
Programming in Haskell: Lecture 21

S P Suresh

October 28, 2019

Suresh PRGH 2019: Lecture 21 October 28, 2019 1 / 20



Recursive data types

• Just like we have recursive functions, we can have recursive data types

• A recursive datatype t is one which has some components of the same
type t
• Some constructors of a recursive data type t have t among their input
types, as well as the return type

Suresh PRGH 2019: Lecture 21 October 28, 2019 2 / 20



Recursive data types

• Just like we have recursive functions, we can have recursive data types
• A recursive datatype t is one which has some components of the same
type t

• Some constructors of a recursive data type t have t among their input
types, as well as the return type

Suresh PRGH 2019: Lecture 21 October 28, 2019 2 / 20



Recursive data types

• Just like we have recursive functions, we can have recursive data types
• A recursive datatype t is one which has some components of the same
type t
• Some constructors of a recursive data type t have t among their input
types, as well as the return type

Suresh PRGH 2019: Lecture 21 October 28, 2019 2 / 20



Example: Nat

• Simplest recursive data type
data Nat = Zero | Succ Nat

Zero :: Nat
Succ :: Nat -> Nat

Suresh PRGH 2019: Lecture 21 October 28, 2019 3 / 20



Functions on Nat

• Check for zero:
isZero :: Nat -> Bool
isZero Zero = True
isZero _ = False

• Predecessor:
pred :: Nat -> Nat
pred Zero = Zero
pred (Succ n) = n

Suresh PRGH 2019: Lecture 21 October 28, 2019 4 / 20



Functions on Nat

• Check for zero:
isZero :: Nat -> Bool
isZero Zero = True
isZero _ = False

• Predecessor:
pred :: Nat -> Nat
pred Zero = Zero
pred (Succ n) = n

Suresh PRGH 2019: Lecture 21 October 28, 2019 4 / 20



Functions on Nat

• Addition:
plus :: Nat -> Nat -> Nat
plus m Zero = m
plus m (Succ n) = Succ (plus m n)

• Multiplication:
mult :: Nat -> Nat -> Nat
mult m Zero = Zero
mult m (Succ n) = plus m (mult m n)

Suresh PRGH 2019: Lecture 21 October 28, 2019 5 / 20



Functions on Nat

• Addition:
plus :: Nat -> Nat -> Nat
plus m Zero = m
plus m (Succ n) = Succ (plus m n)

• Multiplication:
mult :: Nat -> Nat -> Nat
mult m Zero = Zero
mult m (Succ n) = plus m (mult m n)

Suresh PRGH 2019: Lecture 21 October 28, 2019 5 / 20



Showing Nat

• A custom show for Nat:

data Nat = Zero | Succ Nat
instance Show Nat where

show = show . turnToInt
turnToInt :: Nat -> Int
turnToInt Zero = 0
turnToInt (Succ n) = turnToInt n + 1

• In show = show . turnToInt

• The left show has type Nat -> String
• The left show has type Int -> String

Suresh PRGH 2019: Lecture 21 October 28, 2019 6 / 20



Showing Nat

• A custom show for Nat:

data Nat = Zero | Succ Nat
instance Show Nat where

show = show . turnToInt
turnToInt :: Nat -> Int
turnToInt Zero = 0
turnToInt (Succ n) = turnToInt n + 1

• In show = show . turnToInt

• The left show has type Nat -> String
• The left show has type Int -> String

Suresh PRGH 2019: Lecture 21 October 28, 2019 6 / 20



Showing Nat

• A custom show for Nat:

data Nat = Zero | Succ Nat
instance Show Nat where

show = show . turnToInt
turnToInt :: Nat -> Int
turnToInt Zero = 0
turnToInt (Succ n) = turnToInt n + 1

• In show = show . turnToInt
• The left show has type Nat -> String

• The left show has type Int -> String

Suresh PRGH 2019: Lecture 21 October 28, 2019 6 / 20



Showing Nat

• A custom show for Nat:

data Nat = Zero | Succ Nat
instance Show Nat where

show = show . turnToInt
turnToInt :: Nat -> Int
turnToInt Zero = 0
turnToInt (Succ n) = turnToInt n + 1

• In show = show . turnToInt
• The left show has type Nat -> String
• The left show has type Int -> String

Suresh PRGH 2019: Lecture 21 October 28, 2019 6 / 20



Example: List

• Recursive data types can also be polymorphic
List a = Nil | Cons a (List a)

• This is the built-in type [a]
• Functions are defined as usual on pattern matching:

head :: List a -> a
head (Cons x _) = x

• Exception on head Nil

Suresh PRGH 2019: Lecture 21 October 28, 2019 7 / 20



Example: List

• Recursive data types can also be polymorphic
List a = Nil | Cons a (List a)

• This is the built-in type [a]

• Functions are defined as usual on pattern matching:
head :: List a -> a
head (Cons x _) = x

• Exception on head Nil

Suresh PRGH 2019: Lecture 21 October 28, 2019 7 / 20



Example: List

• Recursive data types can also be polymorphic
List a = Nil | Cons a (List a)

• This is the built-in type [a]
• Functions are defined as usual on pattern matching:

head :: List a -> a
head (Cons x _) = x

• Exception on head Nil

Suresh PRGH 2019: Lecture 21 October 28, 2019 7 / 20



Example: List

• Recursive data types can also be polymorphic
List a = Nil | Cons a (List a)

• This is the built-in type [a]
• Functions are defined as usual on pattern matching:

head :: List a -> a
head (Cons x _) = x

• Exception on head Nil

Suresh PRGH 2019: Lecture 21 October 28, 2019 7 / 20



List

• List and head

List a = Nil | Cons a (List a)
head :: List a -> a
head (Cons x _) = x

• Exception on head Nil

• Can fix it with custom head

head :: List a -> Maybe a
head Nil = Nothing
head (Cons x _) = Just x

Suresh PRGH 2019: Lecture 21 October 28, 2019 8 / 20



List

• List and head

List a = Nil | Cons a (List a)
head :: List a -> a
head (Cons x _) = x

• Exception on head Nil

• Can fix it with custom head

head :: List a -> Maybe a
head Nil = Nothing
head (Cons x _) = Just x

Suresh PRGH 2019: Lecture 21 October 28, 2019 8 / 20



List

• List and head

List a = Nil | Cons a (List a)
head :: List a -> a
head (Cons x _) = x

• Exception on head Nil

• Can fix it with custom head

head :: List a -> Maybe a
head Nil = Nothing
head (Cons x _) = Just x

Suresh PRGH 2019: Lecture 21 October 28, 2019 8 / 20



Binary trees

• A binary tree data structure is defined as follows:

• The empty tree is a binary tree
• A node containing an element with left and right subtrees is a binary
tree
• Type constructor BTree

data BTree a = Nil
| Node (BTree a) a (BTree a)

• Two value constructors:
Nil :: BTree a
Node :: BTree a -> a -> BTree a -> BTree a

Suresh PRGH 2019: Lecture 21 October 28, 2019 9 / 20



Binary trees

• A binary tree data structure is defined as follows:
• The empty tree is a binary tree

• A node containing an element with left and right subtrees is a binary
tree
• Type constructor BTree

data BTree a = Nil
| Node (BTree a) a (BTree a)

• Two value constructors:
Nil :: BTree a
Node :: BTree a -> a -> BTree a -> BTree a

Suresh PRGH 2019: Lecture 21 October 28, 2019 9 / 20



Binary trees

• A binary tree data structure is defined as follows:
• The empty tree is a binary tree
• A node containing an element with left and right subtrees is a binary
tree

• Type constructor BTree
data BTree a = Nil

| Node (BTree a) a (BTree a)

• Two value constructors:
Nil :: BTree a
Node :: BTree a -> a -> BTree a -> BTree a

Suresh PRGH 2019: Lecture 21 October 28, 2019 9 / 20



Binary trees

• A binary tree data structure is defined as follows:
• The empty tree is a binary tree
• A node containing an element with left and right subtrees is a binary
tree
• Type constructor BTree

data BTree a = Nil
| Node (BTree a) a (BTree a)

• Two value constructors:
Nil :: BTree a
Node :: BTree a -> a -> BTree a -> BTree a

Suresh PRGH 2019: Lecture 21 October 28, 2019 9 / 20



Binary trees

• A binary tree data structure is defined as follows:
• The empty tree is a binary tree
• A node containing an element with left and right subtrees is a binary
tree
• Type constructor BTree

data BTree a = Nil
| Node (BTree a) a (BTree a)

• Two value constructors:
Nil :: BTree a
Node :: BTree a -> a -> BTree a -> BTree a

Suresh PRGH 2019: Lecture 21 October 28, 2019 9 / 20



Binary trees

Node (Node Nil 2 Nil) 3
(Node Nil 5 Nil)

3

2 5

Suresh PRGH 2019: Lecture 21 October 28, 2019 10 / 20



Binary trees

Node (Node Nil 4 Nil) 6
(Node (Node Nil 2 Nil) 3

(Node Nil 5 Nil))

6

4 3

2 5

Suresh PRGH 2019: Lecture 21 October 28, 2019 11 / 20



Binary trees

Node (Node Nil 4 Nil) 6
(Node (Node Nil 2 Nil) 3

(Node Nil 5 Nil))

• We omit nodes representing Nil usually
6

4 3

2 5

Suresh PRGH 2019: Lecture 21 October 28, 2019 12 / 20



Binary trees

• Yet another binary tree
3

1

2

5

4

• Corresponding BTree
Node

(Node Nil 1 (Node Nil 2 Nil))
3

(Node (Node Nil 4 Nil) 5 Nil)

Suresh PRGH 2019: Lecture 21 October 28, 2019 13 / 20



Binary trees

• Yet another binary tree
3

1

2

5

4

• Corresponding BTree
Node

(Node Nil 1 (Node Nil 2 Nil))
3

(Node (Node Nil 4 Nil) 5 Nil)

Suresh PRGH 2019: Lecture 21 October 28, 2019 13 / 20



Functions on binary trees

• Number of nodes in a tree
size :: BTree a -> Int
size Nil = 0
size (Node tl x tr) = 1 + size tl + size tr

• Height: number of nodes on longest path from root
height :: BTree a -> Int
height Nil = 0
height (Node tl x tr) = 1 + max (height tl) (height tr)

Suresh PRGH 2019: Lecture 21 October 28, 2019 14 / 20



Functions on binary trees

• Number of nodes in a tree
size :: BTree a -> Int
size Nil = 0
size (Node tl x tr) = 1 + size tl + size tr

• Height: number of nodes on longest path from root
height :: BTree a -> Int
height Nil = 0
height (Node tl x tr) = 1 + max (height tl) (height tr)

Suresh PRGH 2019: Lecture 21 October 28, 2019 14 / 20



Functions on binary trees

• Reflect the tree on its “vertical axis”

6

4 3

2 5

6

3

5 2

4

• Haskell code:
reflect :: BTree a -> BTree a
reflect Nil = Nil
reflect (Node tl x tr) = Node (reflect tr) x (reflect tl)

Suresh PRGH 2019: Lecture 21 October 28, 2019 15 / 20



Functions on binary trees

• Reflect the tree on its “vertical axis”

6

4 3

2 5

6

3

5 2

4

• Haskell code:
reflect :: BTree a -> BTree a
reflect Nil = Nil
reflect (Node tl x tr) = Node (reflect tr) x (reflect tl)

Suresh PRGH 2019: Lecture 21 October 28, 2019 15 / 20



Functions on binary trees

• Reflect the tree on its “vertical axis”

6

4 3

2 5

6

3

5 2

4

• Haskell code:
reflect :: BTree a -> BTree a
reflect Nil = Nil
reflect (Node tl x tr) = Node (reflect tr) x (reflect tl)

Suresh PRGH 2019: Lecture 21 October 28, 2019 15 / 20



Functions on binary trees

• Reflect the tree on its “vertical axis”

6

4 3

2 5

6

3

5 2

4

• Haskell code:
reflect :: BTree a -> BTree a
reflect Nil = Nil
reflect (Node tl x tr) = Node (reflect tr) x (reflect tl)

Suresh PRGH 2019: Lecture 21 October 28, 2019 15 / 20



Functions on binary trees

• Reflect the tree on its “vertical axis”

6

4 3

2 5

6

3

5 2

4

• Haskell code:
reflect :: BTree a -> BTree a
reflect Nil = Nil
reflect (Node tl x tr) = Node (reflect tr) x (reflect tl)

Suresh PRGH 2019: Lecture 21 October 28, 2019 15 / 20



Functions on binary trees

• levels – List nodes level by level and from left to right inside each level

• Let t be the tree below:
3

1

2

5

4

• levels t = [3,1,5,2,4]

Suresh PRGH 2019: Lecture 21 October 28, 2019 16 / 20



Functions on binary trees

• levels – List nodes level by level and from left to right inside each level
• Let t be the tree below:

3

1

2

5

4

• levels t = [3,1,5,2,4]

Suresh PRGH 2019: Lecture 21 October 28, 2019 16 / 20



Functions on binary trees

• levels – List nodes level by level and from left to right inside each level
• Let t be the tree below:

3

1

2

5

4

• levels t = [3,1,5,2,4]

Suresh PRGH 2019: Lecture 21 October 28, 2019 16 / 20



Functions on binary trees

• levels

levels :: BTree a -> [a]
levels = concat . levels'
levels' :: BTree a -> [[a]]
levels' Nil = []
levels' (Node tl x tr) = [x]:join (levels' tl)

(levels' tr)
join :: [[a]] -> [[a]] -> [[a]]
join [] yss = yss
join xss [] = xss
join (xs:xss) (ys:yss) = xs++ys: join xss yss

Suresh PRGH 2019: Lecture 21 October 28, 2019 17 / 20



Creating a binary tree

• Create a binary tree from a list

• As balanced as possible
• Strategy:

• Split the list in two halves
• Recursively create a binary tree from each half
• Join them together

Suresh PRGH 2019: Lecture 21 October 28, 2019 18 / 20



Creating a binary tree

• Create a binary tree from a list
• As balanced as possible

• Strategy:

• Split the list in two halves
• Recursively create a binary tree from each half
• Join them together

Suresh PRGH 2019: Lecture 21 October 28, 2019 18 / 20



Creating a binary tree

• Create a binary tree from a list
• As balanced as possible
• Strategy:

• Split the list in two halves
• Recursively create a binary tree from each half
• Join them together

Suresh PRGH 2019: Lecture 21 October 28, 2019 18 / 20



Creating a binary tree

• Create a binary tree from a list
• As balanced as possible
• Strategy:
• Split the list in two halves

• Recursively create a binary tree from each half
• Join them together

Suresh PRGH 2019: Lecture 21 October 28, 2019 18 / 20



Creating a binary tree

• Create a binary tree from a list
• As balanced as possible
• Strategy:
• Split the list in two halves
• Recursively create a binary tree from each half

• Join them together

Suresh PRGH 2019: Lecture 21 October 28, 2019 18 / 20



Creating a binary tree

• Create a binary tree from a list
• As balanced as possible
• Strategy:
• Split the list in two halves
• Recursively create a binary tree from each half
• Join them together

Suresh PRGH 2019: Lecture 21 October 28, 2019 18 / 20



Creating a binary tree

• Creating a balanced tree from a list
createTree :: [a] -> BTree a
createTree [] = Nil
createTree xs = Node

(createTree front) x (createTree back)
where

n = length xs
(front, x:back) = splitAt (n `div` 2) xs

levels (createTree [0..14]) =
[7,3,11,1,5,9,13,0,2,4,6,8,10,12,14]

height (createTree [0..14]) = 4
Suresh PRGH 2019: Lecture 21 October 28, 2019 19 / 20



Showing a binary tree

• To be able to show a binary tree, we need to derive a Show instance
data BTree a = Nil | Node (BTree a) a (BTree a)

deriving Show

createTree [0..14] =
Node (Node (Node (Node Nil 0 Nil) 1 (Node Nil 2 Nil))

3 (Node (Node Nil 4 Nil) 5 (Node Nil 6 Nil)))
7 (Node (Node (Node Nil 8 Nil) 9 (Node Nil 10 Nil))

11 (Node (Node Nil 12 Nil) 13 (Node Nil 14 Nil)))

• Not particularly readable!
• Addressed in the next class

Suresh PRGH 2019: Lecture 21 October 28, 2019 20 / 20



Showing a binary tree

• To be able to show a binary tree, we need to derive a Show instance
data BTree a = Nil | Node (BTree a) a (BTree a)

deriving Show

createTree [0..14] =
Node (Node (Node (Node Nil 0 Nil) 1 (Node Nil 2 Nil))

3 (Node (Node Nil 4 Nil) 5 (Node Nil 6 Nil)))
7 (Node (Node (Node Nil 8 Nil) 9 (Node Nil 10 Nil))

11 (Node (Node Nil 12 Nil) 13 (Node Nil 14 Nil)))

• Not particularly readable!

• Addressed in the next class

Suresh PRGH 2019: Lecture 21 October 28, 2019 20 / 20



Showing a binary tree

• To be able to show a binary tree, we need to derive a Show instance
data BTree a = Nil | Node (BTree a) a (BTree a)

deriving Show

createTree [0..14] =
Node (Node (Node (Node Nil 0 Nil) 1 (Node Nil 2 Nil))

3 (Node (Node Nil 4 Nil) 5 (Node Nil 6 Nil)))
7 (Node (Node (Node Nil 8 Nil) 9 (Node Nil 10 Nil))

11 (Node (Node Nil 12 Nil) 13 (Node Nil 14 Nil)))

• Not particularly readable!
• Addressed in the next class

Suresh PRGH 2019: Lecture 21 October 28, 2019 20 / 20


