Programming in Haskell: Lectures $23 \mathbb{\&}-24$

S P Suresh

November 4 \& 6, 2019

Balance

- The complexity of the key operations on trees depends on the height of the tree

Balance

- The complexity of the key operations on trees depends on the height of the tree
- In general, a tree might not be balanced

Balance

- The complexity of the key operations on trees depends on the height of the tree
- In general, a tree might not be balanced
- Inserting in ascending or descending order results in highly skewed trees

Balance

Balanced search trees

- Ideally, for each node, the left and right subtrees differ in size by at most 1

Balanced search trees

- Ideally, for each node, the left and right subtrees differ in size by at most 1
- Height is guaranteed to be at most $\log n+1$, where n is the size of the tree

Balanced search trees

- Ideally, for each node, the left and right subtrees differ in size by at most 1
- Height is guaranteed to be at most $\log n+1$, where n is the size of the tree
- When size is 1 , height is also $1=\log 1+1$

Balanced search trees

- Ideally, for each node, the left and right subtrees differ in size by at most 1
- Height is guaranteed to be at most $\log n+1$, where n is the size of the tree
- When size is 1 , height is also $1=\log 1+1$
- When size is $n>1$, subtrees are of size at most $n / 2$

Balanced search trees

- Ideally, for each node, the left and right subtrees differ in size by at most 1
- Height is guaranteed to be at most $\log n+1$, where n is the size of the tree
- When size is 1 , height is also $1=\log 1+1$
- When size is $n>1$, subtrees are of size at most $n / 2$
- Height is $1+(\log n / 2+1)=1+(\log n-1+1)=\log n+1$

Balanced search trees

- Not easy to maintain size balance

Balanced search trees

- Not easy to maintain size balance
- Maintain height balance instead

Balanced search trees

- Not easy to maintain size balance
- Maintain height balance instead
- At any node, the left and right subtrees differ in height by at most 1

Balanced search trees

- Not easy to maintain size balance
- Maintain height balance instead
- At any node, the left and right subtrees differ in height by at most 1
- Somewhat easier to maintain: use tree rotations

Balanced search trees

- Not easy to maintain size balance
- Maintain height balance instead
- At any node, the left and right subtrees differ in height by at most 1
- Somewhat easier to maintain: use tree rotations
- AVL trees (Adelson-Velskii, Landis)

Balanced search trees

- Not easy to maintain size balance
- Maintain height balance instead
- At any node, the left and right subtrees differ in height by at most 1
- Somewhat easier to maintain: use tree rotations
- AVL trees (Adelson-Velskii, Landis)
- Height is still $O(\log n)$

Balanced search trees

Height-balanced
and size-balanced

Height-balanced trees

- For a height-balanced tree of size n, the height is at most $2 \log n$

Height-balanced trees

- For a height-balanced tree of size n, the height is at most $2 \log n$
- Let $S(h)$ be the size of the smallest height-balanced tree of height h

Height-balanced trees

- For a height-balanced tree of size n, the height is at most $2 \log n$
- Let $S(h)$ be the size of the smallest height-balanced tree of height b
- Claim: For $h \geq 1, S(b) \geq 2^{b / 2}$

Height-balanced trees

- For a height-balanced tree of size n, the height is at most $2 \log n$
- Let $S(h)$ be the size of the smallest height-balanced tree of height b
- Claim: For $h \geq 1, S(b) \geq 2^{b / 2}$
- $S(1)=1=2^{1 / 2}$ and $S(2)=2=2^{2 / 2}$

Height-balanced trees

- For a height-balanced tree of size n, the height is at most $2 \log n$
- Let $S(h)$ be the size of the smallest height-balanced tree of height b
- Claim: For $h \geq 1, S(b) \geq 2^{b / 2}$
- $S(1)=1=2^{1 / 2}$ and $S(2)=2=2^{2 / 2}$
- If a tree has height $b>2$

Height-balanced trees

- For a height-balanced tree of size n, the height is at most $2 \log n$
- Let $S(h)$ be the size of the smallest height-balanced tree of height b
- Claim: For $h \geq 1, S(b) \geq 2^{b / 2}$
- $S(1)=1=2^{1 / 2}$ and $S(2)=2=2^{2 / 2}$
- If a tree has height $b>2$
- one subtree has height $h-1$

Height-balanced trees

- For a height-balanced tree of size n, the height is at most $2 \log n$
- Let $S(h)$ be the size of the smallest height-balanced tree of height b
- Claim: For $h \geq 1, S(b) \geq 2^{b / 2}$
- $S(1)=1=2^{1 / 2}$ and $S(2)=2=2^{2 / 2}$
- If a tree has height $b>2$
- one subtree has height $b-1$
- other subtree has height at least $h-2$

Height-balanced trees

- For a height-balanced tree of size n, the height is at most $2 \log n$
- Let $S(h)$ be the size of the smallest height-balanced tree of height b
- Claim: For $h \geq 1, S(b) \geq 2^{b / 2}$
- $S(1)=1=2^{1 / 2}$ and $S(2)=2=2^{2 / 2}$
- If a tree has height $b>2$
- one subtree has height $b-1$
- other subtree has height at least $h-2$
- $S(h)=1+S(h-1)+S(h-2) \geq S(h-2)+S(h-2)$

Height-balanced trees

- For a height-balanced tree of size n, the height is at most $2 \log n$
- Let $S(h)$ be the size of the smallest height-balanced tree of height b
- Claim: For $h \geq 1, S(b) \geq 2^{b / 2}$
- $S(1)=1=2^{1 / 2}$ and $S(2)=2=2^{2 / 2}$
- If a tree has height $b>2$
- one subtree has height $b-1$
- other subtree has height at least $h-2$
- $S(h)=1+S(h-1)+S(h-2) \geq S(h-2)+S(h-2)$
- $S(b) \geq 2^{(b-2) / 2}+2^{(b-2) / 2}=2^{(b-2) / 2+1}=2^{b / 2}$

Height-balanced trees

- For a height-balanced tree of size n, the height is at most $2 \log n$
- Let $S(h)$ be the size of the smallest height-balanced tree of height b
- Claim: For $h \geq 1, S(b) \geq 2^{b / 2}$
- $S(1)=1=2^{1 / 2}$ and $S(2)=2=2^{2 / 2}$
- If a tree has height $b>2$
- one subtree has height $b-1$
- other subtree has height at least $h-2$
- $S(h)=1+S(h-1)+S(h-2) \geq S(h-2)+S(h-2)$
- $S(h) \geq 2^{(h-2) / 2}+2^{(h-2) / 2}=2^{(h-2) / 2+1}=2^{h / 2}$
- A height-balanced tree of size n has height at most $2 \log n$

Tree rotations - rotate right

- Useful when tll has large height
- In Haskell:

$$
\begin{aligned}
\text { rotateRight (Node } x & (\text { Node y tll tlr) tr) } \\
= & \text { Node } y \text { tll (Node } x \text { tlr } t r)
\end{aligned}
$$

Tree rotations - rotate left

- Useful when trr has large height
- In Haskell:

$$
\begin{aligned}
\text { rotateLeft (Node } x \text { tl } & (\text { Node } y \text { trl trr)) } \\
& =\text { Node } y(\text { Node } x \text { tl trl) trr }
\end{aligned}
$$

Height-balanced trees

- Assume tree is currently balanced

Height-balanced trees

- Assume tree is currently balanced
- Each insert or delete creates an imbalance

Height-balanced trees

- Assume tree is currently balanced
- Each insert or delete creates an imbalance
- Fix imbalance using a rebalance function

Height-balanced trees

- Assume tree is currently balanced
- Each insert or delete creates an imbalance
- Fix imbalance using a rebalance function
- We need to compute height of a tree (and subtrees) to check for imbalance

Height-balanced trees

- Assume tree is currently balanced
- Each insert or delete creates an imbalance
- Fix imbalance using a rebalance function
- We need to compute height of a tree (and subtrees) to check for imbalance
- Takes time $O(n)$

Height-balanced trees

- Assume tree is currently balanced
- Each insert or delete creates an imbalance
- Fix imbalance using a rebalance function
- We need to compute height of a tree (and subtrees) to check for imbalance
- Takes time $O(n)$
- Save time by storing height in the node

Height-balanced trees

- Assume tree is currently balanced
- Each insert or delete creates an imbalance
- Fix imbalance using a rebalance function
- We need to compute height of a tree (and subtrees) to check for imbalance
- Takes time $O(n)$
- Save time by storing height in the node
- Need to update height after each operation

AVL trees

- The data type in Haskell:

$$
\begin{aligned}
& \text { data AVL } a=\text { Nil । Node Int a (AVL a) (AVL a) } \\
& \quad \text { deriving (Eq, Ord) }
\end{aligned}
$$

AVL trees

- The data type in Haskell:

$$
\begin{aligned}
& \text { data AVL } a=\text { Nil । Node Int a (AVL a) (AVL a) } \\
& \quad \text { deriving (Eq, Ord) }
\end{aligned}
$$

- Extracting the height of a tree:

```
height :: AVL a -> Int
height Nil = 0
height (Node h _ _ _) = h
```


AVL trees

- The data type in Haskell:

$$
\begin{aligned}
& \text { data AVL } a=\text { Nil । Node Int a (AVL a) (AVL a) } \\
& \quad \text { deriving (Eq, Ord) }
\end{aligned}
$$

- Extracting the height of a tree:

$$
\begin{aligned}
& \text { height :: AVL a -> Int } \\
& \text { height Nil }=0 \\
& \text { height (Node h _ _ _) = h }
\end{aligned}
$$

- Also need a measure of how skewed a tree is - its slope

$$
\begin{aligned}
& \text { slope :: AVL a -> Int } \\
& \text { slope Nil }=0 \\
& \text { slope (Node _ _ tl tr) }=\text { height tl - height tr }
\end{aligned}
$$

AVL trees

- Check if t is an AVL tree:

$$
\begin{aligned}
& \text { isAVL :: Ord a => AVL a -> Bool } \\
& \text { isAVL Nil = True } \\
& \text { isAVL t@(Node _ x tl tr) } \\
& =\text { abs (slope } t \text {) }<2 \text { \&\& } \\
& \text { isAVL tl \&\& isAVL tr \&\& } \\
& \text { (isEmpty tl II maxt tl < x) \&\& } \\
& \text { (isEmpty tr \| } \mathrm{x}<\text { mint tr) }
\end{aligned}
$$

AVL trees - rotates

- Since we maintain height at each node, we need to adjust it after each operation:

```
rotateRight :: AVL a -> AVL a
rotateRight (Node h x (Node hl y tll tlr) tr)
    = Node nh y tll (Node nhr x tlr tr)
where
\begin{tabular}{ll}
nhr & \(=1+\max (h e i g h t ~ t l r)\) (height tr) \\
nh & \(=1+\max\) (height tll) nhr
\end{tabular}
```


AVL trees - rotates

- Since we maintain height at each node, we need to adjust it after each operation:

```
rotateRight :: AVL a -> AVL a
rotateRight (Node h x (Node hl y tll tlr) tr)
                        = Node nh y tll (Node nhr x tlr tr)
where
\begin{tabular}{ll}
nhr & \(=1+\max (h e i g h t\) \\
nh & \(=1+\max\) (height \(t l l)\) (height tr\()\) \\
\end{tabular}
```

- Constant time operation

AVL trees - rotates

- Since we maintain height at each node, we need to adjust it after each operation:

```
rotateLeft :: AVL a -> AVL a
rotateLeft (Node h x tl (Node hr y trl trr))
    = Node nh y (Node nhl x tl trl) trr
where
\begin{tabular}{ll}
nhl & \(=1+\max (h e i g h t\) \\
nh & \(=1+\max \mathrm{nhl}\) (height (hr)
\end{tabular}
```


AVL trees - rotates

- Since we maintain height at each node, we need to adjust it after each operation:

```
rotateLeft :: AVL a -> AVL a
rotateLeft (Node h x tl (Node hr y trl trr))
    = Node nh y (Node nhl x tl trl) trr
where
\begin{tabular}{ll}
nhl & \(=1+\max (h e i g h t\) \\
nh & \(=1+\max \mathrm{nhl}\) (height (hr)
\end{tabular}
```

- Constant time operation

Rebalancing AVL trees

- Recall:

$$
\text { slope }(\text { Node } \mathrm{h} \times \mathrm{tl} \mathrm{tr})=\text { height tl - height tr }
$$

Rebalancing AVL trees

- Recall:

```
slope (Node h x tl tr) = height tl - height tr
```

- In a height balanced tree, abs slope < 2

Rebalancing AVL trees

- Recall:

$$
\text { slope }(\text { Node } \mathrm{h} \times \mathrm{tl} \mathrm{tr})=\text { height } \mathrm{tl} \text { - height tr }
$$

- In a height balanced tree, abs slope < 2
- After an insert or delete, it can happen that abs slope $==2$

Rebalancing AVL trees

- Recall:

$$
\text { slope }(\text { Node } \mathrm{h} \times \mathrm{tl} \mathrm{tr})=\text { height } \mathrm{tl} \text { - height tr }
$$

- In a height balanced tree, abs slope < 2
- After an insert or delete, it can happen that abs slope $==2$
- Violations happen only at nodes visited by operation

Rebalancing AVL trees

- Recall:

$$
\text { slope }(\text { Node } \mathrm{h} \times \mathrm{tl} \mathrm{tr})=\text { height tl - height tr }
$$

- In a height balanced tree, abs slope < 2
- After an insert or delete, it can happen that abs slope $==2$
- Violations happen only at nodes visited by operation
- We rebalance each node on the path visited by operation

Rebalancing-slope $==2$

- Assume slope $==2$ and both subtrees are balanced

Rebalancing-slope $==2$

- Assume slope $==2$ and both subtrees are balanced
- Slope of left subtree is 0 or 1 - rotate right

Rebalancing-slope $==2$

- Assume slope $==2$ and both subtrees are balanced
- Slope of left subtree is 0 or 1 - rotate right

Rebalancing-slope == 2

- Assume slope $==2$ and both subtrees are balanced
- Slope of left subtree is 0 or 1 - rotate right

Rebalancing-slope $==2$

- Assume slope $==2$ and both subtrees are balanced

Rebalancing-slope $==2$

- Assume slope $==2$ and both subtrees are balanced
- Slope of left subtree is -1

$$
\text { Rebalancing - slope }==2
$$

- Assume slope $==2$ and both subtrees are balanced
- Slope of left subtree is -1
- Left rotate the left subtree and then right rotate the tree

Rebalancing-slope $==2$

- Assume slope $==2$ and both subtrees are balanced
- Slope of left subtree is -1
- Left rotate the left subtree and then right rotate the tree

Rebalancing-slope $==2$

- Assume slope $==2$ and both subtrees are balanced
- Slope of left subtree is -1
- Left rotate the left subtree and then right rotate the tree

Rebalancing-slope $==2$

- Assume slope $==2$ and both subtrees are balanced
- Slope of left subtree is -1
- Left rotate the left subtree and then right rotate the tree

Rebalancing-slope ==-2

- Assume slope $==-2$ and both subtrees are balanced

Rebalancing - slope $==-2$

- Assume slope $==-2$ and both subtrees are balanced
- Slope of right subtree is 0 or -1 - rotate left

Rebalancing - slope $==-2$

- Assume slope $==-2$ and both subtrees are balanced
- Slope of right subtree is 0 or -1 - rotate left

Rebalancing - slope $==-2$

- Assume slope $==-2$ and both subtrees are balanced
- Slope of right subtree is 0 or -1 - rotate left

Rebalancing-slope ==-2

- Assume slope $==-2$ and both subtrees are balanced

Rebalancing-slope ==-2

- Assume slope $==-2$ and both subtrees are balanced
- Slope of right subtree is 1

Rebalancing - slope ==-2

- Assume slope $==-2$ and both subtrees are balanced
- Slope of right subtree is 1
- Right rotate the right subtree and then left rotate the tree

Rebalancing - slope ==-2

- Assume slope $==-2$ and both subtrees are balanced
- Slope of right subtree is 1
- Right rotate the right subtree and then left rotate the tree

Rebalancing - slope $==-2$

- Assume slope $==-2$ and both subtrees are balanced
- Slope of right subtree is 1
- Right rotate the right subtree and then left rotate the tree

Rebalancing - slope $==-2$

- Assume slope $==-2$ and both subtrees are balanced
- Slope of right subtree is 1
- Right rotate the right subtree and then left rotate the tree

Rebalancing in Haskell

- The rebalance function

$$
\begin{aligned}
& \text { rebalance : : Ord } a \text { A AVL } a \text {-> AVL } a \\
& \text { rebalance t@(Node h x tl tr) } \\
& \text { | abs st }<2=t \\
& \text { | st }==2=\text { if stl == -1 then } \\
& \text { rotateRight (Node h x (rotateLeft tl) tr) } \\
& \text { else rotateRight } t \\
& \text { | st }==-2=\text { if str }==1 \text { then } \\
& \text { rotateLeft (Node h x tl (rotateRight tr)) } \\
& \text { else rotateLeft } t
\end{aligned}
$$

Rebalancing in Haskell

- The rebalance function

$$
\begin{aligned}
& \text { rebalance : : Ord } a \text { A AVL } a \text {-> AVL } a \\
& \text { rebalance t@(Node h x tl tr) } \\
& \text { | abs st }<2=t \\
& \text { | st }==2=\text { if stl == -1 then } \\
& \text { rotateRight (Node h x (rotateLeft tl) tr) } \\
& \text { else rotateRight } t \\
& \text { | st }==-2=\text { if str }==1 \text { then } \\
& \text { rotateLeft (Node h x tl (rotateRight tr)) } \\
& \text { else rotateLeft } t
\end{aligned}
$$

- Constant time operation

Searching in an AVL tree

searchAVL : : Ord a => a AVL a-> Bool
searchAVL v Nil = False
searchAVL v (Node _ x tl tr)

$$
\begin{aligned}
& \mid v==x=\text { True } \\
& \mid v<x=\text { searchAVL } v t l \\
& \mid v>x=\text { searchAVL } v \text { tr }
\end{aligned}
$$

Inserting in a tree

```
insertAVL :: Ord a => a -> AVL a -> AVL a
insertAVL v Nil = Node 1 v Nil Nil
insertAVL v t@(Node h x tl tr)
    | v < x = rebalance (Node nhl x ntl tr)
    | v > x = rebalance (Node nhr x tl ntr)
    | v == x = t
    where
```

```
ntl = insertAVL v tl
```

ntl = insertAVL v tl
ntr = insertAVL v tr
ntr = insertAVL v tr
nhl = 1 + max (height ntl) (height tr)
nhl = 1 + max (height ntl) (height tr)
nhr = 1 + max (height tl) (height ntr)

```
nhr = 1 + max (height tl) (height ntr)
```


Deleting the maximum element

deleteMax :: Ord a => AVL a-> (a, AVL $a)$
deleteMax (Node _ x tl Nil) $=(x, t l)$
deleteMax (Node h x tl tr) = (y, rebalance (Node nh x tl ty)) where

$$
\begin{aligned}
(y, t y) & =\text { deleteMax tr } \\
\text { nh } & =1+\max (h e i g h t ~ t l) ~(h e i g h t ~ t y) ~
\end{aligned}
$$

Deleting from a tree

```
deleteAVL :: Ord a => a -> AVL a -> AVL a
deleteAVL v Nil = Nil
deleteAVL v t@(Node h x tl tr)
    | v < x = rebalance (Node nhl x ntl tr)
    | v > x = rebalance (Node nhr x tl ntr)
    | v == x = if isEmpty tl then tr
                            else rebalance (Node nhy y ty tr)
```

where

```
(y, ty) = deleteMax tl
(ntl, ntr) = (deleteAVL v tl, deleteAVL v tr)
nhl = 1 + max (height ntl) (height tr)
nhr = 1 + max (height tl) (height ntr)
    nhy = 1 + max (height ty) (height tr)
```


Tree operations - complexity

- Left and right rotates take constant time

Tree operations - complexity

- Left and right rotates take constant time
- Rebalance of a tree takes constant time, when both subtrees are balanced

Tree operations - complexity

- Left and right rotates take constant time
- Rebalance of a tree takes constant time, when both subtrees are balanced
- Search takes time proportional to height of the tree

Tree operations - complexity

- Left and right rotates take constant time
- Rebalance of a tree takes constant time, when both subtrees are balanced
- Search takes time proportional to height of the tree
- Insert and delete spend constant time on each node of some maximal path

Tree operations - complexity

- Left and right rotates take constant time
- Rebalance of a tree takes constant time, when both subtrees are balanced
- Search takes time proportional to height of the tree
- Insert and delete spend constant time on each node of some maximal path
- Take time proportional to height of the tree

Tree operations - complexity

- Left and right rotates take constant time
- Rebalance of a tree takes constant time, when both subtrees are balanced
- Search takes time proportional to height of the tree
- Insert and delete spend constant time on each node of some maximal path
- Take time proportional to height of the tree
- Height of a tree with n nodes is $\leq 2 \log n$

Tree operations - complexity

- Left and right rotates take constant time
- Rebalance of a tree takes constant time, when both subtrees are balanced
- Search takes time proportional to height of the tree
- Insert and delete spend constant time on each node of some maximal path
- Take time proportional to height of the tree
- Height of a tree with n nodes is $\leq 2 \log n$
- Thus each operation takes $O(\log n)$ time

Tree operations - complexity

- Left and right rotates take constant time
- Rebalance of a tree takes constant time, when both subtrees are balanced
- Search takes time proportional to height of the tree
- Insert and delete spend constant time on each node of some maximal path
- Take time proportional to height of the tree
- Height of a tree with n nodes is $\leq 2 \log n$
- Thus each operation takes $O(\log n)$ time
- A sequence of n operations take at most $O(n \log n)$ time

Other useful functions

- Create an empty AVL tree:

emptyAVL :: AVL a
emptyAVL $=\mathrm{Ni}$ l

Other useful functions

- Create an empty AVL tree:

$$
\begin{aligned}
& \text { emptyAVL :: AVL a } \\
& \text { emptyAVL }=\text { Nil }
\end{aligned}
$$

- Check if a tree is empty:

$$
\begin{aligned}
& \text { isEmpty : : AVL a -> Bool } \\
& \text { isEmpty } \mathrm{Nil}=\text { True } \\
& \text { isEmpty - }=\text { False }
\end{aligned}
$$

Other useful functions

- Create an empty AVL tree:

$$
\begin{aligned}
& \text { emptyAVL :: AVL a } \\
& \text { emptyAVL }=\text { Nil }
\end{aligned}
$$

- Check if a tree is empty:

$$
\begin{aligned}
& \text { isEmpty : : AVL a -> Bool } \\
& \text { isEmpty Nil = True } \\
& \text { isEmpty _ = False }
\end{aligned}
$$

- Create an AVL tree from a list $(O(n \log n)$ time $)$:

```
createAVL :: Ord a => [a] -> AVL a
createAVL = foldl' (flip insertAVL) emptyAVL
```


Other useful functions

- Create a sorted list from an AVL tree:

```
inorder :: Ord a => AVL a -> [a]
inorder Nil = []
inorder (Node _ x tl tr) = inorder tl ++ [x] ++ inorder tr
```


Other useful functions

- Create a sorted list from an AVL tree:

$$
\begin{aligned}
& \text { inorder :: Ord a => AVL a -> [a] } \\
& \text { inorder Nil }=[] \\
& \text { inorder (Node _ x tl tr) }=\text { inorder tl ++ [x] ++ inorder tr }
\end{aligned}
$$

- $T(n)=2 T(n / 2)+O(n)$, so $T(n)=O(n \log n)$

Other useful functions

- Create a sorted list from an AVL tree:

```
inorder :: Ord a => AVL a -> [a]
inorder Nil = []
inorder (Node _ x tl tr) = inorder tl ++ [x] ++ inorder tr
```

- $T(n)=2 T(n / 2)+O(n)$, so $T(n)=O(n \log n)$
- Culprit is ++, which takes $O(n)$ time

Other useful functions

- Smarter inorder:

$$
\begin{aligned}
& \text { inorder :: Ord a => AVL a -> [a] } \\
& \text { inorder } \mathrm{t}=\text { go t [] } \\
& \text { where go Nil l }=1 \\
& \text { go (Node _ x tl tr) l = go tl (x:go tr l) }
\end{aligned}
$$

Other useful functions

- Smarter inorder:

$$
\begin{aligned}
& \text { inorder :: Ord } a \text { => AVL } a \text {-> [a] } \\
& \text { inorder t }=\text { go t [] } \\
& \text { where go Nil l }=1 \\
& \text { go (Node _ } x \text { tl tr) } l=g o \text { tl (} \mathrm{x}: \mathrm{go} \text { tr } \mathrm{l} \text {) }
\end{aligned}
$$

- $T(n)=2 T(n / 2)+c$, so $T(n)=O(n)$

Other useful functions

- Smarter inorder:

$$
\begin{aligned}
\text { inorder :: Ord } a \text { => AVL a }->[a] & \\
& =\text { go } t[\square \\
\text { inorder } t & =l \\
\text { where go Nil l } & \\
\text { go (Node _ } x \text { tl tr) } l & =\text { go tl (x:go tr } l)
\end{aligned}
$$

- $T(n)=2 T(n / 2)+c$, so $T(n)=O(n)$
- We can sort a list in $O(n \log n)$ time by:

```
treesort :: Ord a => [a] -> [a]
treesort = inorder . createAVL
```


Other useful functions

- inorder (createAVL l) sorts list l

Other useful functions

- inorder (createAVL l) sorts list l
- What if we wanted a size-balanced tree t such that inorder $t==$?

Other useful functions

- inorder (createAVL l) sorts list 1
- What if we wanted a size-balanced tree t such that inorder $t==$?
- t will not be a search tree in general

Other useful functions

- inorder (createAVL l) sorts list 1
- What if we wanted a size-balanced tree t such that inorder $t==$?
- t will not be a search tree in general
- If l itself is sorted, t is search tree

Other useful functions

- inorder (createAVL l) sorts list 1
- What if we wanted a size-balanced tree t such that inorder $t==$?
- t will not be a search tree in general
- If l itself is sorted, t is search tree
- This is just the smart createTree we saw in a previous class

Other useful functions

- inorder (createAVL l) sorts list 1
- What if we wanted a size-balanced tree t such that inorder $t==$?
- t will not be a search tree in general
- If l itself is sorted, t is search tree
- This is just the smart createTree we saw in a previous class
- Works in $O(n)$ time

inorderTree

```
inorderTree :: [a] -> AVL a
inorderTree l = fst (go (length l) l)
```

where

$$
\begin{aligned}
& \text { go : : Int -> [a] -> (AVL a, [a]) } \\
& \text { go } 0 \mathrm{xs}=(\mathrm{Nil}, \mathrm{xs}) \\
& \text { go } \mathrm{n} \text { xs }=(\text { Node h y tl tr, zs) } \\
& \quad \text { where }
\end{aligned}
$$

$$
\begin{aligned}
& m=n \text { `div` } 2 \\
& (t l, y: y s)=\text { go } m x s \\
& (t r, z s)=g o(n-m-1) \text { ys } \\
& h=1+\max \text { (height tl) (height tr) }
\end{aligned}
$$

A module for AVL trees

- Saved in AVL.hs

```
module AVL(AVL, emptyAVL, isEmpty, isAVL,
    insertAVL, deleteAVL, searchAVL,
    createAVL, inorder, inorderTree) where
```

data AVL $a=N i l \mid$ Node Int a (AVL a) (AVL a)
deriving (Eq, Ord)
instance Show a => Show (AVL a) where
show $t=$ intercalate "\n" (draw t)

A module for AVL trees

- Saved in AVL.hs

```
module AVL(AVL, emptyAVL, isEmpty, isAVL,
    insertAVL, deleteAVL, searchAVL, createAVL, inorder, inorderTree) where
```

```
data AVL a = Nil | Node Int a (AVL a) (AVL a)
``` deriving (Eq, Ord)
instance Show \(a\) => Show (AVL a) where show \(t=\) intercalate " \(\backslash n\) " (draw \(t\))
- Can be used to define the Set ADT

\section*{The Set ADT again}
```

module Set(Set, emptySet, createSet,
insertInto, deleteFrom, search,
union, intersect, diff) where
import AVL
data Set a = Set (AVL a)
instance (Ord a, Show a) => Show (Set a) where
show (Set t) = show (inorder t)
emptySet :: Ord a => Set a
emptySet = Set emptyAVL

```

\section*{The Set ADT again}
```

createSet :: Ord a => [a] -> Set a
createSet = Set . createAVL
search :: Ord a => a -> Set a -> Bool
search x (Set t) = searchAVL x t
insertInto :: Ord a => a -> Set a -> Set a
insertInto x (Set t) = Set (insertAVL x t)
deleteFrom :: Ord a => a -> Set a -> Set a
deleteFrom x (Set t) = Set (deleteAVL x t)

```

\section*{More set operations}
```

union :: Ord a => Set a -> Set a -> Set a
union (Set t1) (Set t2) = Set \$ inorderTree \$
unionMerge (inorder t1) (inorder t2)
unionMerge :: Ord a => [a] -> [a] -> [a]
unionMerge [] ys = ys
unionMerge xs [] = xs
unionMerge (x:xs) (y:ys)
| x < y = x:unionMerge xs (y:ys)
| y < x = y:unionMerge (x:xs) ys
| x == y = x:unionMerge xs ys

```

\section*{More set operations}
intersect : : Ord \(a\) => Set \(a\)-> Set \(a\)-> Set \(a\)
intersect (Set t1) (Set t2) = Set \$ inorderTree \$ intersectMerge (inorder t1) (inorder t2)
intersectMerge :: Ord a => [a] -> [a] -> [a]
intersectMerge [] ys = []
intersectMerge xs [] = []
intersectMerge (x:xs) (y:ys)
| \(x<y=\) intersectMerge \(x s\) (\(y: y s)\)
| \(y<x=\) intersectMerge (x:xs) ys
| \(x==y=x: i n t e r s e c t M e r g e ~ x s ~ y s\)

\section*{More set operations}
```

diff :: Ord a => Set a -> Set a -> Set a
diff (Set t1) (Set t2) = Set \$ inorderTree \$
diffMerge (inorder t1) (inorder t2)
diffMerge :: Ord a => [a] -> [a] -> [a]
diffMerge [] ys = []
diffMerge xs [] = xs
diffMerge (x:xs) (y:ys)
| x < y = x:diffMerge xs (y:ys)
| y < x = diffMerge (x:xs) ys
| x == y = diffMerge xs ys

```

\section*{Summary}
- AVL trees are a fundamental, but non-trivial data structures

\section*{Summary}
- AVL trees are a fundamental, but non-trivial data structures
- Allows us to efficiently implement the Set ADT

\section*{Summary}
- AVL trees are a fundamental, but non-trivial data structures
- Allows us to efficiently implement the Set ADT
- search, insertInto and deleteFrom in \(O(\log n)\) time

\section*{Summary}
- AVL trees are a fundamental, but non-trivial data structures
- Allows us to efficiently implement the Set ADT
- search, insertInto and deleteFrom in \(O(\log n)\) time
- union, intersect and diff in \(O(m+n)\) time

\section*{Summary}
- AVL trees are a fundamental, but non-trivial data structures
- Allows us to efficiently implement the Set ADT
- search, insertInto and deleteFrom in \(O(\log n)\) time
- union, intersect and diff in \(O(m+n)\) time
- An illustration of the power of Haskell

\section*{Summary}
- AVL trees are a fundamental, but non-trivial data structures
- Allows us to efficiently implement the Set ADT
- search, insertInto and deleteFrom in \(O(\log n)\) time
- union, intersect and diff in \(O(m+n)\) time
- An illustration of the power of Haskell
- Mathematical definitions almost directly transcribed to code

\section*{Summary}
- AVL trees are a fundamental, but non-trivial data structures
- Allows us to efficiently implement the Set ADT
- search, insertInto and deleteFrom in \(O(\log n)\) time
- union, intersect and diff in \(O(m+n)\) time
- An illustration of the power of Haskell
- Mathematical definitions almost directly transcribed to code
- Pattern matching is very powerful

\section*{Summary}
- AVL trees are a fundamental, but non-trivial data structures
- Allows us to efficiently implement the Set ADT
- search, insertInto and deleteFrom in \(O(\log n)\) time
- union, intersect and diff in \(O(m+n)\) time
- An illustration of the power of Haskell
- Mathematical definitions almost directly transcribed to code
- Pattern matching is very powerful
- Allows us to easily specify complex transformations on data```

