Programming in Haskell: Lecture 25

S P Suresh

November 11, 2019

Suresh PRGH 2019: Lecture 25 November 11, 2019 1/22



Priority queues

® Priority queue: a queue, with each element having a priority

Suresh PRGH 2019: Lecture 25 November 11, 2019 2/22



Priority queues

® Priority queue: a queue, with each element having a priority

¢ Elements exit the queue by priority, not in the order they entered

Suresh PRGH 2019: Lecture 25 November 11, 2019 2/22



Priority queues

® Priority queue: a queue, with each element having a priority
¢ Elements exit the queue by priority, not in the order they entered

® Each element in a priority queue is a pair (p,v), where p is the priority

and v is the value

Suresh PRGH 2019: Lecture 25 November 11, 2019 2/22



Priority queues

Priority queue: a queue, with each element having a priority
Elements exit the queue by priority, not in the order they entered

Each element in a priority queue is a pair (p,v), where p is the priority

and v is the value

The priorities are values of some type a belonging to the class Ord

Suresh PRGH 2019: Lecture 25 November 11, 2019 2/22



Priority queues

Priority queue: a queue, with each element having a priority
Elements exit the queue by priority, not in the order they entered

Each element in a priority queue is a pair (p,v), where p is the priority

and v is the value
The priorities are values of some type a belonging to the class Ord

We only show how to maintain priorities, not the values

Suresh PRGH 2019: Lecture 25 November 11, 2019 2/22



Priority queues

Priority queue: a queue, with each element having a priority

Elements exit the queue by priority, not in the order they entered

Each element in a priority queue is a pair (p,v), where p is the priority

and v is the value

The priorities are values of some type a belonging to the class Ord

We only show how to maintain priorities, not the values

We assume priorities are distinct

Suresh

PRGH 2019: Lecture 25

November 11, 2019

2/22



Priority queues

Priority queue: a queue, with each element having a priority
Elements exit the queue by priority, not in the order they entered

Each element in a priority queue is a pair (p,v), where p is the priority

and v is the value
The priorities are values of some type a belonging to the class Ord

We only show how to maintain priorities, not the values
We assume priorities are distinct

® Tie breaker: the time at which element entered the queue

Suresh PRGH 2019: Lecture 25 November 11, 2019 2/22



Priority queues

Priority queue: a queue, with each element having a priority

Elements exit the queue by priority, not in the order they entered
Each element in a priority queue is a pair (p,v), where p is the priority
and v is the value

The priorities are values of some type a belonging to the class Ord

We only show how to maintain priorities, not the values

We assume priorities are distinct

® Tie breaker: the time at which element entered the queue

Priority queue operations

Suresh PRGH 2019: Lecture 25 November 11, 2019 2/22



Priority queues

Priority queue: a queue, with each element having a priority

Elements exit the queue by priority, not in the order they entered
Each element in a priority queue is a pair (p,v), where p is the priority
and v is the value

The priorities are values of some type a belonging to the class Ord

We only show how to maintain priorities, not the values

We assume priorities are distinct

® Tie breaker: the time at which element entered the queue

Priority queue operations

® insert - insert an element into the queue

Suresh PRGH 2019: Lecture 25 November 11, 2019 2/22



Priority queues

Priority queue: a queue, with each element having a priority

Elements exit the queue by priority, not in the order they entered

Each element in a priority queue is a pair (p,v), where p is the priority

and v is the value
The priorities are values of some type a belonging to the class Ord
We only show how to maintain priorities, not the values

We assume priorities are distinct

® Tie breaker: the time at which element entered the queue
Priority queue operations

® insert - insert an element into the queue

® deleteMax — delete the maximum element from the queue

Suresh PRGH 2019: Lecture 25 November 11, 2019

2/22



Priority queue — implementations

e Unsorted lists

Suresh PRGH 2019: Lecture 25 November 11, 2019 3/22



Priority queue — implementations

e Unsorted lists

® insert - O(1)time

Suresh PRGH 2019: Lecture 25 November 11, 2019 3/22



Priority queue — implementations

e Unsorted lists
® insert - O(1)time

® deleteMax - O(n) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 3/22



Priority queue — implementations

® Unsorted lists
® insert - O(1)time
® deleteMax - O(n) time

e Sorted lists — descending order of priority

Suresh PRGH 2019: Lecture 25 November 11, 2019 3/22



Priority queue — implementations

® Unsorted lists
® insert - O(1)time
® deleteMax - O(7) time
e Sorted lists — descending order of priority

® insert - O(n)time

Suresh PRGH 2019: Lecture 25 November 11, 2019 3/22



Priority queue — implementations

® Unsorted lists
® insert - O(1)time
® deleteMax - O(7) time
e Sorted lists — descending order of priority
® insert - O(n)time
® deleteMax - O(1) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 3/22



Priority queue — implementations

® Unsorted lists
® insert - O(1)time
® deleteMax - O(n) time
e Sorted lists — descending order of priority
® insert - O(n)time
® deleteMax - O(1) time
e AVL trees

Suresh PRGH 2019: Lecture 25 November 11, 2019 3/22



Priority queue — implementations

® Unsorted lists
® insert - O(1)time
® deleteMax - O(n) time
e Sorted lists — descending order of priority
® insert - O(n)time
® deleteMax - O(1) time
e AVL trees

® insert- O(logn) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 3/22



Priority queue — implementations

® Unsorted lists
® insert - O(1)time
® deleteMax - O(n) time
e Sorted lists — descending order of priority
® insert - O(n)time
® deleteMax - O(1) time
e AVL trees
® insert- O(logn) time
® deleteMax - O(log7) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 3/22



Heaps

® A heap is another way to implement priority queues

Suresh PRGH 2019: Lecture 25 November 11, 2019 4/22



Heaps

® A heap is another way to implement priority queues

¢ To determine the maximum, it is not necessary that elements be sorted

Suresh PRGH 2019: Lecture 25 November 11, 2019 4/22



Heaps

® A heap is another way to implement priority queues
¢ To determine the maximum, it is not necessary that elements be sorted

e We need to keep track of the maximum

Suresh PRGH 2019: Lecture 25 November 11, 2019 4/22



Heaps

A heap is another way to implement priority queues
To determine the maximum, it is not necessary that elements be sorted
We need to keep track of the maximum

Also the possible second maximum, to be installed as the new

maximum after deleteMax

Suresh PRGH 2019: Lecture 25 November 11, 2019 4/22



Heaps

A heap is another way to implement priority queues
To determine the maximum, it is not necessary that elements be sorted
We need to keep track of the maximum

Also the possible second maximum, to be installed as the new

maximum after deleteMax

The next maximum ...

Suresh PRGH 2019: Lecture 25 November 11, 2019 4/22



Heaps

® A heap is another way to implement priority queues

¢ To determine the maximum, it is not necessary that elements be sorted

We need to keep track of the maximum

Also the possible second maximum, to be installed as the new

maximum after deleteMax

® The next maximum ...

We look at max-heaps in this lecture, min-heaps are analogous

Suresh PRGH 2019: Lecture 25 November 11, 2019 4/22



Heaps

® Aheap is a binary tree satisfying the heap property

Suresh PRGH 2019: Lecture 25 November 11, 2019 5/22



Heaps

® Aheap is a binary tree satisfying the heap property

® Heap property - The value at every node is larger than the value at its
two children

Suresh PRGH 2019: Lecture 25 November 11, 2019 5/22



Heaps

® Aheap is a binary tree satisfying the heap property

® Heap property - The value at every node is larger than the value at its
two children

® In a heap, the largest element is always at the root

Suresh PRGH 2019: Lecture 25 November 11, 2019 5/22



Example heaps

Suresh PRGH 2019: Lecture 25 November 11, 2019 6/22



Example heaps

Suresh PRGH 2019: Lecture 25 November 11, 2019 6/22



Example heaps

Suresh PRGH 2019: Lecture 25 November 11, 2019 6/22



Example heaps

¢ These three heaps are also leftist heaps

Suresh PRGH 2019: Lecture 25 November 11, 2019 6/22



Leftist Heaps

e Leftist heap - At every node, the size of the left subtree is greater than
or equal to the size of the right subtree

Suresh PRGH 2019: Lecture 25 November 11, 2019 7/22



Leftist Heaps

e Leftist heap - At every node, the size of the left subtree is greater than
or equal to the size of the right subtree

® Denote by Irs(/) the length of the right spine of a heap /

Suresh PRGH 2019: Lecture 25 November 11, 2019 7/22



Leftist Heaps

e Leftist heap - At every node, the size of the left subtree is greater than
or equal to the size of the right subtree

® Denote by Irs(/) the length of the right spine of a heap /
® Letsize(h)=n and b, and ), be the left and right subtrees of /

Suresh PRGH 2019: Lecture 25 November 11, 2019 7/22



Leftist Heaps

e Leftist heap - At every node, the size of the left subtree is greater than
or equal to the size of the right subtree
® Denote by Irs(/) the length of the right spine of a heap /
® Letsize(h)=n and b, and ), be the left and right subtrees of /
® n =size(h,)+ size(h,)+ 1 and size(h,) > size(h,)

Suresh PRGH 2019: Lecture 25 November 11, 2019 7/22



Leftist Heaps

e Leftist heap - At every node, the size of the left subtree is greater than
or equal to the size of the right subtree
® Denote by Irs(/) the length of the right spine of a heap /
® Letsize(h)=n and b, and ), be the left and right subtrees of /
® n =size(h,)+ size(h,)+ 1 and size(h,) > size(h,)
® Sosize(h,) <n/2

Suresh PRGH 2019: Lecture 25 November 11, 2019 7/22



Leftist Heaps

Leftist heap - At every node, the size of the left subtree is greater than
or equal to the size of the right subtree
Denote by Irs(/) the length of the right spine of a heap /
Let size(h) = n and ), and ), be the left and right subtrees of /»
® n =size(h,)+ size(h,)+ 1 and size(h,) > size(h,)
® Sosize(h,)<n/2

Irs(h) =14Irs(h,)

Suresh PRGH 2019: Lecture 25 November 11, 2019 7/22



Leftist Heaps

Leftist heap - At every node, the size of the left subtree is greater than
or equal to the size of the right subtree
Denote by Irs(/) the length of the right spine of a heap /
Let size(h) = n and ), and ), be the left and right subtrees of /»
® n =size(h,)+ size(h,)+ 1 and size(h,) > size(h,)
® Sosize(h,)<n/2
Irs(h) =14Irs(h,)
Claim: If size(h) = n, Irs(h) <logn + 1

Suresh PRGH 2019: Lecture 25 November 11, 2019 7/22



Right spine of a leftist heap

o Claim: If size(h) = n,Irs(h) <logn +1

Suresh PRGH 2019: Lecture 25 November 11, 2019 8/22



Right spine of a leftist heap

o Claim: If size(h) = n,Irs(h) <logn +1
® Proof: If n =1,Irs(h)=1<logl1+1

Suresh PRGH 2019: Lecture 25 November 11, 2019 8/22



Right spine of a leftist heap

o Claim: If size(h) = n,Irs(h) <logn +1
® Proof: If n =1,Irs(h)=1<logl1+1
e Ifn > 1and /, is the right subheap of /,
Irs(h) = 1+Irs(h,)
<1+(logn/2+1)

<14 (logn—1+1)
=logn+1

Suresh PRGH 2019: Lecture 25 November 11, 2019 8/22



A heap module

® Just as we stored the height at every node of an AVL tree ...

Suresh PRGH 2019: Lecture 25 November 11, 2019 9/22



A heap module

® Just as we stored the height at every node of an AVL tree ...

e we store the size of the tree at each node of a leftist heap

module Heap(Heap, emptyHeap, isEmpty,
union, insert, findMax, deleteMax,
createHeap, tolist) where
data Heap a = Nil | Node Int a (Heap a) (Heap a)
emptyHeap :: Heap a
emptyHeap = Nil
isEmpty :: Heap a -> Bool

isEmpty Nil = True

isEmpty _ False

Suresh PRGH 2019: Lecture 25 November 11, 2019 9/22



A heap module

size Nil =0

size (Node s _ _ ) =s

root (Node _ x _ _) = x

isHeap :: Ord a => Heap a -> Bool

isHeap Nil = True

isHeap (Node s x hl hr) = s == 1 + sl + sr & sl >= sr &&

where (sl, sr)

Suresh

(isEmpty hl Il x >= root hl) &&
(isEmpty hr || x >= root hr) &&
isHeap hl && isHeap hr

(size hl, size hr)

PRGH 2019: Lecture 25 November 11, 2019

10/22



Union of leftist heaps

¢ Union of two leftist heaps of size 72 and 7

Suresh PRGH 2019: Lecture 25 November 11, 2019 /22



Union of leftist heaps

¢ Union of two leftist heaps of size 72 and 7

e The right spines are of length O(log2) and O(log7)

Suresh PRGH 2019: Lecture 25 November 11, 2019 /22



Union of leftist heaps

¢ Union of two leftist heaps of size 72 and 7

e The right spines are of length O(log2) and O(log7)

® Union is implemented by walking down the right spines

Suresh PRGH 2019: Lecture 25 November 11, 2019 /22



Union of leftist heaps

¢ Union of two leftist heaps of size 72 and 7

e The right spines are of length O(log2) and O(log7)
® Union is implemented by walking down the right spines

® Works in O(logm + log ) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 /22



Union of leftist heaps

Union of two leftist heaps of size 72 and »

The right spines are of length O(log 72) and O(log )
Union is implemented by walking down the right spines

® Works in O(logm + log ) time

Violation of leftist property at root is handled as follows:
realign :: Heap a -> Heap a
realign Nil = Nil

realign h@(Node s x hl hr)
| size hl >= size hr = h

Node s x hr hl

| otherwise

Suresh PRGH 2019: Lecture 25 November 11, 2019

/22



Union of leftist heaps

union :: Ord a => Heap a -> Heap a -> Heap a
union h Nil =h
union Nil h =h

union h1@(Node s1 x hll hlr) h2@(Node s2 y h2l h2r)
realign
(Node (sl1l+s2) x hll (union hlr h2))
| otherwise = realign
(Node (s1+s2) y h21 (union hl h2r))

| X >=y

Suresh PRGH 2019: Lecture 25 November 11, 2019

12/22



Heap operations

® Important heap operations implemented using union

Suresh PRGH 2019: Lecture 25 November 11, 2019 13/22



Heap operations

® Important heap operations implemented using union

® insert and deleteMax take O(log7) time

insert :: Ord a => a -> Heap a -> Heap a
findMax :: Heap a -> Maybe a
deleteMax :: Ord a => Heap a -> (Maybe a, Heap a)

insert x h = union (Node 1 x Nil Nil) h
findMax h = if isEmpty h then Nothing
else Just (root h)
(Nothing, Nil)

(Just x, union hl hr)

deleteMax Nil
deleteMax (Node _ x hl hr)

Suresh PRGH 2019: Lecture 25 November 11, 2019 13/22



Creating heaps from lists

e We can form a leftist heap from a list in linear time

Suresh PRGH 2019: Lecture 25 November 11, 2019 14/22



Creating heaps from lists

e We can form a leftist heap from a list in linear time

e Strategy - Create a size-balanced leftist tree

Suresh PRGH 2019: Lecture 25 November 11, 2019 14/22



Creating heaps from lists

e We can form a leftist heap from a list in linear time
e Strategy - Create a size-balanced leftist tree

® Restore heap property

Suresh PRGH 2019: Lecture 25 November 11, 2019 14/22



Creating heaps from lists

We can form a leftist heap from a list in linear time
Strategy — Create a size-balanced leftist tree
Restore heap property

Creating a leftist tree is just the linear time createTree

Suresh PRGH 2019: Lecture 25

November 11, 2019

14/22



Creating heaps from lists

We can form a leftist heap from a list in linear time
Strategy — Create a size-balanced leftist tree

Restore heap property

Creating a leftist tree is just the linear time createTree

Since createTree produces a size-balanced tree, height is log 7

Suresh PRGH 2019: Lecture 25 November 11, 2019

14/22



Creating a leftist tree

leftistTree :: [a] -> Heap a
leftistTree 1 = fst (go (length 1) 1)

go :: Int -> [a] -> (Heap a, [a])
go @ xs = (Nil, xs)
go n xs = (Node s y hl hr, zs)
where
m=n “div’ 2
(hl, y:ys) = go m xs
Chr, zs) = go (n-m-1) ys

s =1+ size hl + size hr

Suresh PRGH 2019: Lecture 25 November 11, 2019 15/22



Repairing heaps

AYAYAWA

Suresh PRGH 2019: Lecture 25 November 11, 2019 16/ 22



Repairing heaps

¢ Assume that subtrees rooted at y and z are heaps

AYAYAWA

Suresh PRGH 2019: Lecture 25 November 11, 2019 16/ 22



Repairing heaps

¢ Assume that subtrees rooted at y and z are heaps

° ® How to ensure that tree rooted at x is a heap?

AYAYAWA

Suresh PRGH 2019: Lecture 25 November 11, 2019 16/ 22



Repairing heaps

¢ Assume that subtrees rooted at y and z are heaps

° ® How to ensure that tree rooted at x is a heap?

° e ® If x >= max y zallis okay

AYAYAWA

Suresh PRGH 2019: Lecture 25 November 11, 2019 16/ 22



Repairing heaps

Assume that subtrees rooted at y and z are heaps

° ® How to ensure that tree rooted at x is a heap?

AYAYAWA

If x >= max y zallis okay

Else swap x withmax y z,say z

Suresh PRGH 2019: Lecture 25 November 11, 2019 16/ 22



Repairing heaps

Assume that subtrees rooted at y and z are heaps

° ® How to ensure that tree rooted at x is a heap?

Else swap x withmax y z,say z

A A A A ¢ The heap property is satisfied at the root

If x >= max y zallis okay

Suresh PRGH 2019: Lecture 25 November 11, 2019 16 /22



Repairing heaps

Assume that subtrees rooted at y and z are heaps

° ® How to ensure that tree rooted at x is a heap?

Else swap x withmax y z,say z

A A A A ¢ The heap property is satisfied at the root

The left subtree is untouched

If x >= max y zallis okay

Suresh PRGH 2019: Lecture 25 November 11, 2019 16/22



Repairing heaps

Assume that subtrees rooted at y and z are heaps

° ® How to ensure that tree rooted at x is a heap?

Else swap x withmax y z,say z

A A A A ¢ The heap property is satisfied at the root

The left subtree is untouched

If x >= max y zallis okay

But the right subtree may no longer be a heap

Suresh PRGH 2019: Lecture 25 November 11, 2019 16/22



Repairing heaps

Assume that subtrees rooted at y and z are heaps

° ® How to ensure that tree rooted at x is a heap?

Else swap x withmax y z,say z

A A A A ¢ The heap property is satisfied at the root

The left subtree is untouched

If x >= max y zallis okay

But the right subtree may no longer be a heap

Recursively repair it - sifting

Suresh PRGH 2019: Lecture 25 November 11, 2019 16/22



Violation of heap property

® badness tells us how the heap property is violated at the root:

data Badness = NoBad | LeftBad | RightBad

badness ::

badness (Node

Suresh

| X >=m
[y >=m
| z>=m
where

y

z

m

Ord a => Heap a -> Badness

x hl hr)
NoBad
LeftBad
RightBad

if isEmpty hl then x else root hl
if isEmpty hr then x else root hr

maximum [x,y,z]

PRGH 2019: Lecture 25 November 11, 2019

17/22



Violation of heap property

® badness tells us how the heap property is violated at the root:

data Badness = NoBad | LeftBad | RightBad
badness :: Ord a => Heap a -> Badness
badness (Node _ x hl hr)

| x >=m = NoBad

| y >=m = LeftBad

| z >=m = RightBad

where
y = if isEmpty hl then x else root hl
z = if isEmpty hr then x else root hr
m = maximum [X,y,z]

® Constant time operation

Suresh PRGH 2019: Lecture 25 November 11, 2019 17/22



Exchange operations

® To restore the heap property, we need to exchange the root with either

the left or right child

Suresh PRGH 2019: Lecture 25 November 11, 2019 18/22



Exchange operations

® To restore the heap property, we need to exchange the root with either

the left or right child
® Constant time exchange operations:
xchnglLeft :: Heap a -> Heap a

xchngLeft (Node s x (Node sl y hll hlr) hr)
= Node s y (Node sl x hll hlr) hr

xchngRight :: Heap a -> Heap a

xchngRight (Node s x hl (Node sr y hrl hrr))
= Node s y hl (Node sr x hrl hrr)

Suresh PRGH 2019: Lecture 25 November 11, 2019 18/22



Repairing heaps - sift

® Recursively sift the root down the tree till there is no badness

sift ::

Ord a => Heap a -> Heap a

sift Nil = Nil

sift h

Suresh

NoBad
LeftBad

RightBad

= case badness h of

-> h

-> let Node sl x1 hll hrl = xchnglLeft h
in Node s1 x1 (sift hll) hril

-> let Node s2 x2 hl2 hr2 = xchngRight h
in Node s2 x2 h12 (sift hr2)

PRGH 2019: Lecture 25 November 11, 2019

19/22



Repairing heaps - sift

® Recursively sift the root down the tree till there is no badness

sift :: Ord a => Heap a -> Heap a

sift Nil = Nil

sift h = case badness h of
NoBad -> h

LeftBad -> let Node sl x1 hll hrl = xchnglLeft h
in Node s1 x1 (sift hll) hril

RightBad -> let Node s2 x2 hl2 hr2 = xchngRight h
in Node s2 x2 h12 (sift hr2)

® Runningtime is O(height of heap)

Suresh PRGH 2019: Lecture 25 November 11, 2019 19/22



Repairing heaps - sift

® Recursively sift the root down the tree till there is no badness

sift :: Ord a => Heap a -> Heap a

sift Nil = Nil

sift h = case badness h of
NoBad -> h

LeftBad -> let Node sl x1 hll hrl = xchnglLeft h
in Node s1 x1 (sift hll) hril

RightBad -> let Node s2 x2 hl2 hr2 = xchngRight h
in Node s2 x2 h12 (sift hr2)

® Runningtime is O(height of heap)
e Applied on a size-balanced tree, it is O(log )

Suresh PRGH 2019: Lecture 25 November 11, 2019 19/22



Repairing heaps — heapify

® heapify transforms a tree into a heap

heapify :: Ord a => Heap a -> Heap a
heapify Nil = Nil
heapify (Node s x hl hr)
= sift (Node s x
(heapify h1)
(heapify hr))

createHeap :: Ord a => [a] -> Heap a

createHeap = heapify . leftistTree

Suresh PRGH 2019: Lecture 25 November 11, 2019 20/22



Repairing heaps — heapify
® heapify transforms a tree into a heap
heapify :: Ord a => Heap a -> Heap a
heapify Nil = Nil
heapify (Node s x hl hr)
= sift (Node s x
(heapify h1)
(heapify hr))

createHeap :: Ord a => [a] -> Heap a
createHeap = heapify . leftistTree

¢ Applied on a size-balanced tree, heapify takes O(7) time

Suresh PRGH 2019: Lecture 25 November 11, 2019 20/22



Time complexity of heapify

e Proof: On size-balanced trees, choose ¢ such that

Suresh PRGH 2019: Lecture 25 November 11, 2019 21/22



Time complexity of heapify

e Proof: On size-balanced trees, choose ¢ such that
e T(1)<c

Suresh PRGH 2019: Lecture 25 November 11, 2019 21/22



Time complexity of heapify

e Proof: On size-balanced trees, choose ¢ such that
e T(1)<c
® T(n)<clogn+2T(n/2)

Suresh PRGH 2019: Lecture 25 November 11, 2019 21/22



Time complexity of heapify

e Proof: On size-balanced trees, choose ¢ such that
o T(1)<c
® T(n)<clogn+2T(n/2)

® Lettingn = Zk,

T(25)=ck+2T(2" ") = ck+2[c(k—1)+2T(2*2)]
=ck+2c(k—1)+2[c(k—2)+2T(2*)]

=ck+2c(k—1)+22c(k—2)+---+ 25 [c(k—k+1)+2T(2" )]
=c[k+2(k—1)+2%(k—2)+ -+ 2" (k—k + 1)+ 2]

Suresh PRGH 2019: Lecture 25 November 11, 2019 21/22



Time complexity of heapify

e Proof: On size-balanced trees, choose ¢ such that

Suresh PRGH 2019: Lecture 25 November 11, 2019 22/22



Time complexity of heapify

e Proof: On size-balanced trees, choose ¢ such that
e T(1)<c

Suresh PRGH 2019: Lecture 25 November 11, 2019 22/22



Time complexity of heapify

e Proof: On size-balanced trees, choose ¢ such that
e T(1)<c
® T(n)<clogn+2T(n/2)

Suresh PRGH 2019: Lecture 25 November 11, 2019 22/22



Time complexity of heapify

e Proof: On size-balanced trees, choose ¢ such that
o T(1)<c
® T(n)<clogn+2T(n/2)

® Lettingn = Zk,

T(2%) = c[k 12(k—1) 42X (k—2) 4425 k—k+1) + 2k
2T(2%) = ([ 2k—0) 4+22(k—1) 4428 k—k+2) 4281 42
T(2%) = c[—k +2 +2? o2kt 42 +2%]
=c[—*k +2kH —2 +2k]
=c[—logn +2n—2 +n]

=0(n)

Suresh PRGH 2019: Lecture 25 November 11, 2019 22/22



