Proof: On size-balanced trees, choose c such that
• T (1)≤ c
• T (n)≤ c log n+ 2T (n/2)

• Letting n = 2k ,

T (2k) = c[k +2(k − 1) +22(k − 2) + · · ·+2k−1(k − k + 1) + 2k]

2T (2k) = c[2(k − 0) +22(k − 1) + · · ·+2k−1(k − k + 2) +2k · 1 +2k+1]

T (2k) = c[−k +2 +22 + · · ·+2k−1 +2k +2k]

= c[−k +2k+1− 2 +2k]

= c[− log n +2n− 2 +n]

=O(n)

Suresh PRGH 2019: Lecture 25 November 11, 2019 22 / 22

Time complexity of heapify

• Proof: On size-balanced trees, choose c such that
• T (1)≤ c
• T (n)≤ c log n+ 2T (n/2)

• Letting n = 2k ,

T (2k) = c[k +2(k − 1) +22(k − 2) + · · ·+2k−1(k − k + 1) + 2k]

2T (2k) = c[2(k − 0) +22(k − 1) + · · ·+2k−1(k − k + 2) +2k · 1 +2k+1]

T (2k) = c[−k +2 +22 + · · ·+2k−1 +2k +2k]

= c[−k +2k+1− 2 +2k]

= c[− log n +2n− 2 +n]

=O(n)

Suresh PRGH 2019: Lecture 25 November 11, 2019 22 / 22

