
Programming in Haskell: Lectures 23 & 24

S P Suresh

November 4 & 6, 2019

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 1 / 37

Balance

• The complexity of the key operations on trees depends on the height of
the tree

• In general, a tree might not be balanced
• Inserting in ascending or descending order results in highly skewed
trees

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 2 / 37

Balance

• The complexity of the key operations on trees depends on the height of
the tree
• In general, a tree might not be balanced

• Inserting in ascending or descending order results in highly skewed
trees

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 2 / 37

Balance

• The complexity of the key operations on trees depends on the height of
the tree
• In general, a tree might not be balanced
• Inserting in ascending or descending order results in highly skewed
trees

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 2 / 37

Balance

0

1

2

3

4

5

Inserting in
ascending
order

5

4

3

2

1

0

Inserting in
descending
order

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 3 / 37

Balanced search trees

• Ideally, for each node, the left and right subtrees differ in size by at
most 1

• Height is guaranteed to be at most log n+ 1, where n is the size of the
tree

• When size is 1, height is also 1 = log1+ 1
• When size is n > 1, subtrees are of size at most n/2
• Height is 1+(log n/2+ 1) = 1+(log n− 1+ 1) = log n+ 1

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 4 / 37

Balanced search trees

• Ideally, for each node, the left and right subtrees differ in size by at
most 1
• Height is guaranteed to be at most log n+ 1, where n is the size of the
tree

• When size is 1, height is also 1 = log1+ 1
• When size is n > 1, subtrees are of size at most n/2
• Height is 1+(log n/2+ 1) = 1+(log n− 1+ 1) = log n+ 1

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 4 / 37

Balanced search trees

• Ideally, for each node, the left and right subtrees differ in size by at
most 1
• Height is guaranteed to be at most log n+ 1, where n is the size of the
tree
• When size is 1, height is also 1 = log1+ 1

• When size is n > 1, subtrees are of size at most n/2
• Height is 1+(log n/2+ 1) = 1+(log n− 1+ 1) = log n+ 1

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 4 / 37

Balanced search trees

• Ideally, for each node, the left and right subtrees differ in size by at
most 1
• Height is guaranteed to be at most log n+ 1, where n is the size of the
tree
• When size is 1, height is also 1 = log1+ 1
• When size is n > 1, subtrees are of size at most n/2

• Height is 1+(log n/2+ 1) = 1+(log n− 1+ 1) = log n+ 1

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 4 / 37

Balanced search trees

• Ideally, for each node, the left and right subtrees differ in size by at
most 1
• Height is guaranteed to be at most log n+ 1, where n is the size of the
tree
• When size is 1, height is also 1 = log1+ 1
• When size is n > 1, subtrees are of size at most n/2
• Height is 1+(log n/2+ 1) = 1+(log n− 1+ 1) = log n+ 1

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 4 / 37

Balanced search trees

• Not easy to maintain size balance

• Maintain height balance instead
• At any node, the left and right subtrees differ in height by at most 1
• Somewhat easier to maintain: use tree rotations
• AVL trees (Adelson-Velskii, Landis)
• Height is stillO(log n)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 5 / 37

Balanced search trees

• Not easy to maintain size balance
• Maintain height balance instead

• At any node, the left and right subtrees differ in height by at most 1
• Somewhat easier to maintain: use tree rotations
• AVL trees (Adelson-Velskii, Landis)
• Height is stillO(log n)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 5 / 37

Balanced search trees

• Not easy to maintain size balance
• Maintain height balance instead
• At any node, the left and right subtrees differ in height by at most 1

• Somewhat easier to maintain: use tree rotations
• AVL trees (Adelson-Velskii, Landis)
• Height is stillO(log n)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 5 / 37

Balanced search trees

• Not easy to maintain size balance
• Maintain height balance instead
• At any node, the left and right subtrees differ in height by at most 1
• Somewhat easier to maintain: use tree rotations

• AVL trees (Adelson-Velskii, Landis)
• Height is stillO(log n)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 5 / 37

Balanced search trees

• Not easy to maintain size balance
• Maintain height balance instead
• At any node, the left and right subtrees differ in height by at most 1
• Somewhat easier to maintain: use tree rotations
• AVL trees (Adelson-Velskii, Landis)

• Height is stillO(log n)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 5 / 37

Balanced search trees

• Not easy to maintain size balance
• Maintain height balance instead
• At any node, the left and right subtrees differ in height by at most 1
• Somewhat easier to maintain: use tree rotations
• AVL trees (Adelson-Velskii, Landis)
• Height is stillO(log n)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 5 / 37

Balanced search trees

4

2

1 3

5

6

Height-balanced
and size-balanced

4

2

1 3

5

Height-balanced,
not size-balanced

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 6 / 37

Height-balanced trees

• For a height-balanced tree of size n, the height is at most 2 log n

• Let S(h) be the size of the smallest height-balanced tree of height h
• Claim: For h ≥ 1, S(h)≥ 2h/2

• S(1) = 1= 21/2 and S(2) = 2= 22/2

• If a tree has height h > 2

• one subtree has height h − 1
• other subtree has height at least h − 2

• S(h) = 1+ S(h − 1)+ S(h − 2)≥ S(h − 2)+ S(h − 2)
• S(h)≥ 2(h−2)/2+ 2(h−2)/2 = 2(h−2)/2+1 = 2h/2

• A height-balanced tree of size n has height at most 2 log n

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7 / 37

Height-balanced trees

• For a height-balanced tree of size n, the height is at most 2 log n

• Let S(h) be the size of the smallest height-balanced tree of height h

• Claim: For h ≥ 1, S(h)≥ 2h/2

• S(1) = 1= 21/2 and S(2) = 2= 22/2

• If a tree has height h > 2

• one subtree has height h − 1
• other subtree has height at least h − 2

• S(h) = 1+ S(h − 1)+ S(h − 2)≥ S(h − 2)+ S(h − 2)
• S(h)≥ 2(h−2)/2+ 2(h−2)/2 = 2(h−2)/2+1 = 2h/2

• A height-balanced tree of size n has height at most 2 log n

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7 / 37

Height-balanced trees

• For a height-balanced tree of size n, the height is at most 2 log n

• Let S(h) be the size of the smallest height-balanced tree of height h
• Claim: For h ≥ 1, S(h)≥ 2h/2

• S(1) = 1= 21/2 and S(2) = 2= 22/2

• If a tree has height h > 2

• one subtree has height h − 1
• other subtree has height at least h − 2

• S(h) = 1+ S(h − 1)+ S(h − 2)≥ S(h − 2)+ S(h − 2)
• S(h)≥ 2(h−2)/2+ 2(h−2)/2 = 2(h−2)/2+1 = 2h/2

• A height-balanced tree of size n has height at most 2 log n

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7 / 37

Height-balanced trees

• For a height-balanced tree of size n, the height is at most 2 log n

• Let S(h) be the size of the smallest height-balanced tree of height h
• Claim: For h ≥ 1, S(h)≥ 2h/2

• S(1) = 1= 21/2 and S(2) = 2= 22/2

• If a tree has height h > 2

• one subtree has height h − 1
• other subtree has height at least h − 2

• S(h) = 1+ S(h − 1)+ S(h − 2)≥ S(h − 2)+ S(h − 2)
• S(h)≥ 2(h−2)/2+ 2(h−2)/2 = 2(h−2)/2+1 = 2h/2

• A height-balanced tree of size n has height at most 2 log n

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7 / 37

Height-balanced trees

• For a height-balanced tree of size n, the height is at most 2 log n

• Let S(h) be the size of the smallest height-balanced tree of height h
• Claim: For h ≥ 1, S(h)≥ 2h/2

• S(1) = 1= 21/2 and S(2) = 2= 22/2

• If a tree has height h > 2

• one subtree has height h − 1
• other subtree has height at least h − 2

• S(h) = 1+ S(h − 1)+ S(h − 2)≥ S(h − 2)+ S(h − 2)
• S(h)≥ 2(h−2)/2+ 2(h−2)/2 = 2(h−2)/2+1 = 2h/2

• A height-balanced tree of size n has height at most 2 log n

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7 / 37

Height-balanced trees

• For a height-balanced tree of size n, the height is at most 2 log n

• Let S(h) be the size of the smallest height-balanced tree of height h
• Claim: For h ≥ 1, S(h)≥ 2h/2

• S(1) = 1= 21/2 and S(2) = 2= 22/2

• If a tree has height h > 2
• one subtree has height h − 1

• other subtree has height at least h − 2

• S(h) = 1+ S(h − 1)+ S(h − 2)≥ S(h − 2)+ S(h − 2)
• S(h)≥ 2(h−2)/2+ 2(h−2)/2 = 2(h−2)/2+1 = 2h/2

• A height-balanced tree of size n has height at most 2 log n

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7 / 37

Height-balanced trees

• For a height-balanced tree of size n, the height is at most 2 log n

• Let S(h) be the size of the smallest height-balanced tree of height h
• Claim: For h ≥ 1, S(h)≥ 2h/2

• S(1) = 1= 21/2 and S(2) = 2= 22/2

• If a tree has height h > 2
• one subtree has height h − 1
• other subtree has height at least h − 2

• S(h) = 1+ S(h − 1)+ S(h − 2)≥ S(h − 2)+ S(h − 2)
• S(h)≥ 2(h−2)/2+ 2(h−2)/2 = 2(h−2)/2+1 = 2h/2

• A height-balanced tree of size n has height at most 2 log n

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7 / 37

Height-balanced trees

• For a height-balanced tree of size n, the height is at most 2 log n

• Let S(h) be the size of the smallest height-balanced tree of height h
• Claim: For h ≥ 1, S(h)≥ 2h/2

• S(1) = 1= 21/2 and S(2) = 2= 22/2

• If a tree has height h > 2
• one subtree has height h − 1
• other subtree has height at least h − 2

• S(h) = 1+ S(h − 1)+ S(h − 2)≥ S(h − 2)+ S(h − 2)

• S(h)≥ 2(h−2)/2+ 2(h−2)/2 = 2(h−2)/2+1 = 2h/2

• A height-balanced tree of size n has height at most 2 log n

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7 / 37

Height-balanced trees

• For a height-balanced tree of size n, the height is at most 2 log n

• Let S(h) be the size of the smallest height-balanced tree of height h
• Claim: For h ≥ 1, S(h)≥ 2h/2

• S(1) = 1= 21/2 and S(2) = 2= 22/2

• If a tree has height h > 2
• one subtree has height h − 1
• other subtree has height at least h − 2

• S(h) = 1+ S(h − 1)+ S(h − 2)≥ S(h − 2)+ S(h − 2)
• S(h)≥ 2(h−2)/2+ 2(h−2)/2 = 2(h−2)/2+1 = 2h/2

• A height-balanced tree of size n has height at most 2 log n

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7 / 37

Height-balanced trees

• For a height-balanced tree of size n, the height is at most 2 log n

• Let S(h) be the size of the smallest height-balanced tree of height h
• Claim: For h ≥ 1, S(h)≥ 2h/2

• S(1) = 1= 21/2 and S(2) = 2= 22/2

• If a tree has height h > 2
• one subtree has height h − 1
• other subtree has height at least h − 2

• S(h) = 1+ S(h − 1)+ S(h − 2)≥ S(h − 2)+ S(h − 2)
• S(h)≥ 2(h−2)/2+ 2(h−2)/2 = 2(h−2)/2+1 = 2h/2

• A height-balanced tree of size n has height at most 2 log n

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7 / 37

Tree rotations – rotate right

x

y

tll tlr

tr

y

tll

x

tlr tr
• Useful when tll has large height
• In Haskell:

rotateRight (Node x (Node y tll tlr) tr)
= Node y tll (Node x tlr tr)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 8 / 37

Tree rotations – rotate left

x

tl

y

trl trr

y

x

tl trl

trr

• Useful when trr has large height
• In Haskell:

rotateLeft (Node x tl (Node y trl trr))
= Node y (Node x tl trl) trr

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 9 / 37

Height-balanced trees

• Assume tree is currently balanced

• Each insert or delete creates an imbalance
• Fix imbalance using a rebalance function
• We need to compute height of a tree (and subtrees) to check for
imbalance
• Takes timeO(n)

• Save time by storing height in the node
• Need to update height after each operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 10 / 37

Height-balanced trees

• Assume tree is currently balanced
• Each insert or delete creates an imbalance

• Fix imbalance using a rebalance function
• We need to compute height of a tree (and subtrees) to check for
imbalance
• Takes timeO(n)

• Save time by storing height in the node
• Need to update height after each operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 10 / 37

Height-balanced trees

• Assume tree is currently balanced
• Each insert or delete creates an imbalance
• Fix imbalance using a rebalance function

• We need to compute height of a tree (and subtrees) to check for
imbalance
• Takes timeO(n)

• Save time by storing height in the node
• Need to update height after each operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 10 / 37

Height-balanced trees

• Assume tree is currently balanced
• Each insert or delete creates an imbalance
• Fix imbalance using a rebalance function
• We need to compute height of a tree (and subtrees) to check for
imbalance

• Takes timeO(n)

• Save time by storing height in the node
• Need to update height after each operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 10 / 37

Height-balanced trees

• Assume tree is currently balanced
• Each insert or delete creates an imbalance
• Fix imbalance using a rebalance function
• We need to compute height of a tree (and subtrees) to check for
imbalance
• Takes timeO(n)

• Save time by storing height in the node
• Need to update height after each operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 10 / 37

Height-balanced trees

• Assume tree is currently balanced
• Each insert or delete creates an imbalance
• Fix imbalance using a rebalance function
• We need to compute height of a tree (and subtrees) to check for
imbalance
• Takes timeO(n)

• Save time by storing height in the node

• Need to update height after each operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 10 / 37

Height-balanced trees

• Assume tree is currently balanced
• Each insert or delete creates an imbalance
• Fix imbalance using a rebalance function
• We need to compute height of a tree (and subtrees) to check for
imbalance
• Takes timeO(n)

• Save time by storing height in the node
• Need to update height after each operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 10 / 37

AVL trees

• The data type in Haskell:
data AVL a = Nil | Node Int a (AVL a) (AVL a)

deriving (Eq, Ord)

• Extracting the height of a tree:
height :: AVL a -> Int
height Nil = 0
height (Node h _ _ _) = h

• Also need a measure of how skewed a tree is – its slope
slope :: AVL a -> Int
slope Nil = 0
slope (Node _ _ tl tr) = height tl - height tr

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 11 / 37

AVL trees

• The data type in Haskell:
data AVL a = Nil | Node Int a (AVL a) (AVL a)

deriving (Eq, Ord)

• Extracting the height of a tree:
height :: AVL a -> Int
height Nil = 0
height (Node h _ _ _) = h

• Also need a measure of how skewed a tree is – its slope
slope :: AVL a -> Int
slope Nil = 0
slope (Node _ _ tl tr) = height tl - height tr

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 11 / 37

AVL trees

• The data type in Haskell:
data AVL a = Nil | Node Int a (AVL a) (AVL a)

deriving (Eq, Ord)

• Extracting the height of a tree:
height :: AVL a -> Int
height Nil = 0
height (Node h _ _ _) = h

• Also need a measure of how skewed a tree is – its slope
slope :: AVL a -> Int
slope Nil = 0
slope (Node _ _ tl tr) = height tl - height tr
Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 11 / 37

AVL trees

• Check if t is an AVL tree:
isAVL :: Ord a => AVL a -> Bool
isAVL Nil = True
isAVL t@(Node _ x tl tr)

= abs (slope t) < 2 &&
isAVL tl && isAVL tr &&
(isEmpty tl || maxt tl < x) &&
(isEmpty tr || x < mint tr)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 12 / 37

AVL trees – rotates

• Since we maintain height at each node, we need to adjust it after each
operation:

rotateRight :: AVL a -> AVL a
rotateRight (Node h x (Node hl y tll tlr) tr)

= Node nh y tll (Node nhr x tlr tr)
where

nhr = 1 + max (height tlr) (height tr)
nh = 1 + max (height tll) nhr

• Constant time operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 13 / 37

AVL trees – rotates

• Since we maintain height at each node, we need to adjust it after each
operation:

rotateRight :: AVL a -> AVL a
rotateRight (Node h x (Node hl y tll tlr) tr)

= Node nh y tll (Node nhr x tlr tr)
where

nhr = 1 + max (height tlr) (height tr)
nh = 1 + max (height tll) nhr

• Constant time operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 13 / 37

AVL trees – rotates

• Since we maintain height at each node, we need to adjust it after each
operation:

rotateLeft :: AVL a -> AVL a
rotateLeft (Node h x tl (Node hr y trl trr))

= Node nh y (Node nhl x tl trl) trr
where

nhl = 1 + max (height tl) (height trl)
nh = 1 + max nhl (height trr)

• Constant time operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 14 / 37

AVL trees – rotates

• Since we maintain height at each node, we need to adjust it after each
operation:

rotateLeft :: AVL a -> AVL a
rotateLeft (Node h x tl (Node hr y trl trr))

= Node nh y (Node nhl x tl trl) trr
where

nhl = 1 + max (height tl) (height trl)
nh = 1 + max nhl (height trr)

• Constant time operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 14 / 37

Rebalancing AVL trees

• Recall:
slope (Node h x tl tr) = height tl - height tr

• In a height balanced tree, abs slope < 2

• After an insert or delete, it can happen that abs slope == 2

• Violations happen only at nodes visited by operation
• We rebalance each node on the path visited by operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 15 / 37

Rebalancing AVL trees

• Recall:
slope (Node h x tl tr) = height tl - height tr

• In a height balanced tree, abs slope < 2

• After an insert or delete, it can happen that abs slope == 2

• Violations happen only at nodes visited by operation
• We rebalance each node on the path visited by operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 15 / 37

Rebalancing AVL trees

• Recall:
slope (Node h x tl tr) = height tl - height tr

• In a height balanced tree, abs slope < 2

• After an insert or delete, it can happen that abs slope == 2

• Violations happen only at nodes visited by operation
• We rebalance each node on the path visited by operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 15 / 37

Rebalancing AVL trees

• Recall:
slope (Node h x tl tr) = height tl - height tr

• In a height balanced tree, abs slope < 2

• After an insert or delete, it can happen that abs slope == 2

• Violations happen only at nodes visited by operation

• We rebalance each node on the path visited by operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 15 / 37

Rebalancing AVL trees

• Recall:
slope (Node h x tl tr) = height tl - height tr

• In a height balanced tree, abs slope < 2

• After an insert or delete, it can happen that abs slope == 2

• Violations happen only at nodes visited by operation
• We rebalance each node on the path visited by operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 15 / 37

Rebalancing – slope == 2

• Assume slope == 2 and both subtrees are balanced

• Slope of left subtree is 0 or 1 – rotate right

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 16 / 37

Rebalancing – slope == 2

• Assume slope == 2 and both subtrees are balanced
• Slope of left subtree is 0 or 1 – rotate right

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 16 / 37

Rebalancing – slope == 2

• Assume slope == 2 and both subtrees are balanced
• Slope of left subtree is 0 or 1 – rotate right

y

xh+2

h+1

t1

h/h+1

t2

h

t3

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 16 / 37

Rebalancing – slope == 2

• Assume slope == 2 and both subtrees are balanced
• Slope of left subtree is 0 or 1 – rotate right

y

xh+2

h+1

t1

h/h+1

t2

h

t3

x

h+1

t1

y h+1/h+2

h/h+1

t2

h

t3

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 16 / 37

Rebalancing – slope == 2

• Assume slope == 2 and both subtrees are balanced

• Slope of left subtree is -1
• Left rotate the left subtree and then right rotate the tree

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 17 / 37

Rebalancing – slope == 2

• Assume slope == 2 and both subtrees are balanced
• Slope of left subtree is -1

• Left rotate the left subtree and then right rotate the tree

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 17 / 37

Rebalancing – slope == 2

• Assume slope == 2 and both subtrees are balanced
• Slope of left subtree is -1
• Left rotate the left subtree and then right rotate the tree

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 17 / 37

Rebalancing – slope == 2

• Assume slope == 2 and both subtrees are balanced
• Slope of left subtree is -1
• Left rotate the left subtree and then right rotate the tree

z

xh+2

h

t1

y h+1

t21
h/h-1

t22
h/h-1

h

t3

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 17 / 37

Rebalancing – slope == 2

• Assume slope == 2 and both subtrees are balanced
• Slope of left subtree is -1
• Left rotate the left subtree and then right rotate the tree

z

xh+2

h

t1

y h+1

t21
h/h-1

t22
h/h-1

h

t3

z

yh+2

xh+1

h

t1 t21
h/h-1

t22
h/h-1

h

t3

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 17 / 37

Rebalancing – slope == 2

• Assume slope == 2 and both subtrees are balanced
• Slope of left subtree is -1
• Left rotate the left subtree and then right rotate the tree

z

xh+2

h

t1

y h+1

t21
h/h-1

t22
h/h-1

h

t3

z

yh+2

xh+1

h

t1 t21
h/h-1

t22
h/h-1

h

t3

y

xh+1

h

t1 t21
h/h-1

z h+1

t22
h/h-1

h

t3

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 17 / 37

Rebalancing – slope == -2

• Assume slope == -2 and both subtrees are balanced

• Slope of right subtree is 0 or -1 – rotate left

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 18 / 37

Rebalancing – slope == -2

• Assume slope == -2 and both subtrees are balanced
• Slope of right subtree is 0 or -1 – rotate left

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 18 / 37

Rebalancing – slope == -2

• Assume slope == -2 and both subtrees are balanced
• Slope of right subtree is 0 or -1 – rotate left

x

h

t1

y h+2

h/h+1

t2

h+1

t3

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 18 / 37

Rebalancing – slope == -2

• Assume slope == -2 and both subtrees are balanced
• Slope of right subtree is 0 or -1 – rotate left

x

h

t1

y h+2

h/h+1

t2

h+1

t3

y

xh+1/h+2

h

t1

h/h+1

t2

h+1

t3

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 18 / 37

Rebalancing – slope == -2

• Assume slope == -2 and both subtrees are balanced

• Slope of right subtree is 1
• Right rotate the right subtree and then left rotate the tree

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 19 / 37

Rebalancing – slope == -2

• Assume slope == -2 and both subtrees are balanced
• Slope of right subtree is 1

• Right rotate the right subtree and then left rotate the tree

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 19 / 37

Rebalancing – slope == -2

• Assume slope == -2 and both subtrees are balanced
• Slope of right subtree is 1
• Right rotate the right subtree and then left rotate the tree

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 19 / 37

Rebalancing – slope == -2

• Assume slope == -2 and both subtrees are balanced
• Slope of right subtree is 1
• Right rotate the right subtree and then left rotate the tree

x

h

t1

z h+2

yh+1

t21
h/h-1

t22
h/h-1

h

t3

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 19 / 37

Rebalancing – slope == -2

• Assume slope == -2 and both subtrees are balanced
• Slope of right subtree is 1
• Right rotate the right subtree and then left rotate the tree

x

h

t1

z h+2

yh+1

t21
h/h-1

t22
h/h-1

h

t3

x

h

t1

y h+2

t21
h/h-1

z h+1

t22
h/h-1

h

t3

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 19 / 37

Rebalancing – slope == -2

• Assume slope == -2 and both subtrees are balanced
• Slope of right subtree is 1
• Right rotate the right subtree and then left rotate the tree

x

h

t1

z h+2

yh+1

t21
h/h-1

t22
h/h-1

h

t3

x

h

t1

y h+2

t21
h/h-1

z h+1

t22
h/h-1

h

t3

y

xh+1

h

t1 t21
h/h-1

z h+1

t22
h/h-1

h

t3

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 19 / 37

Rebalancing in Haskell

• The rebalance function
rebalance :: Ord a => AVL a -> AVL a
rebalance t@(Node h x tl tr)

| abs st < 2 = t
| st == 2 = if stl == -1 then

rotateRight (Node h x (rotateLeft tl) tr)
else rotateRight t

| st == -2 = if str == 1 then
rotateLeft (Node h x tl (rotateRight tr))
else rotateLeft t

where (st, stl, str) = (slope t, slope tl, slope tr)

• Constant time operation

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 20 / 37

Rebalancing in Haskell

• The rebalance function
rebalance :: Ord a => AVL a -> AVL a
rebalance t@(Node h x tl tr)

| abs st < 2 = t
| st == 2 = if stl == -1 then

rotateRight (Node h x (rotateLeft tl) tr)
else rotateRight t

| st == -2 = if str == 1 then
rotateLeft (Node h x tl (rotateRight tr))
else rotateLeft t

where (st, stl, str) = (slope t, slope tl, slope tr)

• Constant time operation
Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 20 / 37

Searching in an AVL tree

searchAVL :: Ord a => a -> AVL a -> Bool
searchAVL v Nil = False
searchAVL v (Node _ x tl tr)

| v == x = True
| v < x = searchAVL v tl
| v > x = searchAVL v tr

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 21 / 37

Inserting in a tree

insertAVL :: Ord a => a -> AVL a -> AVL a
insertAVL v Nil = Node 1 v Nil Nil
insertAVL v t@(Node h x tl tr)

| v < x = rebalance (Node nhl x ntl tr)
| v > x = rebalance (Node nhr x tl ntr)
| v == x = t
where

ntl = insertAVL v tl
ntr = insertAVL v tr
nhl = 1 + max (height ntl) (height tr)
nhr = 1 + max (height tl) (height ntr)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 22 / 37

Deleting the maximum element

deleteMax :: Ord a => AVL a -> (a, AVL a)
deleteMax (Node _ x tl Nil) = (x, tl)
deleteMax (Node h x tl tr) = (y, rebalance (Node nh x tl ty))

where
(y, ty) = deleteMax tr
nh = 1 + max (height tl) (height ty)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 23 / 37

Deleting from a tree

deleteAVL :: Ord a => a -> AVL a -> AVL a
deleteAVL v Nil = Nil
deleteAVL v t@(Node h x tl tr)

| v < x = rebalance (Node nhl x ntl tr)
| v > x = rebalance (Node nhr x tl ntr)
| v == x = if isEmpty tl then tr

else rebalance (Node nhy y ty tr)
where

(y, ty) = deleteMax tl
(ntl, ntr) = (deleteAVL v tl, deleteAVL v tr)
nhl = 1 + max (height ntl) (height tr)
nhr = 1 + max (height tl) (height ntr)
nhy = 1 + max (height ty) (height tr)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 24 / 37

Tree operations – complexity

• Left and right rotates take constant time

• Rebalance of a tree takes constant time, when both subtrees are
balanced
• Search takes time proportional to height of the tree
• Insert and delete spend constant time on each node of some maximal
path
• Take time proportional to height of the tree
• Height of a tree with n nodes is≤ 2 log n

• Thus each operation takesO(log n) time
• A sequence of n operations take at mostO(n log n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25 / 37

Tree operations – complexity

• Left and right rotates take constant time
• Rebalance of a tree takes constant time, when both subtrees are
balanced

• Search takes time proportional to height of the tree
• Insert and delete spend constant time on each node of some maximal
path
• Take time proportional to height of the tree
• Height of a tree with n nodes is≤ 2 log n

• Thus each operation takesO(log n) time
• A sequence of n operations take at mostO(n log n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25 / 37

Tree operations – complexity

• Left and right rotates take constant time
• Rebalance of a tree takes constant time, when both subtrees are
balanced
• Search takes time proportional to height of the tree

• Insert and delete spend constant time on each node of some maximal
path
• Take time proportional to height of the tree
• Height of a tree with n nodes is≤ 2 log n

• Thus each operation takesO(log n) time
• A sequence of n operations take at mostO(n log n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25 / 37

Tree operations – complexity

• Left and right rotates take constant time
• Rebalance of a tree takes constant time, when both subtrees are
balanced
• Search takes time proportional to height of the tree
• Insert and delete spend constant time on each node of some maximal
path

• Take time proportional to height of the tree
• Height of a tree with n nodes is≤ 2 log n

• Thus each operation takesO(log n) time
• A sequence of n operations take at mostO(n log n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25 / 37

Tree operations – complexity

• Left and right rotates take constant time
• Rebalance of a tree takes constant time, when both subtrees are
balanced
• Search takes time proportional to height of the tree
• Insert and delete spend constant time on each node of some maximal
path
• Take time proportional to height of the tree

• Height of a tree with n nodes is≤ 2 log n

• Thus each operation takesO(log n) time
• A sequence of n operations take at mostO(n log n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25 / 37

Tree operations – complexity

• Left and right rotates take constant time
• Rebalance of a tree takes constant time, when both subtrees are
balanced
• Search takes time proportional to height of the tree
• Insert and delete spend constant time on each node of some maximal
path
• Take time proportional to height of the tree
• Height of a tree with n nodes is≤ 2 log n

• Thus each operation takesO(log n) time
• A sequence of n operations take at mostO(n log n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25 / 37

Tree operations – complexity

• Left and right rotates take constant time
• Rebalance of a tree takes constant time, when both subtrees are
balanced
• Search takes time proportional to height of the tree
• Insert and delete spend constant time on each node of some maximal
path
• Take time proportional to height of the tree
• Height of a tree with n nodes is≤ 2 log n

• Thus each operation takesO(log n) time

• A sequence of n operations take at mostO(n log n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25 / 37

Tree operations – complexity

• Left and right rotates take constant time
• Rebalance of a tree takes constant time, when both subtrees are
balanced
• Search takes time proportional to height of the tree
• Insert and delete spend constant time on each node of some maximal
path
• Take time proportional to height of the tree
• Height of a tree with n nodes is≤ 2 log n

• Thus each operation takesO(log n) time
• A sequence of n operations take at mostO(n log n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 25 / 37

Other useful functions

• Create an empty AVL tree:
emptyAVL :: AVL a
emptyAVL = Nil

• Check if a tree is empty:
isEmpty :: AVL a -> Bool
isEmpty Nil = True
isEmpty _ = False

• Create an AVL tree from a list (O(n log n) time):

createAVL :: Ord a => [a] -> AVL a
createAVL = foldl' (flip insertAVL) emptyAVL

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 26 / 37

Other useful functions

• Create an empty AVL tree:
emptyAVL :: AVL a
emptyAVL = Nil

• Check if a tree is empty:
isEmpty :: AVL a -> Bool
isEmpty Nil = True
isEmpty _ = False

• Create an AVL tree from a list (O(n log n) time):

createAVL :: Ord a => [a] -> AVL a
createAVL = foldl' (flip insertAVL) emptyAVL

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 26 / 37

Other useful functions

• Create an empty AVL tree:
emptyAVL :: AVL a
emptyAVL = Nil

• Check if a tree is empty:
isEmpty :: AVL a -> Bool
isEmpty Nil = True
isEmpty _ = False

• Create an AVL tree from a list (O(n log n) time):

createAVL :: Ord a => [a] -> AVL a
createAVL = foldl' (flip insertAVL) emptyAVL

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 26 / 37

Other useful functions

• Create a sorted list from an AVL tree:
inorder :: Ord a => AVL a -> [a]
inorder Nil = []
inorder (Node _ x tl tr) = inorder tl ++ [x] ++ inorder tr

• T (n) = 2T (n/2)+O(n), so T (n) =O(n log n)

• Culprit is ++, which takesO(n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 27 / 37

Other useful functions

• Create a sorted list from an AVL tree:
inorder :: Ord a => AVL a -> [a]
inorder Nil = []
inorder (Node _ x tl tr) = inorder tl ++ [x] ++ inorder tr

• T (n) = 2T (n/2)+O(n), so T (n) =O(n log n)

• Culprit is ++, which takesO(n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 27 / 37

Other useful functions

• Create a sorted list from an AVL tree:
inorder :: Ord a => AVL a -> [a]
inorder Nil = []
inorder (Node _ x tl tr) = inorder tl ++ [x] ++ inorder tr

• T (n) = 2T (n/2)+O(n), so T (n) =O(n log n)

• Culprit is ++, which takesO(n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 27 / 37

Other useful functions

• Smarter inorder:
inorder :: Ord a => AVL a -> [a]
inorder t = go t []

where go Nil l = l
go (Node _ x tl tr) l = go tl (x:go tr l)

• T (n) = 2T (n/2)+ c , so T (n) =O(n)

• We can sort a list inO(n log n) time by:

treesort :: Ord a => [a] -> [a]
treesort = inorder . createAVL

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 28 / 37

Other useful functions

• Smarter inorder:
inorder :: Ord a => AVL a -> [a]
inorder t = go t []

where go Nil l = l
go (Node _ x tl tr) l = go tl (x:go tr l)

• T (n) = 2T (n/2)+ c , so T (n) =O(n)

• We can sort a list inO(n log n) time by:

treesort :: Ord a => [a] -> [a]
treesort = inorder . createAVL

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 28 / 37

Other useful functions

• Smarter inorder:
inorder :: Ord a => AVL a -> [a]
inorder t = go t []

where go Nil l = l
go (Node _ x tl tr) l = go tl (x:go tr l)

• T (n) = 2T (n/2)+ c , so T (n) =O(n)

• We can sort a list inO(n log n) time by:

treesort :: Ord a => [a] -> [a]
treesort = inorder . createAVL

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 28 / 37

Other useful functions

• inorder (createAVL l) sorts list l

• What if we wanted a size-balanced tree t such that inorder t == l?
• twill not be a search tree in general
• If l itself is sorted, t is search tree
• This is just the smart createTreewe saw in a previous class
• Works inO(n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 29 / 37

Other useful functions

• inorder (createAVL l) sorts list l
• What if we wanted a size-balanced tree t such that inorder t == l?

• twill not be a search tree in general
• If l itself is sorted, t is search tree
• This is just the smart createTreewe saw in a previous class
• Works inO(n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 29 / 37

Other useful functions

• inorder (createAVL l) sorts list l
• What if we wanted a size-balanced tree t such that inorder t == l?
• twill not be a search tree in general

• If l itself is sorted, t is search tree
• This is just the smart createTreewe saw in a previous class
• Works inO(n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 29 / 37

Other useful functions

• inorder (createAVL l) sorts list l
• What if we wanted a size-balanced tree t such that inorder t == l?
• twill not be a search tree in general
• If l itself is sorted, t is search tree

• This is just the smart createTreewe saw in a previous class
• Works inO(n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 29 / 37

Other useful functions

• inorder (createAVL l) sorts list l
• What if we wanted a size-balanced tree t such that inorder t == l?
• twill not be a search tree in general
• If l itself is sorted, t is search tree
• This is just the smart createTreewe saw in a previous class

• Works inO(n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 29 / 37

Other useful functions

• inorder (createAVL l) sorts list l
• What if we wanted a size-balanced tree t such that inorder t == l?
• twill not be a search tree in general
• If l itself is sorted, t is search tree
• This is just the smart createTreewe saw in a previous class
• Works inO(n) time

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 29 / 37

inorderTree

inorderTree :: [a] -> AVL a
inorderTree l = fst (go (length l) l)

where
go :: Int -> [a] -> (AVL a, [a])
go 0 xs = (Nil, xs)
go n xs = (Node h y tl tr, zs)

where
m = n `div` 2
(tl, y:ys) = go m xs
(tr, zs) = go (n-m-1) ys
h = 1 + max (height tl) (height tr)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 30 / 37

Amodule for AVL trees

• Saved in AVL.hs
module AVL(AVL, emptyAVL, isEmpty, isAVL,

insertAVL, deleteAVL, searchAVL,
createAVL, inorder, inorderTree) where

data AVL a = Nil | Node Int a (AVL a) (AVL a)
deriving (Eq, Ord)

instance Show a => Show (AVL a) where
show t = intercalate "\n" (draw t)

• Can be used to define the Set ADT

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 31 / 37

Amodule for AVL trees

• Saved in AVL.hs
module AVL(AVL, emptyAVL, isEmpty, isAVL,

insertAVL, deleteAVL, searchAVL,
createAVL, inorder, inorderTree) where

data AVL a = Nil | Node Int a (AVL a) (AVL a)
deriving (Eq, Ord)

instance Show a => Show (AVL a) where
show t = intercalate "\n" (draw t)

• Can be used to define the Set ADT
Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 31 / 37

The Set ADT again

module Set(Set, emptySet, createSet,
insertInto, deleteFrom, search,
union, intersect, diff) where

import AVL

data Set a = Set (AVL a)
instance (Ord a, Show a) => Show (Set a) where

show (Set t) = show (inorder t)

emptySet :: Ord a => Set a
emptySet = Set emptyAVL

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 32 / 37

The Set ADT again

createSet :: Ord a => [a] -> Set a
createSet = Set . createAVL

search :: Ord a => a -> Set a -> Bool
search x (Set t) = searchAVL x t

insertInto :: Ord a => a -> Set a -> Set a
insertInto x (Set t) = Set (insertAVL x t)

deleteFrom :: Ord a => a -> Set a -> Set a
deleteFrom x (Set t) = Set (deleteAVL x t)

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 33 / 37

More set operations

union :: Ord a => Set a -> Set a -> Set a
union (Set t1) (Set t2) = Set $ inorderTree $

unionMerge (inorder t1) (inorder t2)

unionMerge :: Ord a => [a] -> [a] -> [a]
unionMerge [] ys = ys
unionMerge xs [] = xs
unionMerge (x:xs) (y:ys)

| x < y = x:unionMerge xs (y:ys)
| y < x = y:unionMerge (x:xs) ys
| x == y = x:unionMerge xs ys

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 34 / 37

More set operations

intersect :: Ord a => Set a -> Set a -> Set a
intersect (Set t1) (Set t2) = Set $ inorderTree $

intersectMerge (inorder t1) (inorder t2)

intersectMerge :: Ord a => [a] -> [a] -> [a]
intersectMerge [] ys = []
intersectMerge xs [] = []
intersectMerge (x:xs) (y:ys)

| x < y = intersectMerge xs (y:ys)
| y < x = intersectMerge (x:xs) ys
| x == y = x:intersectMerge xs ys

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 35 / 37

More set operations

diff :: Ord a => Set a -> Set a -> Set a
diff (Set t1) (Set t2) = Set $ inorderTree $

diffMerge (inorder t1) (inorder t2)

diffMerge :: Ord a => [a] -> [a] -> [a]
diffMerge [] ys = []
diffMerge xs [] = xs
diffMerge (x:xs) (y:ys)

| x < y = x:diffMerge xs (y:ys)
| y < x = diffMerge (x:xs) ys
| x == y = diffMerge xs ys

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 36 / 37

Summary

• AVL trees are a fundamental, but non-trivial data structures

• Allows us to efficiently implement the Set ADT

• search, insertInto and deleteFrom inO(log n) time
• union, intersect and diff inO(m+ n) time

• An illustration of the power of Haskell
• Mathematical definitions almost directly transcribed to code
• Pattern matching is very powerful
• Allows us to easily specify complex transformations on data

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 37 / 37

Summary

• AVL trees are a fundamental, but non-trivial data structures
• Allows us to efficiently implement the Set ADT

• search, insertInto and deleteFrom inO(log n) time
• union, intersect and diff inO(m+ n) time

• An illustration of the power of Haskell
• Mathematical definitions almost directly transcribed to code
• Pattern matching is very powerful
• Allows us to easily specify complex transformations on data

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 37 / 37

Summary

• AVL trees are a fundamental, but non-trivial data structures
• Allows us to efficiently implement the Set ADT
• search, insertInto and deleteFrom inO(log n) time

• union, intersect and diff inO(m+ n) time

• An illustration of the power of Haskell
• Mathematical definitions almost directly transcribed to code
• Pattern matching is very powerful
• Allows us to easily specify complex transformations on data

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 37 / 37

Summary

• AVL trees are a fundamental, but non-trivial data structures
• Allows us to efficiently implement the Set ADT
• search, insertInto and deleteFrom inO(log n) time
• union, intersect and diff inO(m+ n) time

• An illustration of the power of Haskell
• Mathematical definitions almost directly transcribed to code
• Pattern matching is very powerful
• Allows us to easily specify complex transformations on data

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 37 / 37

Summary

• AVL trees are a fundamental, but non-trivial data structures
• Allows us to efficiently implement the Set ADT
• search, insertInto and deleteFrom inO(log n) time
• union, intersect and diff inO(m+ n) time

• An illustration of the power of Haskell

• Mathematical definitions almost directly transcribed to code
• Pattern matching is very powerful
• Allows us to easily specify complex transformations on data

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 37 / 37

Summary

• AVL trees are a fundamental, but non-trivial data structures
• Allows us to efficiently implement the Set ADT
• search, insertInto and deleteFrom inO(log n) time
• union, intersect and diff inO(m+ n) time

• An illustration of the power of Haskell
• Mathematical definitions almost directly transcribed to code

• Pattern matching is very powerful
• Allows us to easily specify complex transformations on data

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 37 / 37

Summary

• AVL trees are a fundamental, but non-trivial data structures
• Allows us to efficiently implement the Set ADT
• search, insertInto and deleteFrom inO(log n) time
• union, intersect and diff inO(m+ n) time

• An illustration of the power of Haskell
• Mathematical definitions almost directly transcribed to code
• Pattern matching is very powerful

• Allows us to easily specify complex transformations on data

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 37 / 37

Summary

• AVL trees are a fundamental, but non-trivial data structures
• Allows us to efficiently implement the Set ADT
• search, insertInto and deleteFrom inO(log n) time
• union, intersect and diff inO(m+ n) time

• An illustration of the power of Haskell
• Mathematical definitions almost directly transcribed to code
• Pattern matching is very powerful
• Allows us to easily specify complex transformations on data

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 37 / 37

