Programming in Haskell: Lectures 23 & 24

S P Suresh

November 4 & 6, 2019

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 1/37

Balance

¢ The complexity of the key operations on trees depends on the height of
the tree

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 2/37

Balance

¢ The complexity of the key operations on trees depends on the height of
the tree

® In general, a tree might not be balanced

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 2/37

Balance

¢ The complexity of the key operations on trees depends on the height of
the tree

® In general, a tree might not be balanced

® Inserting in ascending or descending order results in highly skewed

trees

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 2/37

Balance

Inserting in Inserting in
ascending e descending
order

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 3/37

Balanced search trees

e Ideally, for each node, the left and right subtrees differ in size by at

most 1

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 4/37

Balanced search trees

e Ideally, for each node, the left and right subtrees differ in size by at

most 1

¢ Height is guaranteed to be at most log 7z + 1, where 7 is the size of the
tree

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 4/37

Balanced search trees

e Ideally, for each node, the left and right subtrees differ in size by at

most 1

¢ Height is guaranteed to be at most log 7z + 1, where 7 is the size of the
tree

® Whensizeis 1, heightisalso 1 = log1+1

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 4/37

Balanced search trees

e Ideally, for each node, the left and right subtrees differ in size by at

most 1

¢ Height is guaranteed to be at most log 7z + 1, where 7 is the size of the
tree

® Whensizeis 1, heightisalso 1 = log1+1
® When size is 7 > 1, subtrees are of size at most 72 /2

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 4/37

Balanced search trees

e Ideally, for each node, the left and right subtrees differ in size by at
most 1

¢ Height is guaranteed to be at most log 7z + 1, where 7 is the size of the
tree

® Whensizeis 1, heightis also 1 = log 1+ 1
® When size is 7 > 1, subtrees are of size at most 7/2
® Heightis 1+ (logn/2+1)=1+(logn—1+1)=logn+1

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 4/37

Balanced search trees

® Not easy to maintain size balance

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 5/37

Balanced search trees

® Not easy to maintain size balance

® Maintain height balance instead

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 5/37

Balanced search trees

® Not easy to maintain size balance
® Maintain height balance instead

¢ Atany node, the left and right subtrees differ in height by at most 1

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 5/37

Balanced search trees

Not easy to maintain size balance
Maintain height balance instead
At any node, the left and right subtrees differ in height by at most 1

Somewhat easier to maintain: use tree rotations

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

5/37

Balanced search trees

Not easy to maintain size balance

Maintain height balance instead

At any node, the left and right subtrees differ in height by at most 1
Somewhat easier to maintain: use tree rotations

AVL trees (Adelson-Velskii, Landis)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

5/37

Balanced search trees

Not easy to maintain size balance

Maintain height balance instead

At any node, the left and right subtrees differ in height by at most 1
Somewhat easier to maintain: use tree rotations

AVL trees (Adelson-Velskii, Landis)

Height is still O(logn)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

5/37

Balanced search trees

Height-balanced Height-balanced,

and size-balanced not size-balanced

Suresh PRGH 2019: Lectures 23 & 24 November ¢4 & 6, 2019 6/37

Height-balanced trees

e For a height-balanced tree of size 7, the height is at most 2log 7

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7/37

Height-balanced trees

e For a height-balanced tree of size 7, the height is at most 2log 7
e Let S(/)be the size of the smallest height-balanced tree of height /

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7/37

Height-balanced trees

e For a height-balanced tree of size 7, the height is at most 2log 7

e Let S(/)be the size of the smallest height-balanced tree of height /
e Claim: For h > 1, S(h) > 2"/2

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7/37

Height-balanced trees

e For a height-balanced tree of size 7, the height is at most 2log 7
e Let S(/)be the size of the smallest height-balanced tree of height /
e Claim: For h > 1, S(h) > 2"/

® S(1)=1=2"%and §(2)=2=2%?

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7/37

Height-balanced trees

e For a height-balanced tree of size 7, the height is at most 2log 7

e Let S(/)be the size of the smallest height-balanced tree of height /
e Claim: For h > 1, S(h) > 2"/2

® S(1)=1=2"%and §(2)=2=2%?
® Ifatree has height /) > 2

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7/37

Height-balanced trees

e For a height-balanced tree of size 7, the height is at most 2log 7

e Let S(/)be the size of the smallest height-balanced tree of height /
e Claim: For h > 1, S(h) > 2"/
® S(1)=1=2"2and §(2)=2=2%?
® Ifatree has height /) > 2
® one subtree has height / — 1

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7/37

Height-balanced trees

e For a height-balanced tree of size 7, the height is at most 2log 7

e Let S(/)be the size of the smallest height-balanced tree of height /
e Claim: For h > 1, S(h) > 2"/2

® S(1)=1=2"2and §(2)=2=2%?

® Ifatree has height /) > 2

® one subtree has height / — 1
e other subtree has height at least / —2

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7/37

Height-balanced trees

e For a height-balanced tree of size 7, the height is at most 2log 7

e Let S(/)be the size of the smallest height-balanced tree of height /
e Claim: For h > 1, S(h) > 2"/2

® S(1)=1=2"%and §(2)=2=2%?

® Ifatree has height /) > 2

® one subtree has height / — 1
e other subtree has height at least / —2

o S(h)y=1+S(h—1)+S(h—2)>S(h—2)+S(h—2)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7/37

Height-balanced trees

e For a height-balanced tree of size 7, the height is at most 2log 7

e Let S(/)be the size of the smallest height-balanced tree of height /
e Claim: For h > 1, S(h) > 2"/2

® S(1)=1=2"%and §(2)=2=2%?

® Ifatree has height /) > 2

® one subtree has height / — 1
e other subtree has height at least / —2

o S(h)=1+S(h—1)+S(h—2)> S(h—2)+S(h—2)
° S(})) > 2(h—2)/2 4 2(/7—2)/2 — 2(/7—2)/2+1 — 2/7/2

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7/37

Height-balanced trees

For a height-balanced tree of size 7, the height is at most 2log 7

Let S(/) be the size of the smallest height-balanced tree of height
Claim: For b > 1, S(h) > 2"/

® S(1)=1=2"%and §(2)=2=2%?

® Ifatree has height /) > 2

® one subtree has height / — 1
e other subtree has height at least / —2

o S(h)=1+S(h—1)+S(h—2)> S(h—2)+S(h—2)
° S(}]) > 2(h—2)/2 4 2(/7—2)/2 — 2(/7—2)/2+1 — 2/7/2

A height-balanced tree of size 7 has height at most 2 log

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

7/37

Tree rotations — rotate right

o o
OgD s
JAWAN AYA

® Useful when t11 has large height
e In Haskell:

rotateRight (Node x (Node y tl1l tlr) tr)
= Node y t11l (Node x tlr tr)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

8/37

Tree rotations - rotate left

() (V)
AR S
AN AN

® Useful when trr has large height
e In Haskell:

rotateLeft (Node x tl (Node y trl trr))
= Node y (Node x t1 trl) trr

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 9/37

Height-balanced trees

¢ Assume tree is currently balanced

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 10/37

Height-balanced trees

¢ Assume tree is currently balanced

® Each insert or delete creates an imbalance

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 10/37

Height-balanced trees

¢ Assume tree is currently balanced
e Each insert or delete creates an imbalance

e Fix imbalance using a rebalance function

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 10/37

Height-balanced trees

Assume tree is currently balanced
Each insert or delete creates an imbalance
Fix imbalance using a rebalance function

We need to compute height of a tree (and subtrees) to check for

imbalance

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

10/37

Height-balanced trees

Assume tree is currently balanced
Each insert or delete creates an imbalance
Fix imbalance using a rebalance function

We need to compute height of a tree (and subtrees) to check for

imbalance

Takes time O(7)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

10/37

Height-balanced trees

Assume tree is currently balanced
Each insert or delete creates an imbalance
Fix imbalance using a rebalance function

We need to compute height of a tree (and subtrees) to check for

imbalance
Takes time O(7)

Save time by storing height in the node

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

10/37

Height-balanced trees

Assume tree is currently balanced
Each insert or delete creates an imbalance
Fix imbalance using a rebalance function

We need to compute height of a tree (and subtrees) to check for

imbalance

Takes time O(7)

Save time by storing height in the node
Need to update height after each operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

10/37

AVL trees

¢ The data type in Haskell:

data AVL a = Nil | Node Int a CAVL a) CAVL a)
deriving (Eq, Ord)

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 /37

AVL trees

¢ The data type in Haskell:

data AVL a = Nil | Node Int a CAVL a) CAVL a)
deriving (Eq, Ord)
e Extracting the height of a tree:
height :: AVL a -> Int
height Nil =0
height (Node h _ _)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 /37

AVL trees

¢ The data type in Haskell:
data AVL a = Nil | Node Int a CAVL a) CAVL a)
deriving (Eq, Ord)
e Extracting the height of a tree:

height :: AVL a -> Int
height Nil =0
height (Node h _ _ _) =h

¢ Also need a measure of how skewed a tree is - its slope

slope :: AVL a -> Int
0
height tl1 - height tr

slope Nil

slope (Node _ _ tl1 tr)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 /37

AVL trees

® Checkif tisan AVL tree:

isAVL :: Ord a => AVL a -> Bool
isAVL Nil = True
isAVL t@(Node _ x tl1 tr)
= abs (slope t) < 2 &&
isAVL tl && 1isAVL tr &&
(isEmpty tl1 Il maxt tl < x) &&
(isEmpty tr Il x < mint tr)

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 12/37

AVL trees — rotates

e Since we maintain height at each node, we need to adjust it after each

operation:

rotateRight :: AVL a -> AVL a
rotateRight (Node h x (Node hl y tl1l1 tlr) tr)
Node nh y t1l (Node nhr x tlr tr)

where
nhr = 1 + max Cheight tlr) (height tr)
nh = 1 + max (Cheight t11) nhr

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 13/37

AVL trees — rotates

e Since we maintain height at each node, we need to adjust it after each

operation:

rotateRight :: AVL a -> AVL a
rotateRight (Node h x (Node hl y tl1l1 tlr) tr)
Node nh y t1l (Node nhr x tlr tr)

where
nhr = 1 + max Cheight tlr) (height tr)
nh = 1 + max (Cheight t11) nhr

® Constant time operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 13/37

AVL trees — rotates

e Since we maintain height at each node, we need to adjust it after each

operation:

rotateleft :: AVL a -> AVL a
rotateLeft (Node h x tl (Node hr y trl trr))
Node nh y (Node nhl x tl trl) trr

where
nhl = 1 + max Cheight t1) Cheight trl)
nh = 1 + max nhl Cheight trr)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 14/37

AVL trees — rotates

e Since we maintain height at each node, we need to adjust it after each

operation:

rotateleft :: AVL a -> AVL a
rotateLeft (Node h x tl (Node hr y trl trr))
Node nh y (Node nhl x tl trl) trr

where
nhl = 1 + max Cheight t1) Cheight trl)
nh = 1 + max nhl Cheight trr)

® Constant time operation

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 14/37

Rebalancing AVL trees

® Recall:

slope (Node h x tl tr) = height tl - height tr

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 15/37

Rebalancing AVL trees

® Recall:

slope (Node h x tl tr) = height tl - height tr

® In a height balanced tree, abs slope < 2

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 15/37

Rebalancing AVL trees

® Recall:

slope (Node h x tl tr) = height tl - height tr

® In a height balanced tree, abs slope < 2

e After an insert or delete, it can happen that abs slope ==

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 15/37

Rebalancing AVL trees

Recall:

slope (Node h x tl tr) = height tl - height

In a height balanced tree, abs slope < 2
After an insert or delete, it can happen that abs slope

Violations happen only at nodes visited by operation

Suresh PRGH 2019: Lectures 23 & 24

tr

November 4 & 6, 2019

15/37

Rebalancing AVL trees

Recall:

slope (Node h x tl tr) = height tl - height tr
In a height balanced tree, abs slope < 2
After an insert or delete, it can happen that abs slope ==

Violations happen only at nodes visited by operation

We rebalance each node on the path visited by operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

15/37

Rebalancing - slope ==

® Assume slope == 2 and both subtrees are balanced

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 16 /37

Rebalancing - slope ==

® Assume slope == 2 and both subtrees are balanced

® Slope of left subtree is @ or 1 - rotate right

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 16 /37

Rebalancing - slope ==

® Assume slope == 2 and both subtrees are balanced

® Slope of left subtree is @ or 1 - rotate right

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 16/37

Rebalancing - slope ==

® Assume slope == 2 and both subtrees are balanced

® Slope of left subtree is @ or 1 - rotate right

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 16/37

Rebalancing - slope ==

® Assume slope == 2 and both subtrees are balanced

Suresh PRGH 2019: Lectures 23 & 24 November ¢4 & 6, 2019 17/37

Rebalancing - slope ==

® Assume slope == 2 and both subtrees are balanced

e Slope of left subtree is -1

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 17/37

Rebalancing - slope ==

® Assume slope == 2 and both subtrees are balanced
e Slope of left subtree is -1
® Left rotate the Ieft subtree and then right rotate the tree

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 17/37

Rebalancing - slope ==

® Assume slope == 2 and both subtrees are balanced
e Slope of left subtree is -1
® Left rotate the Ieft subtree and then right rotate the tree

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 17/37

Rebalancing - slope ==

® Assume slope == 2 and both subtrees are balanced
e Slope of left subtree is -1
® Left rotate the left subtree and then right rotate the tree

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 17/37

Rebalancing - slope ==

® Assume slope == 2 and both subtrees are balanced
e Slope of left subtree is -1
® Left rotate the left subtree and then right rotate the tree

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 17/37

Rebalancing - slope == -2

® Assume slope == -2 and both subtrees are balanced

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 18/37

Rebalancing - slope == -2

® Assume slope == -2 and both subtrees are balanced

® Slope of right subtree is @ or -1 - rotate left

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 18/37

Rebalancing - slope == -2

® Assume slope == -2 and both subtrees are balanced

® Slope of right subtree is @ or -1 - rotate left

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 18/37

Rebalancing - slope == -2

® Assume slope == -2 and both subtrees are balanced

® Slope of right subtree is @ or -1 - rotate left

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 18/37

Rebalancing - slope == -2

® Assume slope == -2 and both subtrees are balanced

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 19/37

Rebalancing - slope == -2

® Assume slope == -2 and both subtrees are balanced

e Slope of right subtree is 1

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 19/37

Rebalancing - slope == -2

® Assume slope == -2 and both subtrees are balanced
e Slope of right subtree is 1
® Right rotate the right subtree and then left rotate the tree

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 19/37

Rebalancing - slope == -2

® Assume slope == -2 and both subtrees are balanced
e Slope of right subtree is 1
® Right rotate the right subtree and then left rotate the tree

Suresh PRGH 2019: Lectures 23 & 24 Novemberq & 6,2019 19/37

Rebalancing - slope == -

® Assume slope == -2 and both subtrees are balanced
e Slope of right subtree is 1
® Right rotate the right subtree and then left rotate the tree

Suresh PRGH 2019: Lectures 23 & 24 November g & 6,2019 19/37

Rebalancing - slope == -

® Assume slope == -2 and both subtrees are balanced

e Slope of right subtree is 1
® Right rotate the right subtree and then left rotate the tree

Suresh PRGH 2019: Lectures 23 & 24 November g & 6,2019 19/37

Rebalancing in Haskell

® The rebalance function

rebalance :: Ord a => AVL a -> AVL a
rebalance t@(Node h x tl tr)
| abs st <2 =1t
| st == 2 = if stl == -1 then
rotateRight (Node h x (rotatelLeft tl) tr)
else rotateRight t
| st == -2 = if str == 1 then
rotateLeft (Node h x tl (rotateRight tr))
else rotatelLeft t
where (st, stl, str) = (slope t, slope tl, slope tr)

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 20/37

Rebalancing in Haskell

® The rebalance function

rebalance :: Ord a => AVL a -> AVL a
rebalance t@(Node h x tl tr)
| abs st <2 =1t
| st == 2 = if stl == -1 then
rotateRight (Node h x (rotatelLeft tl) tr)
else rotateRight t
| st == -2 = if str == 1 then
rotateLeft (Node h x tl (rotateRight tr))
else rotatelLeft t
where (st, stl, str) = (slope t, slope tl, slope tr)

® Constant time operation
Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 20/37

Searching in an AVL tree

searchAVL :: Ord a => a -> AVL a -> Bool
searchAVL v Nil = False
searchAVL v (Node _ x tl tr)
| v == x = True
searchAVL v tl
searchAVL v tr

| v < x

| v > x

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019

21/37

Inserting in a tree

insertAVL :: Ord a => a -> AVL a -> AVL a
insertAVL v Nil = Node 1 v Nil Nil
insertAVL v t@(Node h x tl tr)

| v < x = rebalance (Node nhl x ntl tr)
| v > x = rebalance (Node nhr x tl ntr)
| v=x=t
where
ntl = insertAVL v tl
ntr = insertAVL v tr
nhl = 1 + max Cheight ntl) Cheight tr)
nhr = 1 + max Cheight t1) (height ntr)

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019

22/37

Deleting the maximum el

deleteMax :: Ord a => AVL a -> (a, AVL a)

deleteMax (Node
deleteMax (Node

where

Gy, ty)
nh

Suresh

h

x tl Nil) = (x, tl)

x tl tr) = (y, rebalance (Node nh x tl ty))

deleteMax tr
1 + max Cheight t1) Cheight ty)

PRGH 2019: Lectures 23 & 24

ement

November ¢ & 6, 2019

23/37

Deleting from a tree

deleteAVL :: Ord a => a -> AVL a -> AVL a
deleteAVL v Nil = Nil
deleteAVL v t@(Node h x tl tr)

| v < x = rebalance (Node nhl x ntl tr)
[v > x = rebalance (Node nhr x tl1 ntr)
| v ==x = 1if isEmpty tl then tr

else rebalance (Node nhy y ty tr)

where

Cy, ty) = deleteMax tl
(ntl, ntr) = (deleteAVL v tl1, deleteAVL v tr)
nhl = 1 + max Cheight ntl) Cheight tr)
nhr = 1 + max Cheight t1) Cheight ntr)
nhy = 1 + max Cheight ty) Cheight tr)
Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019

24/37

Tree operations — complexity

® Left and right rotates take constant time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25/37

Tree operations — complexity

® Left and right rotates take constant time

e Rebalance of a tree takes constant time, when both subtrees are

balanced

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25/37

Tree operations — complexity

® Left and right rotates take constant time

e Rebalance of a tree takes constant time, when both subtrees are

balanced

e Search takes time proportional to height of the tree

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25/37

Tree operations — complexity

Left and right rotates take constant time

Rebalance of a tree takes constant time, when both subtrees are

balanced
Search takes time proportional to height of the tree

Insert and delete spend constant time on each node of some maximal
path

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25/37

Tree operations — complexity

Left and right rotates take constant time

Rebalance of a tree takes constant time, when both subtrees are

balanced
Search takes time proportional to height of the tree

Insert and delete spend constant time on each node of some maximal
path

Take time proportional to height of the tree

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25/37

Tree operations — complexity

Left and right rotates take constant time

Rebalance of a tree takes constant time, when both subtrees are

balanced
Search takes time proportional to height of the tree

Insert and delete spend constant time on each node of some maximal
path

Take time proportional to height of the tree
Height of a tree with » nodes is < 2log

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25/37

Tree operations — complexity

Left and right rotates take constant time

Rebalance of a tree takes constant time, when both subtrees are

balanced
Search takes time proportional to height of the tree

Insert and delete spend constant time on each node of some maximal
path

Take time proportional to height of the tree
Height of a tree with » nodes is < 2log

Thus each operation takes O(log7) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25/37

Tree operations — complexity

Left and right rotates take constant time

Rebalance of a tree takes constant time, when both subtrees are

balanced
Search takes time proportional to height of the tree

Insert and delete spend constant time on each node of some maximal
path

Take time proportional to height of the tree
Height of a tree with » nodes is < 2log
Thus each operation takes O(log7) time

A sequence of 7 operations take at most O(7 log7) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25/37

Other useful functions

® Create an empty AVL tree:

emptyAVL :: AVL a
emptyAVL = Nil

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 26/37

Other useful functions

® Create an empty AVL tree:

emptyAVL :: AVL a
emptyAVL = Nil

® Check if a tree is empty:

isEmpty :: AVL a -> Bool

isEmpty Nil = True

isEmpty _ False

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 26/37

Other useful functions

® Create an empty AVL tree:

emptyAVL :: AVL a
emptyAVL = Nil

® Check if a tree is empty:

isEmpty :: AVL a -> Bool
isEmpty Nil = True
isEmpty _ = False

e Create an AVL tree from alist (O(7 log7) time):

createAVL :: Ord a => [a] -> AVL a
createAVL = foldl' (flip insertAVL) emptyAVL

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 26/37

Other useful functions

® Create a sorted list from an AVL tree:

inorder :: Ord a => AVL a -> [dad]
inorder Nil =[]
x tl tr)

inorder (Node inorder tl ++ [x] ++ inhorder tr

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 27/37

Other useful functions

® Create a sorted list from an AVL tree:

inorder :: Ord a => AVL a -> [dad]
inorder Nil =[]

inorder (Node _

x tl tr) = inorder tl1 ++ [x] ++ inorder tr

® T (n)=2T(n/2)4+O(n),so T(n)=O(nlogn)

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 27/37

Other useful functions

® Create a sorted list from an AVL tree:

inorder :: Ord a => AVL a -> [dad]
inorder Nil =[]

inorder (Node _

x tl tr) = inorder tl1 ++ [x] ++ inorder tr

® T (n)=2T(n/2)4+O(n),so T(n)=O(nlogn)

¢ Culprit is ++, which takes O(7) time

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 27/37

Other useful functions

® Smarter inorder:

inorder :: Ord a => AVL a -> [dad]
inorder t =go t []
where go Nil 1 = 1L

go (Node _ x t1 tr) 1 = go tl (x:go tr 1)

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 28/37

Other useful functions

® Smarter inorder:

inorder :: Ord a => AVL a -> [dad]
inorder t =go t []
where go Nil 1 = 1L

go (Node _ x t1 tr) 1 = go tl (x:go tr 1)

® T(n)=2T(n/2)+c,s0 T(n)=0O(n)

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 28/37

Other useful functions

® Smarter inorder:

inorder :: Ord a => AVL a -> [dad]
inorder t =go t []
where go Nil 1 = 1L

go (Node _ x t1 tr) 1 = go tl (x:go tr 1)

® T(n)=2T(n/2)+c,s0 T(n)=0O(n)
e We can sort alist in O(7 log) time by:

treesort :: Ord a => [a] -> [a]

treesort = inorder . createAVL

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 28/37

Other useful functions

® inorder (createAVL 1) sortslist1

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 29/37

Other useful functions

® inorder (createAVL 1) sortslist1

e What if we wanted a size-balanced tree t such that inorder t == 17

Suresh PRGH 2019: Lectures 23 & 24 November ¢4 & 6, 2019 29/37

Other useful functions

® inorder (createAVL 1) sortslist1
e What if we wanted a size-balanced tree t such that inorder t == 1?

¢ t will not be a search tree in general

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 29/37

Other useful functions

inorder (createAVL 1) sorts list1
What if we wanted a size-balanced tree t such that inorder t == 17?
t will not be a search tree in general

If 1 itself is sorted, t is search tree

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

29/37

Other useful functions

inorder (createAVL 1) sorts list1

What if we wanted a size-balanced tree t such that inorder t == 1?
t will not be a search tree in general

If 1 itself is sorted, t is search tree

This is just the smart createTree we saw in a previous class

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

29/37

Other useful functions

inorder (createAVL 1) sorts list1

What if we wanted a size-balanced tree t such that inorder t == 1?
t will not be a search tree in general

If 1 itself is sorted, t is search tree

This is just the smart createTree we saw in a previous class

Works in O(7) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

29/37

inorderTree

inorderTree :: [a] -> AVL a
inorderTree 1 = fst (go (length 1) 1)
where

go :: Int -> [a] -> CAVL a, [al)

go @ xs = (Nil, xs)

go n xs = (Node h y tl tr, zs)

where

m=n div' 2
(tl, y:ys) = go m xs
(tr, zs) = go (n-m-1) ys
h =1 + max (Cheight tl1) Cheight tr)

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019

30/37

A module for AVL trees

® Saved in AVL.hs

module AVL(AVL, emptyAVL, isEmpty, isAVL,
insertAVL, deleteAVL, searchAVL,

createAVL, inorder, inorderTree) where

data AVL a = Nil | Node Int a CAVL a) (CAVL a)
deriving (Eq, Ord)

instance Show a => Show (AVL a) where

show t = intercalate "\n" (draw t)

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 31/37

A module for AVL trees

® Saved in AVL.hs

module AVL(AVL, emptyAVL, isEmpty, isAVL,
insertAVL, deleteAVL, searchAVL,

createAVL, inorder, inorderTree) where

data AVL a = Nil | Node Int a CAVL a) (CAVL a)
deriving (Eq, Ord)

instance Show a => Show (AVL a) where
show t = intercalate "\n" (draw t)

e Can be used to define the Set ADT

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019 31/37

The Set ADT again

module Set(Set, emptySet, createSet,
insertInto, deleteFrom, search,
union, intersect, diff) where
import AVL

data Set a = Set CAVL a)
instance (Ord a, Show a) => Show (Set a) where

show (Set t) = show (inorder t)

emptySet :: Ord a => Set a
emptySet = Set emptyAVL

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019

32/37

The Set ADT again

createSet :: Ord a => [a] -> Set a
createSet = Set . createAVL

search :: Ord a => a -> Set a -> Bool
search x (Set t) = searchAVL x t

insertInto :: Ord a => a -> Set a -> Set a
insertInto x (Set t) = Set (insertAVL x t)

deleteFrom :: Ord a => a -> Set a -> Set a
deleteFrom x (Set t) = Set (deleteAVL x t)

Suresh PRGH 2019: Lectures 23 & 24

November ¢ & 6, 2019

33/37

More set operations

union :: Ord a => Set a -> Set a -> Set a
union (Set tl1) (Set t2) = Set $ inorderTree $

unionMerge (inorder t1) (inorder t2)

unionMerge :: Ord a => [a] -> [a] -> [a]
ys
unionMerge xs [] = xs

unionMerge [] ys

unionMerge (x:xs) (y:ys)

| x <y = x:unionMerge xs (y:ys)
| 'y < x = y:unionMerge (x:xs) ys
| x ==y = x:unionMerge xs ys

Suresh PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019

34/37

More set operations

intersect :: Ord a => Set a -> Set a -> Set a
intersect (Set t1) (Set t2) = Set $ inorderTree $

intersectMerge (inorder t1) (inorder t2)

intersectMerge :: Ord a => [a] -> [a] -> [da]
intersectMerge [] ys = []
intersectMerge xs [] = []

intersectMerge (x:xs) (y:ys)

| X <y = intersectMerge xs (y:ys)
| y < x = intersectMerge (x:xs) ys
| x ==y = x:intersectMerge xs ys

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 35/37

diff :: Ord a
diff (Set t1)

diffMerge ::
diffMerge []
diffMerge xs

diffMerge (x:

Suresh

More set operations
=> Set a -> Set a -> Set a
(Set t2) = Set $ inorderTree $

diffMerge (inorder tl1) (inorder t2)

Oord a => [a] -> [a] -> [da]

ys = [1
[1 = xs
xs) (y:ys)

x:diffMerge xs (y:ys)
diffMerge (x:xs) ys

diffMerge xs ys

PRGH 2019: Lectures 23 & 24 November ¢ & 6, 2019

36/37

Summary

® AVL trees are a fundamental, but non-trivial data structures

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 37/37

Summary

® AVL trees are a fundamental, but non-trivial data structures

¢ Allows us to efficiently implement the Set ADT

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 37/37

Summary

® AVL trees are a fundamental, but non-trivial data structures
¢ Allows us to efficiently implement the Set ADT

® search, insertInto and deleteFromin O(log7) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 37/37

Summary

® AVL trees are a fundamental, but non-trivial data structures
¢ Allows us to efficiently implement the Set ADT

® search, insertInto and deleteFromin O(log7) time

® union, intersect and diff in O(m + 7) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 37/37

Summary

® AVL trees are a fundamental, but non-trivial data structures
¢ Allows us to efficiently implement the Set ADT

® search, insertInto and deleteFromin O(log7) time

® union, intersect and diff in O(m + 7) time

¢ An illustration of the power of Haskell

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 37/37

Summary

AVL trees are a fundamental, but non-trivial data structures
Allows us to efficiently implement the Set ADT

® search, insertInto and deleteFromin O(log7) time

® union, intersect and diff in O(m + 7) time
An illustration of the power of Haskell

Mathematical definitions almost directly transcribed to code

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

37/37

Summary

AVL trees are a fundamental, but non-trivial data structures
Allows us to efficiently implement the Set ADT

® search, insertInto and deleteFromin O(log7) time

® union, intersect and diff in O(m +) time
An illustration of the power of Haskell
Mathematical definitions almost directly transcribed to code

Pattern matching is very powerful

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

37/37

Summary

AVL trees are a fundamental, but non-trivial data structures
Allows us to efficiently implement the Set ADT

® search, insertInto and deleteFromin O(log7) time

® union, intersect and diff in O(m +) time
An illustration of the power of Haskell
Mathematical definitions almost directly transcribed to code
Pattern matching is very powerful

Allows us to easily specify complex transformations on data

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019

37/37

