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Priority queues

Priority queue: a queue, with each element having a priority

Elements exit the queue by priority, not in the order they entered
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Priority queues

Priority queue: a queue, with each element having a priority

Elements exit the queue by priority, not in the order they entered

Each element in a priority queue is a pair (p,v), where p is the priority

and v is the value
The priorities are values of some type a belonging to the class Ord
We only show how to maintain priorities, not the values

We assume priorities are distinct

® Tie breaker: the time at which element entered the queue
Priority queue operations

® insert - insert an element into the queue

® deleteMax — delete the maximum element from the queue
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Priority queue — implementations

® Unsorted lists
® insert - O(1)time
® deleteMax - O(n) time
e Sorted lists — descending order of priority
® insert - O(n)time
® deleteMax - O(1) time
e AVL trees
® insert- O(logn) time
® deleteMax - O(log7) time
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Heaps

® A heap is another way to implement priority queues

¢ To determine the maximum, it is not necessary that elements be sorted

We need to keep track of the maximum

Also the possible second maximum, to be installed as the new

maximum after deleteMax

® The next maximum ...

We look at max-heaps in this lecture, min-heaps are analogous
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Heaps

® Aheap is a binary tree satisfying the heap property

® Heap property - The value at every node is larger than the value at its
two children

® In a heap, the largest element is always at the root
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Example heaps
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Example heaps

¢ These three heaps are also leftist heaps
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Leftist Heaps

e Leftist heap - At every node, the size of the left subtree is greater than
or equal to the size of the right subtree
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Leftist Heaps

Leftist heap - At every node, the size of the left subtree is greater than
or equal to the size of the right subtree
Denote by Irs(/) the length of the right spine of a heap /
Let size(h) = n and ), and ), be the left and right subtrees of /»
® n =size(h,)+ size(h,)+ 1 and size(h,) > size(h,)
® Sosize(h,)<n/2
Irs(h) =14Irs(h,)
Claim: If size(h) = n, Irs(h) <logn + 1
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Right spine of a leftist heap

o Claim: If size(h) = n,Irs(h) <logn +1
® Proof: If n =1,Irs(h)=1<logl1+1
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Right spine of a leftist heap

o Claim: If size(h) = n,Irs(h) <logn +1
® Proof: If n =1,Irs(h)=1<logl1+1
e Ifn > 1and /, is the right subheap of /,
Irs(h) = 1+Irs(h,)
<1+(logn/2+1)

<14 (logn—1+1)
=logn+1
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A heap module

® Just as we stored the height at every node of an AVL tree ...
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A heap module

® Just as we stored the height at every node of an AVL tree ...

e we store the size of the tree at each node of a leftist heap

module Heap(Heap, emptyHeap, isEmpty,
union, insert, findMax, deleteMax,
createHeap, tolist) where
data Heap a = Nil | Node Int a (Heap a) (Heap a)
emptyHeap :: Heap a
emptyHeap = Nil
isEmpty :: Heap a -> Bool

isEmpty Nil = True

isEmpty _ False
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A heap module

size Nil =0

size (Node s _ _ ) =s

root (Node _ x _ _) = x

isHeap :: Ord a => Heap a -> Bool

isHeap Nil = True

isHeap (Node s x hl hr) = s == 1 + sl + sr & sl >= sr &&

where (sl, sr)

Suresh

(isEmpty hl Il x >= root hl) &&
(isEmpty hr || x >= root hr) &&
isHeap hl && isHeap hr

(size hl, size hr)
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Union of leftist heaps

¢ Union of two leftist heaps of size 72 and 7
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Union of leftist heaps

¢ Union of two leftist heaps of size 72 and 7

e The right spines are of length O(log2) and O(log7)
® Union is implemented by walking down the right spines

® Works in O(logm + log ) time
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Union of leftist heaps

Union of two leftist heaps of size 72 and »

The right spines are of length O(log 72) and O(log )
Union is implemented by walking down the right spines

® Works in O(logm + log ) time

Violation of leftist property at root is handled as follows:
realign :: Heap a -> Heap a
realign Nil = Nil

realign h@(Node s x hl hr)
| size hl >= size hr = h

Node s x hr hl

| otherwise
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Union of leftist heaps

union :: Ord a => Heap a -> Heap a -> Heap a
union h Nil =h
union Nil h =h

union h1@(Node s1 x hll hlr) h2@(Node s2 y h2l h2r)
realign
(Node (sl1l+s2) x hll (union hlr h2))
| otherwise = realign
(Node (s1+s2) y h21 (union hl h2r))

| X >=y
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Heap operations

® Important heap operations implemented using union
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Heap operations

® Important heap operations implemented using union

® insert and deleteMax take O(log7) time

insert :: Ord a => a -> Heap a -> Heap a
findMax :: Heap a -> Maybe a
deleteMax :: Ord a => Heap a -> (Maybe a, Heap a)

insert x h = union (Node 1 x Nil Nil) h
findMax h = if isEmpty h then Nothing
else Just (root h)
(Nothing, Nil)

(Just x, union hl hr)

deleteMax Nil
deleteMax (Node _ x hl hr)
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Creating heaps from lists

e We can form a leftist heap from a list in linear time
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Strategy — Create a size-balanced leftist tree
Restore heap property
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Suresh PRGH 2019: Lecture 25

November 11, 2019

14/22



Creating heaps from lists

We can form a leftist heap from a list in linear time
Strategy — Create a size-balanced leftist tree

Restore heap property

Creating a leftist tree is just the linear time createTree

Since createTree produces a size-balanced tree, height is log 7
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Creating a leftist tree

leftistTree :: [a] -> Heap a
leftistTree 1 = fst (go (length 1) 1)

go :: Int -> [a] -> (Heap a, [a])
go @ xs = (Nil, xs)
go n xs = (Node s y hl hr, zs)
where
m=n “div’ 2
(hl, y:ys) = go m xs
Chr, zs) = go (n-m-1) ys

s =1+ size hl + size hr
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Repairing heaps

AYAYAWA
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Repairing heaps

Assume that subtrees rooted at y and z are heaps

° ® How to ensure that tree rooted at x is a heap?

AYAYAWA

If x >= max y zallis okay

Else swap x withmax y z,say z
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Repairing heaps

Assume that subtrees rooted at y and z are heaps

° ® How to ensure that tree rooted at x is a heap?

Else swap x withmax y z,say z

A A A A ¢ The heap property is satisfied at the root

The left subtree is untouched

If x >= max y zallis okay

But the right subtree may no longer be a heap

Recursively repair it - sifting
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Violation of heap property

® badness tells us how the heap property is violated at the root:

data Badness = NoBad | LeftBad | RightBad

badness ::

badness (Node

Suresh

| X >=m
[y >=m
| z>=m
where

y

z

m

Ord a => Heap a -> Badness

x hl hr)
NoBad
LeftBad
RightBad

if isEmpty hl then x else root hl
if isEmpty hr then x else root hr

maximum [x,y,z]
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Violation of heap property

® badness tells us how the heap property is violated at the root:

data Badness = NoBad | LeftBad | RightBad
badness :: Ord a => Heap a -> Badness
badness (Node _ x hl hr)

| x >=m = NoBad

| y >=m = LeftBad

| z >=m = RightBad

where
y = if isEmpty hl then x else root hl
z = if isEmpty hr then x else root hr
m = maximum [X,y,z]

® Constant time operation
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Exchange operations

® To restore the heap property, we need to exchange the root with either

the left or right child
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Exchange operations

® To restore the heap property, we need to exchange the root with either

the left or right child
® Constant time exchange operations:
xchnglLeft :: Heap a -> Heap a

xchngLeft (Node s x (Node sl y hll hlr) hr)
= Node s y (Node sl x hll hlr) hr

xchngRight :: Heap a -> Heap a

xchngRight (Node s x hl (Node sr y hrl hrr))
= Node s y hl (Node sr x hrl hrr)
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Repairing heaps - sift

® Recursively sift the root down the tree till there is no badness

sift ::

Ord a => Heap a -> Heap a

sift Nil = Nil

sift h

Suresh

NoBad
LeftBad

RightBad

= case badness h of

-> h

-> let Node sl x1 hll hrl = xchnglLeft h
in Node s1 x1 (sift hll) hril

-> let Node s2 x2 hl2 hr2 = xchngRight h
in Node s2 x2 h12 (sift hr2)
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Repairing heaps - sift

® Recursively sift the root down the tree till there is no badness

sift :: Ord a => Heap a -> Heap a

sift Nil = Nil

sift h = case badness h of
NoBad -> h

LeftBad -> let Node sl x1 hll hrl = xchnglLeft h
in Node s1 x1 (sift hll) hril

RightBad -> let Node s2 x2 hl2 hr2 = xchngRight h
in Node s2 x2 h12 (sift hr2)

® Runningtime is O(height of heap)
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Repairing heaps - sift

® Recursively sift the root down the tree till there is no badness

sift :: Ord a => Heap a -> Heap a

sift Nil = Nil

sift h = case badness h of
NoBad -> h

LeftBad -> let Node sl x1 hll hrl = xchnglLeft h
in Node s1 x1 (sift hll) hril

RightBad -> let Node s2 x2 hl2 hr2 = xchngRight h
in Node s2 x2 h12 (sift hr2)

® Runningtime is O(height of heap)
e Applied on a size-balanced tree, it is O(log )
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Repairing heaps — heapify

® heapify transforms a tree into a heap

heapify :: Ord a => Heap a -> Heap a
heapify Nil = Nil
heapify (Node s x hl hr)
= sift (Node s x
(heapify h1)
(heapify hr))

createHeap :: Ord a => [a] -> Heap a

createHeap = heapify . leftistTree
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Repairing heaps — heapify
® heapify transforms a tree into a heap
heapify :: Ord a => Heap a -> Heap a
heapify Nil = Nil
heapify (Node s x hl hr)
= sift (Node s x
(heapify h1)
(heapify hr))

createHeap :: Ord a => [a] -> Heap a
createHeap = heapify . leftistTree

¢ Applied on a size-balanced tree, heapify takes O(7) time
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Time complexity of heapify

e Proof: On size-balanced trees, choose ¢ such that
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Time complexity of heapify

e Proof: On size-balanced trees, choose ¢ such that
o T(1)<c
® T(n)<clogn+2T(n/2)

® Lettingn = Zk,

T(25)=ck+2T(2" ") = ck+2[c(k—1)+2T(2*2)]
=ck+2c(k—1)+2[c(k—2)+2T(2*)]

=ck+2c(k—1)+22c(k—2)+---+ 25 [c(k—k+1)+2T(2" )]
=c[k+2(k—1)+2%(k—2)+ -+ 2" (k—k + 1)+ 2]
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Time complexity of heapify
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Time complexity of heapify

e Proof: On size-balanced trees, choose ¢ such that
o T(1)<c
® T(n)<clogn+2T(n/2)

® Lettingn = Zk,

T(2%) = c[k 12(k—1) 42X (k—2) 4425 k—k+1) + 2k
2T(2%) = ([ 2k—0) 4+22(k—1) 4428 k—k+2) 4281 42
T(2%) = c[—k +2 +2? o2kt 42 +2%]
=c[—*k +2kH —2 +2k]
=c[—logn +2n—2 +n]

=0(n)
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