
Programming in Haskell: Lecture 22

S P Suresh

October 30, 2019

Suresh PRGH 2019: Lecture 22 October 30, 2019 1 / 31

Binary trees

• A binary tree data structure is defined as follows:

• The empty tree is a binary tree
• A node containing an element with left and right subtrees is a binary
tree
• Type constructor BTree

data BTree a = Nil
| Node (BTree a) a (BTree a)

• Two value constructors:
Nil :: BTree a
Node :: BTree a -> a -> BTree a -> BTree a

Suresh PRGH 2019: Lecture 22 October 30, 2019 2 / 31

Binary trees

• A binary tree data structure is defined as follows:
• The empty tree is a binary tree

• A node containing an element with left and right subtrees is a binary
tree
• Type constructor BTree

data BTree a = Nil
| Node (BTree a) a (BTree a)

• Two value constructors:
Nil :: BTree a
Node :: BTree a -> a -> BTree a -> BTree a

Suresh PRGH 2019: Lecture 22 October 30, 2019 2 / 31

Binary trees

• A binary tree data structure is defined as follows:
• The empty tree is a binary tree
• A node containing an element with left and right subtrees is a binary
tree

• Type constructor BTree
data BTree a = Nil

| Node (BTree a) a (BTree a)

• Two value constructors:
Nil :: BTree a
Node :: BTree a -> a -> BTree a -> BTree a

Suresh PRGH 2019: Lecture 22 October 30, 2019 2 / 31

Binary trees

• A binary tree data structure is defined as follows:
• The empty tree is a binary tree
• A node containing an element with left and right subtrees is a binary
tree
• Type constructor BTree

data BTree a = Nil
| Node (BTree a) a (BTree a)

• Two value constructors:
Nil :: BTree a
Node :: BTree a -> a -> BTree a -> BTree a

Suresh PRGH 2019: Lecture 22 October 30, 2019 2 / 31

Binary trees

• A binary tree data structure is defined as follows:
• The empty tree is a binary tree
• A node containing an element with left and right subtrees is a binary
tree
• Type constructor BTree

data BTree a = Nil
| Node (BTree a) a (BTree a)

• Two value constructors:
Nil :: BTree a
Node :: BTree a -> a -> BTree a -> BTree a

Suresh PRGH 2019: Lecture 22 October 30, 2019 2 / 31

Binary trees

Node (Node Nil 4 Nil) 6
(Node (Node Nil 2 Nil) 3

(Node Nil 5 Nil))

6

4 3

2 5

Suresh PRGH 2019: Lecture 22 October 30, 2019 3 / 31

Binary trees

• Yet another binary tree
3

1

2

5

4

• Corresponding BTree
Node

(Node Nil 1 (Node Nil 2 Nil))
3

(Node (Node Nil 4 Nil) 5 Nil)

Suresh PRGH 2019: Lecture 22 October 30, 2019 4 / 31

Binary trees

• Yet another binary tree
3

1

2

5

4

• Corresponding BTree
Node

(Node Nil 1 (Node Nil 2 Nil))
3

(Node (Node Nil 4 Nil) 5 Nil)

Suresh PRGH 2019: Lecture 22 October 30, 2019 4 / 31

Functions on binary trees

• Number of nodes in a tree
size :: BTree a -> Int
size Nil = 0
size (Node tl x tr) = 1 + size tl + size tr

• Height: number of nodes on longest path from root
height :: BTree a -> Int
height Nil = 0
height (Node tl x tr) = 1 + max (height tl) (height tr)

Suresh PRGH 2019: Lecture 22 October 30, 2019 5 / 31

Functions on binary trees

• Number of nodes in a tree
size :: BTree a -> Int
size Nil = 0
size (Node tl x tr) = 1 + size tl + size tr

• Height: number of nodes on longest path from root
height :: BTree a -> Int
height Nil = 0
height (Node tl x tr) = 1 + max (height tl) (height tr)

Suresh PRGH 2019: Lecture 22 October 30, 2019 5 / 31

Creating a binary tree

• Create a binary tree from a list

• As balanced as possible
• Strategy:

• Split the list in two halves
• Recursively create a binary tree from each half
• Join them together

Suresh PRGH 2019: Lecture 22 October 30, 2019 6 / 31

Creating a binary tree

• Create a binary tree from a list
• As balanced as possible

• Strategy:

• Split the list in two halves
• Recursively create a binary tree from each half
• Join them together

Suresh PRGH 2019: Lecture 22 October 30, 2019 6 / 31

Creating a binary tree

• Create a binary tree from a list
• As balanced as possible
• Strategy:

• Split the list in two halves
• Recursively create a binary tree from each half
• Join them together

Suresh PRGH 2019: Lecture 22 October 30, 2019 6 / 31

Creating a binary tree

• Create a binary tree from a list
• As balanced as possible
• Strategy:
• Split the list in two halves

• Recursively create a binary tree from each half
• Join them together

Suresh PRGH 2019: Lecture 22 October 30, 2019 6 / 31

Creating a binary tree

• Create a binary tree from a list
• As balanced as possible
• Strategy:
• Split the list in two halves
• Recursively create a binary tree from each half

• Join them together

Suresh PRGH 2019: Lecture 22 October 30, 2019 6 / 31

Creating a binary tree

• Create a binary tree from a list
• As balanced as possible
• Strategy:
• Split the list in two halves
• Recursively create a binary tree from each half
• Join them together

Suresh PRGH 2019: Lecture 22 October 30, 2019 6 / 31

Creating a binary tree

• Creating a balanced tree from a list
createTree :: [a] -> BTree a
createTree [] = Nil
createTree xs = Node

(createTree front) x (createTree back)
where

n = length xs
(front, x:back) = splitAt (n `div` 2) xs

Suresh PRGH 2019: Lecture 22 October 30, 2019 7 / 31

Showing a binary tree

• To be able to show a binary tree, we need to derive a Show instance
data BTree a = Nil | Node (BTree a) a (BTree a)

deriving Show

createTree [0..14] =
Node (Node (Node (Node Nil 0 Nil) 1 (Node Nil 2 Nil))

3 (Node (Node Nil 4 Nil) 5 (Node Nil 6 Nil)))
7 (Node (Node (Node Nil 8 Nil) 9 (Node Nil 10 Nil))

11 (Node (Node Nil 12 Nil) 13 (Node Nil 14 Nil)))

• Not particularly readable!

Suresh PRGH 2019: Lecture 22 October 30, 2019 8 / 31

Showing a binary tree

• To be able to show a binary tree, we need to derive a Show instance
data BTree a = Nil | Node (BTree a) a (BTree a)

deriving Show

createTree [0..14] =
Node (Node (Node (Node Nil 0 Nil) 1 (Node Nil 2 Nil))

3 (Node (Node Nil 4 Nil) 5 (Node Nil 6 Nil)))
7 (Node (Node (Node Nil 8 Nil) 9 (Node Nil 10 Nil))

11 (Node (Node Nil 12 Nil) 13 (Node Nil 14 Nil)))

• Not particularly readable!

Suresh PRGH 2019: Lecture 22 October 30, 2019 8 / 31

A custom show

4

2

1

0

3

6

5 7

4
2

1
0
*

3
6

5
7

Suresh PRGH 2019: Lecture 22 October 30, 2019 9 / 31

A custom show

4

2

0

1

3

6

5

7

4
2

0
*
1

3
6

5
*
7

*

Suresh PRGH 2019: Lecture 22 October 30, 2019 10 / 31

A custom show

instance Show a => Show (BTree a) where
show = intercalate "\n" (draw t)

draw :: Show a => BTree a -> [String]
draw Nil = ["*"]
draw (Node Nil x Nil) = [show x]
draw (Node tl x tr) = [show x] ++

shift (draw tl) ++
shift (draw tr)

where shift = zipWith (++) (repeat " ")

Suresh PRGH 2019: Lecture 22 October 30, 2019 11 / 31

A custom show

0

1

2

3

4 5

0
|
+-1
| |
| +-*
| |
| `-2
|
`-3

|
+-4
|
`-5

Suresh PRGH 2019: Lecture 22 October 30, 2019 12 / 31

A custom show

instance Show a => Show (BTree a) where
show = intercalate "\n" (draw2 t)

draw2 :: Show a => BTree a -> [String]
draw2 Nil = ["*"]
draw2 (Node Nil x Nil) = [show x]
draw2 (Node tl x tr) = [show x] ++

shiftl (draw2 tl) ++
shiftr (draw2 tr)

where shiftl = zipWith (++) ("+-":repeat "| ")
shiftr = zipWith (++) ("`-":repeat " ")

Suresh PRGH 2019: Lecture 22 October 30, 2019 13 / 31

Creating a binary tree

• Creating a balanced tree from a list
createTree :: [a] -> BTree a
createTree [] = Nil
createTree xs = Node

(createTree front) x (createTree back)
where

n = length xs
(front, x:back) = splitAt (n `div` 2) xs

Suresh PRGH 2019: Lecture 22 October 30, 2019 14 / 31

Creating a binary tree

• length and splitAt take linear time

• T (n) = 2T (n/2)+O(n) and hence T (n) =O(n log n)
• Can we improve?

• Culprit is the repeated use of length and splitAt
• Can we avoid that?

• Consider the following function:
go :: Int -> [a] -> (BTree a, [a])

• go n l == (createTree (take n l), drop n l)

• Can we do this efficiently?

Suresh PRGH 2019: Lecture 22 October 30, 2019 15 / 31

Creating a binary tree

• length and splitAt take linear time
• T (n) = 2T (n/2)+O(n) and hence T (n) =O(n log n)

• Can we improve?

• Culprit is the repeated use of length and splitAt
• Can we avoid that?

• Consider the following function:
go :: Int -> [a] -> (BTree a, [a])

• go n l == (createTree (take n l), drop n l)

• Can we do this efficiently?

Suresh PRGH 2019: Lecture 22 October 30, 2019 15 / 31

Creating a binary tree

• length and splitAt take linear time
• T (n) = 2T (n/2)+O(n) and hence T (n) =O(n log n)
• Can we improve?

• Culprit is the repeated use of length and splitAt
• Can we avoid that?

• Consider the following function:
go :: Int -> [a] -> (BTree a, [a])

• go n l == (createTree (take n l), drop n l)

• Can we do this efficiently?

Suresh PRGH 2019: Lecture 22 October 30, 2019 15 / 31

Creating a binary tree

• length and splitAt take linear time
• T (n) = 2T (n/2)+O(n) and hence T (n) =O(n log n)
• Can we improve?
• Culprit is the repeated use of length and splitAt

• Can we avoid that?
• Consider the following function:

go :: Int -> [a] -> (BTree a, [a])

• go n l == (createTree (take n l), drop n l)

• Can we do this efficiently?

Suresh PRGH 2019: Lecture 22 October 30, 2019 15 / 31

Creating a binary tree

• length and splitAt take linear time
• T (n) = 2T (n/2)+O(n) and hence T (n) =O(n log n)
• Can we improve?
• Culprit is the repeated use of length and splitAt
• Can we avoid that?

• Consider the following function:
go :: Int -> [a] -> (BTree a, [a])

• go n l == (createTree (take n l), drop n l)

• Can we do this efficiently?

Suresh PRGH 2019: Lecture 22 October 30, 2019 15 / 31

Creating a binary tree

• length and splitAt take linear time
• T (n) = 2T (n/2)+O(n) and hence T (n) =O(n log n)
• Can we improve?
• Culprit is the repeated use of length and splitAt
• Can we avoid that?

• Consider the following function:
go :: Int -> [a] -> (BTree a, [a])

• go n l == (createTree (take n l), drop n l)

• Can we do this efficiently?

Suresh PRGH 2019: Lecture 22 October 30, 2019 15 / 31

Creating a binary tree

• length and splitAt take linear time
• T (n) = 2T (n/2)+O(n) and hence T (n) =O(n log n)
• Can we improve?
• Culprit is the repeated use of length and splitAt
• Can we avoid that?

• Consider the following function:
go :: Int -> [a] -> (BTree a, [a])

• go n l == (createTree (take n l), drop n l)

• Can we do this efficiently?

Suresh PRGH 2019: Lecture 22 October 30, 2019 15 / 31

Creating a binary tree

• length and splitAt take linear time
• T (n) = 2T (n/2)+O(n) and hence T (n) =O(n log n)
• Can we improve?
• Culprit is the repeated use of length and splitAt
• Can we avoid that?

• Consider the following function:
go :: Int -> [a] -> (BTree a, [a])

• go n l == (createTree (take n l), drop n l)

• Can we do this efficiently?

Suresh PRGH 2019: Lecture 22 October 30, 2019 15 / 31

Creating a binary tree

• Creating a tree in linear time
createTree :: [a] -> BTree a
createTree l = fst (go (length l) l)

where
go :: Int -> [a] -> (BTree a, [a])
go 0 xs = (Nil, xs)
go n xs = (Node tl y tr, zs)

where m = n `div` 2
(tl, y:ys) = go m xs
(tr, zs) = go (n-m-1) ys

• T (n) = 2T (n/2)+ c and hence T (n) = (2n− 1)c

Suresh PRGH 2019: Lecture 22 October 30, 2019 16 / 31

Creating a binary tree

• Creating a tree in linear time
createTree :: [a] -> BTree a
createTree l = fst (go (length l) l)

where
go :: Int -> [a] -> (BTree a, [a])
go 0 xs = (Nil, xs)
go n xs = (Node tl y tr, zs)

where m = n `div` 2
(tl, y:ys) = go m xs
(tr, zs) = go (n-m-1) ys

• T (n) = 2T (n/2)+ c and hence T (n) = (2n− 1)c

Suresh PRGH 2019: Lecture 22 October 30, 2019 16 / 31

The Set ADT

• Maintain a collection of distinct elements and support the following
operations

• insertInto – insert a given value into the set
• deleteFrom – delete a given value from the set
• search – check whether a given value is an element of the set

• Straightforward implementation
module Set(Set, insertInto, deleteFrom, search) where
data Set a = Set [a]

Suresh PRGH 2019: Lecture 22 October 30, 2019 17 / 31

The Set ADT

• Maintain a collection of distinct elements and support the following
operations
• insertInto – insert a given value into the set

• deleteFrom – delete a given value from the set
• search – check whether a given value is an element of the set

• Straightforward implementation
module Set(Set, insertInto, deleteFrom, search) where
data Set a = Set [a]

Suresh PRGH 2019: Lecture 22 October 30, 2019 17 / 31

The Set ADT

• Maintain a collection of distinct elements and support the following
operations
• insertInto – insert a given value into the set
• deleteFrom – delete a given value from the set

• search – check whether a given value is an element of the set

• Straightforward implementation
module Set(Set, insertInto, deleteFrom, search) where
data Set a = Set [a]

Suresh PRGH 2019: Lecture 22 October 30, 2019 17 / 31

The Set ADT

• Maintain a collection of distinct elements and support the following
operations
• insertInto – insert a given value into the set
• deleteFrom – delete a given value from the set
• search – check whether a given value is an element of the set

• Straightforward implementation
module Set(Set, insertInto, deleteFrom, search) where
data Set a = Set [a]

Suresh PRGH 2019: Lecture 22 October 30, 2019 17 / 31

The Set ADT

• Maintain a collection of distinct elements and support the following
operations
• insertInto – insert a given value into the set
• deleteFrom – delete a given value from the set
• search – check whether a given value is an element of the set

• Straightforward implementation
module Set(Set, insertInto, deleteFrom, search) where
data Set a = Set [a]

Suresh PRGH 2019: Lecture 22 October 30, 2019 17 / 31

The Set ADT

data Set a = Set [a]

search :: Eq a => a -> Set a -> Bool
search x (Set xs) = x `elem` xs

insertInto :: Eq a => a -> Set a -> Set a
insertInto x (Set xs) = if x `elem` xs then Set xs

else Set (x:xs)

deleteFrom :: Eq a => a -> Set a -> Set a
deleteFrom x (Set xs) = Set (filter (/=x) xs)

Suresh PRGH 2019: Lecture 22 October 30, 2019 18 / 31

Set: complexity

• search takesO(n) time

• insertInto takesO(n) time
• deleteFrom takesO(n) time
• A sequence of n operations takesO(n2) time
• We can do better if the elements admit an order

Suresh PRGH 2019: Lecture 22 October 30, 2019 19 / 31

Set: complexity

• search takesO(n) time
• insertInto takesO(n) time

• deleteFrom takesO(n) time
• A sequence of n operations takesO(n2) time
• We can do better if the elements admit an order

Suresh PRGH 2019: Lecture 22 October 30, 2019 19 / 31

Set: complexity

• search takesO(n) time
• insertInto takesO(n) time
• deleteFrom takesO(n) time

• A sequence of n operations takesO(n2) time
• We can do better if the elements admit an order

Suresh PRGH 2019: Lecture 22 October 30, 2019 19 / 31

Set: complexity

• search takesO(n) time
• insertInto takesO(n) time
• deleteFrom takesO(n) time
• A sequence of n operations takesO(n2) time

• We can do better if the elements admit an order

Suresh PRGH 2019: Lecture 22 October 30, 2019 19 / 31

Set: complexity

• search takesO(n) time
• insertInto takesO(n) time
• deleteFrom takesO(n) time
• A sequence of n operations takesO(n2) time
• We can do better if the elements admit an order

Suresh PRGH 2019: Lecture 22 October 30, 2019 19 / 31

Binary search trees

• A binary search tree is another way of implementing the Set ADT

• A binary search tree is a binary tree
• Stores values of type a such that Ord a
• In a binary search tree:

• values in the left subtree are smaller than the root
• values in the right subtree are larger than the root

Suresh PRGH 2019: Lecture 22 October 30, 2019 20 / 31

Binary search trees

• A binary search tree is another way of implementing the Set ADT
• A binary search tree is a binary tree

• Stores values of type a such that Ord a
• In a binary search tree:

• values in the left subtree are smaller than the root
• values in the right subtree are larger than the root

Suresh PRGH 2019: Lecture 22 October 30, 2019 20 / 31

Binary search trees

• A binary search tree is another way of implementing the Set ADT
• A binary search tree is a binary tree
• Stores values of type a such that Ord a

• In a binary search tree:

• values in the left subtree are smaller than the root
• values in the right subtree are larger than the root

Suresh PRGH 2019: Lecture 22 October 30, 2019 20 / 31

Binary search trees

• A binary search tree is another way of implementing the Set ADT
• A binary search tree is a binary tree
• Stores values of type a such that Ord a
• In a binary search tree:

• values in the left subtree are smaller than the root
• values in the right subtree are larger than the root

Suresh PRGH 2019: Lecture 22 October 30, 2019 20 / 31

Binary search trees

• A binary search tree is another way of implementing the Set ADT
• A binary search tree is a binary tree
• Stores values of type a such that Ord a
• In a binary search tree:
• values in the left subtree are smaller than the root

• values in the right subtree are larger than the root

Suresh PRGH 2019: Lecture 22 October 30, 2019 20 / 31

Binary search trees

• A binary search tree is another way of implementing the Set ADT
• A binary search tree is a binary tree
• Stores values of type a such that Ord a
• In a binary search tree:
• values in the left subtree are smaller than the root
• values in the right subtree are larger than the root

Suresh PRGH 2019: Lecture 22 October 30, 2019 20 / 31

Binary search trees

• The binary search tree
Node tl x tr

• Pictorially …
x

tl

< x

tr

> x

Suresh PRGH 2019: Lecture 22 October 30, 2019 21 / 31

Binary search trees

• The binary search tree
Node tl x tr

• Pictorially …
x

tl

< x

tr

> x

Suresh PRGH 2019: Lecture 22 October 30, 2019 21 / 31

Binary search trees

• Examples

3

1

2

5

4 6

4

2

1 3

6

5
• Non-examples

3

2

4

6

5

2

0

1

4

3 5
Suresh PRGH 2019: Lecture 22 October 30, 2019 22 / 31

BST

• Binary search trees in Haskell:
data BST a = Nil | Node (BST a) a (BST a)

deriving (Eq, Ord)

• The empty tree:
emptyBST :: BST a
emptyBST = Nil

• Is a tree empty?
isEmpty :: BST a -> Bool
isEmpty Nil = True
isEmpty _ = False

Suresh PRGH 2019: Lecture 22 October 30, 2019 23 / 31

BST

• Binary search trees in Haskell:
data BST a = Nil | Node (BST a) a (BST a)

deriving (Eq, Ord)

• The empty tree:
emptyBST :: BST a
emptyBST = Nil

• Is a tree empty?
isEmpty :: BST a -> Bool
isEmpty Nil = True
isEmpty _ = False

Suresh PRGH 2019: Lecture 22 October 30, 2019 23 / 31

BST

• Binary search trees in Haskell:
data BST a = Nil | Node (BST a) a (BST a)

deriving (Eq, Ord)

• The empty tree:
emptyBST :: BST a
emptyBST = Nil

• Is a tree empty?
isEmpty :: BST a -> Bool
isEmpty Nil = True
isEmpty _ = False

Suresh PRGH 2019: Lecture 22 October 30, 2019 23 / 31

Is it a search tree?

• Just naming it BST does not make it a binary search tree
isBST :: Ord a => BST a -> Bool
isBST Nil = True
isBST (Node tl x tr) = isBST tl && isBST tr &&

(isEmpty tl || maxt tl < x) &&
(isEmpty tr || x < mint tr)

Suresh PRGH 2019: Lecture 22 October 30, 2019 24 / 31

Minimum in a tree

• mint gives the minimum value in a non-empty tree:

mint :: Ord a => BST a -> a
mint (Node tl x tr) = min x (min y z)
where y = if isEmpty tl then x else mint tl

z = if isEmpty tr then x else mint tr

• maxt is similar (uses max instead of min)

Suresh PRGH 2019: Lecture 22 October 30, 2019 25 / 31

Minimum in a tree

• mint gives the minimum value in a non-empty tree:

mint :: Ord a => BST a -> a
mint (Node tl x tr) = min x (min y z)
where y = if isEmpty tl then x else mint tl

z = if isEmpty tr then x else mint tr

• maxt is similar (uses max instead of min)

Suresh PRGH 2019: Lecture 22 October 30, 2019 25 / 31

Searching in a tree

• Searching for value v in a search tree

• If the tree is empty, report False
• If the tree is nonempty

• If v is the value at the root, report True
• If v is smaller than the value at the root, search in left subtree
• If v is larger than the value at the root, search in right subtree

Suresh PRGH 2019: Lecture 22 October 30, 2019 26 / 31

Searching in a tree

• Searching for value v in a search tree
• If the tree is empty, report False

• If the tree is nonempty

• If v is the value at the root, report True
• If v is smaller than the value at the root, search in left subtree
• If v is larger than the value at the root, search in right subtree

Suresh PRGH 2019: Lecture 22 October 30, 2019 26 / 31

Searching in a tree

• Searching for value v in a search tree
• If the tree is empty, report False
• If the tree is nonempty

• If v is the value at the root, report True
• If v is smaller than the value at the root, search in left subtree
• If v is larger than the value at the root, search in right subtree

Suresh PRGH 2019: Lecture 22 October 30, 2019 26 / 31

Searching in a tree

• Searching for value v in a search tree
• If the tree is empty, report False
• If the tree is nonempty
• If v is the value at the root, report True

• If v is smaller than the value at the root, search in left subtree
• If v is larger than the value at the root, search in right subtree

Suresh PRGH 2019: Lecture 22 October 30, 2019 26 / 31

Searching in a tree

• Searching for value v in a search tree
• If the tree is empty, report False
• If the tree is nonempty
• If v is the value at the root, report True
• If v is smaller than the value at the root, search in left subtree

• If v is larger than the value at the root, search in right subtree

Suresh PRGH 2019: Lecture 22 October 30, 2019 26 / 31

Searching in a tree

• Searching for value v in a search tree
• If the tree is empty, report False
• If the tree is nonempty
• If v is the value at the root, report True
• If v is smaller than the value at the root, search in left subtree
• If v is larger than the value at the root, search in right subtree

Suresh PRGH 2019: Lecture 22 October 30, 2019 26 / 31

Searching in a tree

• Haskell code transcribe the search strategy:
searchBST :: Ord a => a -> BST a -> Bool
searchBST v Nil = False
searchBST v (Node tl x tr)

| v == x = True
| v < x = searchBST v tl
| v > x = searchBST v tr

• Worst case running time: Height of the tree

Suresh PRGH 2019: Lecture 22 October 30, 2019 27 / 31

Searching in a tree

• Haskell code transcribe the search strategy:
searchBST :: Ord a => a -> BST a -> Bool
searchBST v Nil = False
searchBST v (Node tl x tr)

| v == x = True
| v < x = searchBST v tl
| v > x = searchBST v tr

• Worst case running time: Height of the tree

Suresh PRGH 2019: Lecture 22 October 30, 2019 27 / 31

Inserting in a tree

• Inserting an element into a tree follows a similar strategy:
insertBST :: Ord a => a -> BST a -> BST a
insertBST v Nil = Node Nil v Nil
insertBST v t@(Node tl x tr)

| v < x = Node (insertBST v tl) x tr
| v > x = Node tl x (insertBST v tr)
| v == x = t

• Worst case running time: Height of the tree
• @ allows one to refer to a data value by a name

Suresh PRGH 2019: Lecture 22 October 30, 2019 28 / 31

Inserting in a tree

• Inserting an element into a tree follows a similar strategy:
insertBST :: Ord a => a -> BST a -> BST a
insertBST v Nil = Node Nil v Nil
insertBST v t@(Node tl x tr)

| v < x = Node (insertBST v tl) x tr
| v > x = Node tl x (insertBST v tr)
| v == x = t

• Worst case running time: Height of the tree

• @ allows one to refer to a data value by a name

Suresh PRGH 2019: Lecture 22 October 30, 2019 28 / 31

Inserting in a tree

• Inserting an element into a tree follows a similar strategy:
insertBST :: Ord a => a -> BST a -> BST a
insertBST v Nil = Node Nil v Nil
insertBST v t@(Node tl x tr)

| v < x = Node (insertBST v tl) x tr
| v > x = Node tl x (insertBST v tr)
| v == x = t

• Worst case running time: Height of the tree
• @ allows one to refer to a data value by a name

Suresh PRGH 2019: Lecture 22 October 30, 2019 28 / 31

Deleting from a tree

• We first tackle a simpler problem

• Delete the maximum value
• and return the value as well as the modified tree

• Maximum is the rightmost node:
deleteMax :: Ord a => BST a -> (a, BST a)
deleteMax (Node tl x Nil) = (x, tl)
deleteMax (Node tl x tr) = let (y, ty) = deleteMax tr

in (y, Node tl x ty)

• Worst case running time: Height of the tree

Suresh PRGH 2019: Lecture 22 October 30, 2019 29 / 31

Deleting from a tree

• We first tackle a simpler problem
• Delete the maximum value

• and return the value as well as the modified tree
• Maximum is the rightmost node:

deleteMax :: Ord a => BST a -> (a, BST a)
deleteMax (Node tl x Nil) = (x, tl)
deleteMax (Node tl x tr) = let (y, ty) = deleteMax tr

in (y, Node tl x ty)

• Worst case running time: Height of the tree

Suresh PRGH 2019: Lecture 22 October 30, 2019 29 / 31

Deleting from a tree

• We first tackle a simpler problem
• Delete the maximum value
• and return the value as well as the modified tree

• Maximum is the rightmost node:
deleteMax :: Ord a => BST a -> (a, BST a)
deleteMax (Node tl x Nil) = (x, tl)
deleteMax (Node tl x tr) = let (y, ty) = deleteMax tr

in (y, Node tl x ty)

• Worst case running time: Height of the tree

Suresh PRGH 2019: Lecture 22 October 30, 2019 29 / 31

Deleting from a tree

• We first tackle a simpler problem
• Delete the maximum value
• and return the value as well as the modified tree

• Maximum is the rightmost node:
deleteMax :: Ord a => BST a -> (a, BST a)
deleteMax (Node tl x Nil) = (x, tl)
deleteMax (Node tl x tr) = let (y, ty) = deleteMax tr

in (y, Node tl x ty)

• Worst case running time: Height of the tree

Suresh PRGH 2019: Lecture 22 October 30, 2019 29 / 31

Deleting from a tree

• We first tackle a simpler problem
• Delete the maximum value
• and return the value as well as the modified tree

• Maximum is the rightmost node:
deleteMax :: Ord a => BST a -> (a, BST a)
deleteMax (Node tl x Nil) = (x, tl)
deleteMax (Node tl x tr) = let (y, ty) = deleteMax tr

in (y, Node tl x ty)

• Worst case running time: Height of the tree

Suresh PRGH 2019: Lecture 22 October 30, 2019 29 / 31

Deleting from a tree

• Deleting a value v from a search tree

• If the tree is empty, nothing to do
• If the tree is nonempty

• If v is smaller than the value at the root, delete from left subtree
• If v is larger than the value at the root, delete from right subtree
• If v is equal to the value at the root, remove root and

• If left subtree is empty, just slide the right subtree up a level
• If left subtree is non-empty, replace root by maximum element of left
subtree
• Search tree property is preserved

Suresh PRGH 2019: Lecture 22 October 30, 2019 30 / 31

Deleting from a tree

• Deleting a value v from a search tree
• If the tree is empty, nothing to do

• If the tree is nonempty

• If v is smaller than the value at the root, delete from left subtree
• If v is larger than the value at the root, delete from right subtree
• If v is equal to the value at the root, remove root and

• If left subtree is empty, just slide the right subtree up a level
• If left subtree is non-empty, replace root by maximum element of left
subtree
• Search tree property is preserved

Suresh PRGH 2019: Lecture 22 October 30, 2019 30 / 31

Deleting from a tree

• Deleting a value v from a search tree
• If the tree is empty, nothing to do
• If the tree is nonempty

• If v is smaller than the value at the root, delete from left subtree
• If v is larger than the value at the root, delete from right subtree
• If v is equal to the value at the root, remove root and

• If left subtree is empty, just slide the right subtree up a level
• If left subtree is non-empty, replace root by maximum element of left
subtree
• Search tree property is preserved

Suresh PRGH 2019: Lecture 22 October 30, 2019 30 / 31

Deleting from a tree

• Deleting a value v from a search tree
• If the tree is empty, nothing to do
• If the tree is nonempty
• If v is smaller than the value at the root, delete from left subtree

• If v is larger than the value at the root, delete from right subtree
• If v is equal to the value at the root, remove root and

• If left subtree is empty, just slide the right subtree up a level
• If left subtree is non-empty, replace root by maximum element of left
subtree
• Search tree property is preserved

Suresh PRGH 2019: Lecture 22 October 30, 2019 30 / 31

Deleting from a tree

• Deleting a value v from a search tree
• If the tree is empty, nothing to do
• If the tree is nonempty
• If v is smaller than the value at the root, delete from left subtree
• If v is larger than the value at the root, delete from right subtree

• If v is equal to the value at the root, remove root and

• If left subtree is empty, just slide the right subtree up a level
• If left subtree is non-empty, replace root by maximum element of left
subtree
• Search tree property is preserved

Suresh PRGH 2019: Lecture 22 October 30, 2019 30 / 31

Deleting from a tree

• Deleting a value v from a search tree
• If the tree is empty, nothing to do
• If the tree is nonempty
• If v is smaller than the value at the root, delete from left subtree
• If v is larger than the value at the root, delete from right subtree
• If v is equal to the value at the root, remove root and

• If left subtree is empty, just slide the right subtree up a level
• If left subtree is non-empty, replace root by maximum element of left
subtree
• Search tree property is preserved

Suresh PRGH 2019: Lecture 22 October 30, 2019 30 / 31

Deleting from a tree

• Deleting a value v from a search tree
• If the tree is empty, nothing to do
• If the tree is nonempty
• If v is smaller than the value at the root, delete from left subtree
• If v is larger than the value at the root, delete from right subtree
• If v is equal to the value at the root, remove root and
• If left subtree is empty, just slide the right subtree up a level

• If left subtree is non-empty, replace root by maximum element of left
subtree
• Search tree property is preserved

Suresh PRGH 2019: Lecture 22 October 30, 2019 30 / 31

Deleting from a tree

• Deleting a value v from a search tree
• If the tree is empty, nothing to do
• If the tree is nonempty
• If v is smaller than the value at the root, delete from left subtree
• If v is larger than the value at the root, delete from right subtree
• If v is equal to the value at the root, remove root and
• If left subtree is empty, just slide the right subtree up a level
• If left subtree is non-empty, replace root by maximum element of left
subtree

• Search tree property is preserved

Suresh PRGH 2019: Lecture 22 October 30, 2019 30 / 31

Deleting from a tree

• Deleting a value v from a search tree
• If the tree is empty, nothing to do
• If the tree is nonempty
• If v is smaller than the value at the root, delete from left subtree
• If v is larger than the value at the root, delete from right subtree
• If v is equal to the value at the root, remove root and
• If left subtree is empty, just slide the right subtree up a level
• If left subtree is non-empty, replace root by maximum element of left
subtree
• Search tree property is preserved

Suresh PRGH 2019: Lecture 22 October 30, 2019 30 / 31

Deleting from a tree

• Code for delete:
deleteBST :: Ord a => a -> BST a -> BST a
deleteBST v Nil = Nil
deleteBST v (Node tl x tr)
| v < x = Node (deleteBST v tl) x tr
| v > x = Node tl x (deleteBST v tr)
| v == x = if isEmpty tl then tr else Node ty y tr

where (y, ty) = deleteMax tl

• Worst case running time: Height of the tree

Suresh PRGH 2019: Lecture 22 October 30, 2019 31 / 31

Deleting from a tree

• Code for delete:
deleteBST :: Ord a => a -> BST a -> BST a
deleteBST v Nil = Nil
deleteBST v (Node tl x tr)
| v < x = Node (deleteBST v tl) x tr
| v > x = Node tl x (deleteBST v tr)
| v == x = if isEmpty tl then tr else Node ty y tr

where (y, ty) = deleteMax tl

• Worst case running time: Height of the tree

Suresh PRGH 2019: Lecture 22 October 30, 2019 31 / 31

