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Balance

¢ The complexity of the key operations on trees depends on the height of
the tree
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Balance

¢ The complexity of the key operations on trees depends on the height of
the tree

® In general, a tree might not be balanced

® Inserting in ascending or descending order results in highly skewed

trees
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Balance

Inserting in Inserting in
ascending e descending
order
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Balanced search trees

e Ideally, for each node, the left and right subtrees differ in size by at

most 1
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Balanced search trees

e Ideally, for each node, the left and right subtrees differ in size by at

most 1

¢ Height is guaranteed to be at most log 7z + 1, where 7 is the size of the
tree

® Whensizeis 1, heightisalso 1 = log1+1
® When size is 7 > 1, subtrees are of size at most 72 /2
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Balanced search trees

e Ideally, for each node, the left and right subtrees differ in size by at
most 1

¢ Height is guaranteed to be at most log 7z + 1, where 7 is the size of the
tree

® Whensizeis 1, heightis also 1 = log 1+ 1
® When size is 7 > 1, subtrees are of size at most 7/2
® Heightis 1+ (logn/2+1)=1+(logn—1+1)=logn+1

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 4/37



Balanced search trees

® Not easy to maintain size balance
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¢ Atany node, the left and right subtrees differ in height by at most 1
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Balanced search trees

Not easy to maintain size balance
Maintain height balance instead
At any node, the left and right subtrees differ in height by at most 1

Somewhat easier to maintain: use tree rotations
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Balanced search trees

Not easy to maintain size balance

Maintain height balance instead

At any node, the left and right subtrees differ in height by at most 1
Somewhat easier to maintain: use tree rotations

AVL trees (Adelson-Velskii, Landis)
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Balanced search trees

Not easy to maintain size balance

Maintain height balance instead

At any node, the left and right subtrees differ in height by at most 1
Somewhat easier to maintain: use tree rotations

AVL trees (Adelson-Velskii, Landis)

Height is still O(logn)
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Balanced search trees

Height-balanced Height-balanced,

and size-balanced not size-balanced
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Height-balanced trees

e For a height-balanced tree of size 7, the height is at most 2log 7
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e Let S(/)be the size of the smallest height-balanced tree of height /
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Height-balanced trees
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e Claim: For h > 1, S(h) > 2"/2

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 7/37



Height-balanced trees

e For a height-balanced tree of size 7, the height is at most 2log 7
e Let S(/)be the size of the smallest height-balanced tree of height /
e Claim: For h > 1, S(h) > 2"/

® S(1)=1=2"%and §(2)=2=2%?
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Height-balanced trees

e For a height-balanced tree of size 7, the height is at most 2log 7

e Let S(/)be the size of the smallest height-balanced tree of height /
e Claim: For h > 1, S(h) > 2"/
® S(1)=1=2"2and §(2)=2=2%?
® Ifatree has height /) > 2
® one subtree has height / — 1
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Height-balanced trees

e For a height-balanced tree of size 7, the height is at most 2log 7

e Let S(/)be the size of the smallest height-balanced tree of height /
e Claim: For h > 1, S(h) > 2"/2

® S(1)=1=2"%and §(2)=2=2%?

® Ifatree has height /) > 2

® one subtree has height / — 1
e other subtree has height at least / —2

o S(h)y=1+S(h—1)+S(h—2)>S(h—2)+S(h—2)
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Height-balanced trees

e For a height-balanced tree of size 7, the height is at most 2log 7

e Let S(/)be the size of the smallest height-balanced tree of height /
e Claim: For h > 1, S(h) > 2"/2

® S(1)=1=2"%and §(2)=2=2%?

® Ifatree has height /) > 2

® one subtree has height / — 1
e other subtree has height at least / —2

o S(h)=1+S(h—1)+S(h—2)> S(h—2)+S(h—2)
° S(})) > 2(h—2)/2 4 2(/7—2)/2 — 2(/7—2)/2+1 — 2/7/2
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Height-balanced trees

For a height-balanced tree of size 7, the height is at most 2log 7

Let S(/) be the size of the smallest height-balanced tree of height
Claim: For b > 1, S(h) > 2"/

® S(1)=1=2"%and §(2)=2=2%?

® Ifatree has height /) > 2

® one subtree has height / — 1
e other subtree has height at least / —2

o S(h)=1+S(h—1)+S(h—2)> S(h—2)+S(h—2)
° S(}]) > 2(h—2)/2 4 2(/7—2)/2 — 2(/7—2)/2+1 — 2/7/2

A height-balanced tree of size 7 has height at most 2 log
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Tree rotations — rotate right
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® Useful when t11 has large height
e In Haskell:

rotateRight (Node x (Node y tl1l tlr) tr)
= Node y t11l (Node x tlr tr)
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Tree rotations - rotate left
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® Useful when trr has large height
e In Haskell:

rotateLeft (Node x tl (Node y trl trr))
= Node y (Node x t1 trl) trr
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Height-balanced trees

¢ Assume tree is currently balanced
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Height-balanced trees

¢ Assume tree is currently balanced

® Each insert or delete creates an imbalance
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Height-balanced trees

¢ Assume tree is currently balanced
e Each insert or delete creates an imbalance

e Fix imbalance using a rebalance function
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Height-balanced trees

Assume tree is currently balanced
Each insert or delete creates an imbalance
Fix imbalance using a rebalance function

We need to compute height of a tree (and subtrees) to check for

imbalance
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Height-balanced trees

Assume tree is currently balanced
Each insert or delete creates an imbalance
Fix imbalance using a rebalance function

We need to compute height of a tree (and subtrees) to check for

imbalance

Takes time O(7)
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Height-balanced trees

Assume tree is currently balanced
Each insert or delete creates an imbalance
Fix imbalance using a rebalance function

We need to compute height of a tree (and subtrees) to check for

imbalance
Takes time O(7)

Save time by storing height in the node
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Height-balanced trees

Assume tree is currently balanced
Each insert or delete creates an imbalance
Fix imbalance using a rebalance function

We need to compute height of a tree (and subtrees) to check for

imbalance

Takes time O(7)

Save time by storing height in the node
Need to update height after each operation
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AVL trees

¢ The data type in Haskell:

data AVL a = Nil | Node Int a CAVL a) CAVL a)
deriving (Eq, Ord)
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AVL trees

¢ The data type in Haskell:

data AVL a = Nil | Node Int a CAVL a) CAVL a)
deriving (Eq, Ord)
e Extracting the height of a tree:
height :: AVL a -> Int
height Nil =0
height (Node h _ _ )
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AVL trees

¢ The data type in Haskell:
data AVL a = Nil | Node Int a CAVL a) CAVL a)
deriving (Eq, Ord)
e Extracting the height of a tree:

height :: AVL a -> Int
height Nil =0
height (Node h _ _ _) =h

¢ Also need a measure of how skewed a tree is - its slope

slope :: AVL a -> Int
0
height tl1 - height tr

slope Nil

slope (Node _ _ tl1 tr)
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AVL trees

® Checkif tisan AVL tree:

isAVL :: Ord a => AVL a -> Bool
isAVL Nil = True
isAVL t@(Node _ x tl1 tr)
= abs (slope t) < 2 &&
isAVL tl && 1isAVL tr &&
(isEmpty tl1 Il maxt tl < x) &&
(isEmpty tr Il x < mint tr)
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AVL trees — rotates

e Since we maintain height at each node, we need to adjust it after each

operation:

rotateRight :: AVL a -> AVL a
rotateRight (Node h x (Node hl y tl1l1 tlr) tr)
Node nh y t1l (Node nhr x tlr tr)

where
nhr = 1 + max Cheight tlr) (height tr)
nh = 1 + max (Cheight t11) nhr
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AVL trees — rotates

e Since we maintain height at each node, we need to adjust it after each

operation:

rotateRight :: AVL a -> AVL a
rotateRight (Node h x (Node hl y tl1l1 tlr) tr)
Node nh y t1l (Node nhr x tlr tr)

where
nhr = 1 + max Cheight tlr) (height tr)
nh = 1 + max (Cheight t11) nhr

® Constant time operation
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AVL trees — rotates

e Since we maintain height at each node, we need to adjust it after each

operation:

rotateleft :: AVL a -> AVL a
rotateLeft (Node h x tl (Node hr y trl trr))
Node nh y (Node nhl x tl trl) trr

where
nhl = 1 + max Cheight t1) Cheight trl)
nh = 1 + max nhl Cheight trr)
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AVL trees — rotates

e Since we maintain height at each node, we need to adjust it after each

operation:

rotateleft :: AVL a -> AVL a
rotateLeft (Node h x tl (Node hr y trl trr))
Node nh y (Node nhl x tl trl) trr

where
nhl = 1 + max Cheight t1) Cheight trl)
nh = 1 + max nhl Cheight trr)

® Constant time operation
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Rebalancing AVL trees

® Recall:

slope (Node h x tl tr) = height tl - height tr
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Rebalancing AVL trees

® Recall:

slope (Node h x tl tr) = height tl - height tr

® In a height balanced tree, abs slope < 2
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Rebalancing AVL trees

® Recall:

slope (Node h x tl tr) = height tl - height tr

® In a height balanced tree, abs slope < 2

e After an insert or delete, it can happen that abs slope ==
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Rebalancing AVL trees

Recall:

slope (Node h x tl tr) = height tl - height

In a height balanced tree, abs slope < 2
After an insert or delete, it can happen that abs slope

Violations happen only at nodes visited by operation

Suresh PRGH 2019: Lectures 23 & 24

tr

November 4 & 6, 2019

15/37



Rebalancing AVL trees

Recall:

slope (Node h x tl tr) = height tl - height tr
In a height balanced tree, abs slope < 2
After an insert or delete, it can happen that abs slope ==

Violations happen only at nodes visited by operation

We rebalance each node on the path visited by operation
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Rebalancing - slope ==

® Assume slope == 2 and both subtrees are balanced

Suresh PRGH 2019: Lectures 23 & 24 November 4 & 6, 2019 16 /37
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Rebalancing - slope ==

® Assume slope == 2 and both subtrees are balanced

e Slope of left subtree is -1
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Rebalancing - slope ==

® Assume slope == 2 and both subtrees are balanced
e Slope of left subtree is -1
® Left rotate the Ieft subtree and then right rotate the tree
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Rebalancing - slope == -2

® Assume slope == -2 and both subtrees are balanced
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e Slope of right subtree is 1
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Rebalancing - slope == -2

® Assume slope == -2 and both subtrees are balanced
e Slope of right subtree is 1
® Right rotate the right subtree and then left rotate the tree
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Rebalancing - slope == -2

® Assume slope == -2 and both subtrees are balanced
e Slope of right subtree is 1
® Right rotate the right subtree and then left rotate the tree
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Rebalancing - slope == -

® Assume slope == -2 and both subtrees are balanced

e Slope of right subtree is 1
® Right rotate the right subtree and then left rotate the tree
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Rebalancing in Haskell

® The rebalance function

rebalance :: Ord a => AVL a -> AVL a
rebalance t@(Node h x tl tr)
| abs st <2 =1t
| st == 2 = if stl == -1 then
rotateRight (Node h x (rotatelLeft tl) tr)
else rotateRight t
| st == -2 = if str == 1 then
rotateLeft (Node h x tl (rotateRight tr))
else rotatelLeft t
where (st, stl, str) = (slope t, slope tl, slope tr)
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Rebalancing in Haskell

® The rebalance function

rebalance :: Ord a => AVL a -> AVL a
rebalance t@(Node h x tl tr)
| abs st <2 =1t
| st == 2 = if stl == -1 then
rotateRight (Node h x (rotatelLeft tl) tr)
else rotateRight t
| st == -2 = if str == 1 then
rotateLeft (Node h x tl (rotateRight tr))
else rotatelLeft t
where (st, stl, str) = (slope t, slope tl, slope tr)

® Constant time operation
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Searching in an AVL tree

searchAVL :: Ord a => a -> AVL a -> Bool
searchAVL v Nil = False
searchAVL v (Node _ x tl tr)
| v == x = True
searchAVL v tl
searchAVL v tr

| v < x

| v > x
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Inserting in a tree

insertAVL :: Ord a => a -> AVL a -> AVL a
insertAVL v Nil = Node 1 v Nil Nil
insertAVL v t@(Node h x tl tr)

| v < x = rebalance (Node nhl x ntl tr)
| v > x = rebalance (Node nhr x tl ntr)
| v=x=t
where
ntl = insertAVL v tl
ntr = insertAVL v tr
nhl = 1 + max Cheight ntl) Cheight tr)
nhr = 1 + max Cheight t1) (height ntr)
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Deleting the maximum el

deleteMax :: Ord a => AVL a -> (a, AVL a)

deleteMax (Node
deleteMax (Node

where

Gy, ty)
nh

Suresh

h

x tl Nil) = (x, tl)

x tl tr) = (y, rebalance (Node nh x tl ty))

deleteMax tr
1 + max Cheight t1) Cheight ty)

PRGH 2019: Lectures 23 & 24

ement
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Deleting from a tree

deleteAVL :: Ord a => a -> AVL a -> AVL a
deleteAVL v Nil = Nil
deleteAVL v t@(Node h x tl tr)

| v < x = rebalance (Node nhl x ntl tr)
[ v > x = rebalance (Node nhr x tl1 ntr)
| v ==x = 1if isEmpty tl then tr

else rebalance (Node nhy y ty tr)

where

Cy, ty) = deleteMax tl
(ntl, ntr) = (deleteAVL v tl1, deleteAVL v tr)
nhl = 1 + max Cheight ntl) Cheight tr)
nhr = 1 + max Cheight t1) Cheight ntr)
nhy = 1 + max Cheight ty) Cheight tr)
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Tree operations — complexity

® Left and right rotates take constant time
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Tree operations — complexity

® Left and right rotates take constant time

e Rebalance of a tree takes constant time, when both subtrees are

balanced

e Search takes time proportional to height of the tree
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Tree operations — complexity

Left and right rotates take constant time

Rebalance of a tree takes constant time, when both subtrees are

balanced
Search takes time proportional to height of the tree

Insert and delete spend constant time on each node of some maximal
path
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Tree operations — complexity

Left and right rotates take constant time

Rebalance of a tree takes constant time, when both subtrees are

balanced
Search takes time proportional to height of the tree

Insert and delete spend constant time on each node of some maximal
path

Take time proportional to height of the tree
Height of a tree with » nodes is < 2log
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Tree operations — complexity

Left and right rotates take constant time

Rebalance of a tree takes constant time, when both subtrees are

balanced
Search takes time proportional to height of the tree

Insert and delete spend constant time on each node of some maximal
path

Take time proportional to height of the tree
Height of a tree with » nodes is < 2log

Thus each operation takes O(log7) time
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Tree operations — complexity

Left and right rotates take constant time

Rebalance of a tree takes constant time, when both subtrees are

balanced
Search takes time proportional to height of the tree

Insert and delete spend constant time on each node of some maximal
path

Take time proportional to height of the tree
Height of a tree with » nodes is < 2log
Thus each operation takes O(log7) time

A sequence of 7 operations take at most O(7 log7) time
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Other useful functions

® Create an empty AVL tree:

emptyAVL :: AVL a
emptyAVL = Nil
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Other useful functions

® Create an empty AVL tree:

emptyAVL :: AVL a
emptyAVL = Nil

® Check if a tree is empty:

isEmpty :: AVL a -> Bool

isEmpty Nil = True

isEmpty _ False
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Other useful functions

® Create an empty AVL tree:

emptyAVL :: AVL a
emptyAVL = Nil

® Check if a tree is empty:

isEmpty :: AVL a -> Bool
isEmpty Nil = True
isEmpty _ = False

e Create an AVL tree from alist (O(7 log7) time):

createAVL :: Ord a => [a] -> AVL a
createAVL = foldl' (flip insertAVL) emptyAVL
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Other useful functions

® Create a sorted list from an AVL tree:

inorder :: Ord a => AVL a -> [dad]
inorder Nil =[]
x tl tr)

inorder (Node inorder tl ++ [x] ++ inhorder tr
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Other useful functions

® Create a sorted list from an AVL tree:

inorder :: Ord a => AVL a -> [dad]
inorder Nil =[]

inorder (Node _

x tl tr) = inorder tl1 ++ [x] ++ inorder tr

® T (n)=2T(n/2)4+O(n),so T(n)=O(nlogn)
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Other useful functions

® Create a sorted list from an AVL tree:

inorder :: Ord a => AVL a -> [dad]
inorder Nil =[]

inorder (Node _

x tl tr) = inorder tl1 ++ [x] ++ inorder tr

® T (n)=2T(n/2)4+O(n),so T(n)=O(nlogn)

¢ Culprit is ++, which takes O(7) time
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Other useful functions

® Smarter inorder:

inorder :: Ord a => AVL a -> [dad]
inorder t =go t []
where go Nil 1 = 1L

go (Node _ x t1 tr) 1 = go tl (x:go tr 1)
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where go Nil 1 = 1L

go (Node _ x t1 tr) 1 = go tl (x:go tr 1)

® T(n)=2T(n/2)+c,s0 T(n)=0O(n)
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Other useful functions

® Smarter inorder:

inorder :: Ord a => AVL a -> [dad]
inorder t =go t []
where go Nil 1 = 1L

go (Node _ x t1 tr) 1 = go tl (x:go tr 1)

® T(n)=2T(n/2)+c,s0 T(n)=0O(n)
e We can sort alist in O(7 log ) time by:

treesort :: Ord a => [a] -> [a]

treesort = inorder . createAVL
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Other useful functions

® inorder (createAVL 1) sortslist1
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Other useful functions

® inorder (createAVL 1) sortslist1

e What if we wanted a size-balanced tree t such that inorder t == 17
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Other useful functions

® inorder (createAVL 1) sortslist1
e What if we wanted a size-balanced tree t such that inorder t == 1?

¢ t will not be a search tree in general
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Other useful functions

inorder (createAVL 1) sorts list1
What if we wanted a size-balanced tree t such that inorder t == 17?
t will not be a search tree in general

If 1 itself is sorted, t is search tree
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Other useful functions

inorder (createAVL 1) sorts list1

What if we wanted a size-balanced tree t such that inorder t == 1?
t will not be a search tree in general

If 1 itself is sorted, t is search tree

This is just the smart createTree we saw in a previous class
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Other useful functions

inorder (createAVL 1) sorts list1

What if we wanted a size-balanced tree t such that inorder t == 1?
t will not be a search tree in general

If 1 itself is sorted, t is search tree

This is just the smart createTree we saw in a previous class

Works in O(7) time
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inorderTree

inorderTree :: [a] -> AVL a
inorderTree 1 = fst (go (length 1) 1)
where

go :: Int -> [a] -> CAVL a, [al)

go @ xs = (Nil, xs)

go n xs = (Node h y tl tr, zs)

where

m=n div' 2
(tl, y:ys) = go m xs
(tr, zs) = go (n-m-1) ys
h =1 + max (Cheight tl1) Cheight tr)
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A module for AVL trees

® Saved in AVL.hs

module AVL(AVL, emptyAVL, isEmpty, isAVL,
insertAVL, deleteAVL, searchAVL,

createAVL, inorder, inorderTree) where

data AVL a = Nil | Node Int a CAVL a) (CAVL a)
deriving (Eq, Ord)

instance Show a => Show (AVL a) where

show t = intercalate "\n" (draw t)
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A module for AVL trees

® Saved in AVL.hs

module AVL(AVL, emptyAVL, isEmpty, isAVL,
insertAVL, deleteAVL, searchAVL,

createAVL, inorder, inorderTree) where

data AVL a = Nil | Node Int a CAVL a) (CAVL a)
deriving (Eq, Ord)

instance Show a => Show (AVL a) where
show t = intercalate "\n" (draw t)

e Can be used to define the Set ADT
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The Set ADT again

module Set(Set, emptySet, createSet,
insertInto, deleteFrom, search,
union, intersect, diff) where
import AVL

data Set a = Set CAVL a)
instance (Ord a, Show a) => Show (Set a) where

show (Set t) = show (inorder t)

emptySet :: Ord a => Set a
emptySet = Set emptyAVL
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The Set ADT again

createSet :: Ord a => [a] -> Set a
createSet = Set . createAVL

search :: Ord a => a -> Set a -> Bool
search x (Set t) = searchAVL x t

insertInto :: Ord a => a -> Set a -> Set a
insertInto x (Set t) = Set (insertAVL x t)

deleteFrom :: Ord a => a -> Set a -> Set a
deleteFrom x (Set t) = Set (deleteAVL x t)
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More set operations

union :: Ord a => Set a -> Set a -> Set a
union (Set tl1) (Set t2) = Set $ inorderTree $

unionMerge (inorder t1) (inorder t2)

unionMerge :: Ord a => [a] -> [a] -> [a]
ys
unionMerge xs [] = xs

unionMerge [] ys

unionMerge (x:xs) (y:ys)

| x <y = x:unionMerge xs (y:ys)
| 'y < x = y:unionMerge (x:xs) ys
| x ==y = x:unionMerge xs ys
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More set operations

intersect :: Ord a => Set a -> Set a -> Set a
intersect (Set t1) (Set t2) = Set $ inorderTree $

intersectMerge (inorder t1) (inorder t2)

intersectMerge :: Ord a => [a] -> [a] -> [da]
intersectMerge [] ys = []
intersectMerge xs [] = []

intersectMerge (x:xs) (y:ys)

| X <y = intersectMerge xs (y:ys)
| y < x = intersectMerge (x:xs) ys
| x ==y = x:intersectMerge xs ys
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diff :: Ord a
diff (Set t1)

diffMerge ::
diffMerge []
diffMerge xs

diffMerge (x:

Suresh

More set operations
=> Set a -> Set a -> Set a
(Set t2) = Set $ inorderTree $

diffMerge (inorder tl1) (inorder t2)

Oord a => [a] -> [a] -> [da]

ys = [1
[1 = xs
xs) (y:ys)

x:diffMerge xs (y:ys)
diffMerge (x:xs) ys

diffMerge xs ys
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Summary

® AVL trees are a fundamental, but non-trivial data structures
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® union, intersect and diff in O(m + 7) time
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Summary

® AVL trees are a fundamental, but non-trivial data structures
¢ Allows us to efficiently implement the Set ADT

® search, insertInto and deleteFromin O(log7) time

® union, intersect and diff in O(m + 7) time

¢ An illustration of the power of Haskell
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Summary

AVL trees are a fundamental, but non-trivial data structures
Allows us to efficiently implement the Set ADT

® search, insertInto and deleteFromin O(log7) time

® union, intersect and diff in O(m + 7) time
An illustration of the power of Haskell

Mathematical definitions almost directly transcribed to code
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Summary

AVL trees are a fundamental, but non-trivial data structures
Allows us to efficiently implement the Set ADT

® search, insertInto and deleteFromin O(log7) time

® union, intersect and diff in O(m + ) time
An illustration of the power of Haskell
Mathematical definitions almost directly transcribed to code

Pattern matching is very powerful
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Summary

AVL trees are a fundamental, but non-trivial data structures
Allows us to efficiently implement the Set ADT

® search, insertInto and deleteFromin O(log7) time

® union, intersect and diff in O(m + ) time
An illustration of the power of Haskell
Mathematical definitions almost directly transcribed to code
Pattern matching is very powerful

Allows us to easily specify complex transformations on data
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