
Programming in Haskell: Lecture 20

S P Suresh

October 23, 2019

Suresh PRGH 2019: Lecture 20 October 23, 2019 1 / 30

Abstract data types

• Recall the Stack data type
data Stack a = Stack [a]
push :: a -> Stack a -> Stack a
push x (Stack xs) = Stack (n:xs)
pop :: Stack a -> (a, Stack a)
pop (Stack (x:xs)) = (x, Stack xs)
empty :: Stack a
empty = Stack []
isEmpty :: Stack a -> Bool
isEmpty (Stack xs) = null xs

Suresh PRGH 2019: Lecture 20 October 23, 2019 2 / 30

Abstract data types

• If st1 :: Stack a and st2 :: Stack a…

• we cannot do st1 ++ st2

• But we can write the following function:
attach :: Stack a -> Stack a -> Stack a
attach (Stack xs) (Stack ys) = Stack (xs++ys)

• So what have we gained by making it a data type?

Suresh PRGH 2019: Lecture 20 October 23, 2019 3 / 30

Abstract data types

• If st1 :: Stack a and st2 :: Stack a…
• we cannot do st1 ++ st2

• But we can write the following function:
attach :: Stack a -> Stack a -> Stack a
attach (Stack xs) (Stack ys) = Stack (xs++ys)

• So what have we gained by making it a data type?

Suresh PRGH 2019: Lecture 20 October 23, 2019 3 / 30

Abstract data types

• If st1 :: Stack a and st2 :: Stack a…
• we cannot do st1 ++ st2

• But we can write the following function:
attach :: Stack a -> Stack a -> Stack a
attach (Stack xs) (Stack ys) = Stack (xs++ys)

• So what have we gained by making it a data type?

Suresh PRGH 2019: Lecture 20 October 23, 2019 3 / 30

Abstract data types

• If st1 :: Stack a and st2 :: Stack a…
• we cannot do st1 ++ st2

• But we can write the following function:
attach :: Stack a -> Stack a -> Stack a
attach (Stack xs) (Stack ys) = Stack (xs++ys)

• So what have we gained by making it a data type?

Suresh PRGH 2019: Lecture 20 October 23, 2019 3 / 30

Modules

• Ideally we would like the internal representation to be hidden from
the world

• Solution: Create a Stackmodule
• Amodule consists of functions that are related to each other
• The name of the file must match the name of the module
• Themodule can be used (imported) in any other file in the same
directory

Suresh PRGH 2019: Lecture 20 October 23, 2019 4 / 30

Modules

• Ideally we would like the internal representation to be hidden from
the world
• Solution: Create a Stackmodule

• Amodule consists of functions that are related to each other
• The name of the file must match the name of the module
• Themodule can be used (imported) in any other file in the same
directory

Suresh PRGH 2019: Lecture 20 October 23, 2019 4 / 30

Modules

• Ideally we would like the internal representation to be hidden from
the world
• Solution: Create a Stackmodule
• Amodule consists of functions that are related to each other

• The name of the file must match the name of the module
• Themodule can be used (imported) in any other file in the same
directory

Suresh PRGH 2019: Lecture 20 October 23, 2019 4 / 30

Modules

• Ideally we would like the internal representation to be hidden from
the world
• Solution: Create a Stackmodule
• Amodule consists of functions that are related to each other
• The name of the file must match the name of the module

• Themodule can be used (imported) in any other file in the same
directory

Suresh PRGH 2019: Lecture 20 October 23, 2019 4 / 30

Modules

• Ideally we would like the internal representation to be hidden from
the world
• Solution: Create a Stackmodule
• Amodule consists of functions that are related to each other
• The name of the file must match the name of the module
• Themodule can be used (imported) in any other file in the same
directory

Suresh PRGH 2019: Lecture 20 October 23, 2019 4 / 30

A Stackmodule

• The Stackmodule, saved in Stack.hs
module Stack(push, pop, empty, isEmpty) where

data Stack a = Stack [a]

push x (Stack xs) = Stack (x:xs)
pop (Stack (x:xs)) = (x, Stack xs)
empty = Stack []
isEmpty (Stack xs) = null xs

• The functions listed inside parentheses can be used outside the module

Suresh PRGH 2019: Lecture 20 October 23, 2019 5 / 30

A Stackmodule

• The Stackmodule, saved in Stack.hs
module Stack(push, pop, empty, isEmpty) where

data Stack a = Stack [a]

push x (Stack xs) = Stack (x:xs)
pop (Stack (x:xs)) = (x, Stack xs)
empty = Stack []
isEmpty (Stack xs) = null xs

• The functions listed inside parentheses can be used outside the module

Suresh PRGH 2019: Lecture 20 October 23, 2019 5 / 30

Using the Stackmodule

• The following code is in postfix.hs, in the same directory
import Stack

myStack = empty
myStack' = push 5 myStack

• Does not compile!
-- Not in scope: type constructor or class 'Stack'

Suresh PRGH 2019: Lecture 20 October 23, 2019 6 / 30

Using the Stackmodule

• The following code is in postfix.hs, in the same directory
import Stack

myStack = empty
myStack' = push 5 myStack

• Does not compile!
-- Not in scope: type constructor or class 'Stack'

Suresh PRGH 2019: Lecture 20 October 23, 2019 6 / 30

Using the Stackmodule

• Need to export the type constructor
module Stack(Stack, push, pop, empty, isEmpty) where
data Stack a = Stack [a]
...

• Now postfix.hs compiles

import Stack

myStack = empty
myStack' = push 5 myStack

Suresh PRGH 2019: Lecture 20 October 23, 2019 7 / 30

Using the Stackmodule

• Need to export the type constructor
module Stack(Stack, push, pop, empty, isEmpty) where
data Stack a = Stack [a]
...

• Now postfix.hs compiles

import Stack

myStack = empty
myStack' = push 5 myStack

Suresh PRGH 2019: Lecture 20 October 23, 2019 7 / 30

Using the Stackmodule

• Can we do this in postfix.hs?
import Stack
newStack = Stack [0..9]

• Does not compile!
-- Data constructor not in scope: Stack :: [Integer] -> t

• This is exactly what we want!
• No one should be able to directly use the data constructor!

Suresh PRGH 2019: Lecture 20 October 23, 2019 8 / 30

Using the Stackmodule

• Can we do this in postfix.hs?
import Stack
newStack = Stack [0..9]

• Does not compile!
-- Data constructor not in scope: Stack :: [Integer] -> t

• This is exactly what we want!
• No one should be able to directly use the data constructor!

Suresh PRGH 2019: Lecture 20 October 23, 2019 8 / 30

Using the Stackmodule

• Can we do this in postfix.hs?
import Stack
newStack = Stack [0..9]

• Does not compile!
-- Data constructor not in scope: Stack :: [Integer] -> t

• This is exactly what we want!

• No one should be able to directly use the data constructor!

Suresh PRGH 2019: Lecture 20 October 23, 2019 8 / 30

Using the Stackmodule

• Can we do this in postfix.hs?
import Stack
newStack = Stack [0..9]

• Does not compile!
-- Data constructor not in scope: Stack :: [Integer] -> t

• This is exactly what we want!
• No one should be able to directly use the data constructor!

Suresh PRGH 2019: Lecture 20 October 23, 2019 8 / 30

Exporting the constructors

• If we want the data constructors to be used directly …

• we export the data constructors in the module
module Stack(Stack(Stack), push, pop, empty, isEmpty) where
data Stack a = Stack [a]

...

• In Stack(Stack), the left Stack is the export of the type constructor
• The right Stack is the data constructor
• In case there are many data constructors, we export them all by:

module Stack(Stack(..), push, pop, empty, isEmpty) where

Suresh PRGH 2019: Lecture 20 October 23, 2019 9 / 30

Exporting the constructors

• If we want the data constructors to be used directly …
• we export the data constructors in the module

module Stack(Stack(Stack), push, pop, empty, isEmpty) where
data Stack a = Stack [a]

...

• In Stack(Stack), the left Stack is the export of the type constructor
• The right Stack is the data constructor
• In case there are many data constructors, we export them all by:

module Stack(Stack(..), push, pop, empty, isEmpty) where

Suresh PRGH 2019: Lecture 20 October 23, 2019 9 / 30

Exporting the constructors

• If we want the data constructors to be used directly …
• we export the data constructors in the module

module Stack(Stack(Stack), push, pop, empty, isEmpty) where
data Stack a = Stack [a]

...

• In Stack(Stack), the left Stack is the export of the type constructor

• The right Stack is the data constructor
• In case there are many data constructors, we export them all by:

module Stack(Stack(..), push, pop, empty, isEmpty) where

Suresh PRGH 2019: Lecture 20 October 23, 2019 9 / 30

Exporting the constructors

• If we want the data constructors to be used directly …
• we export the data constructors in the module

module Stack(Stack(Stack), push, pop, empty, isEmpty) where
data Stack a = Stack [a]

...

• In Stack(Stack), the left Stack is the export of the type constructor
• The right Stack is the data constructor

• In case there are many data constructors, we export them all by:
module Stack(Stack(..), push, pop, empty, isEmpty) where

Suresh PRGH 2019: Lecture 20 October 23, 2019 9 / 30

Exporting the constructors

• If we want the data constructors to be used directly …
• we export the data constructors in the module

module Stack(Stack(Stack), push, pop, empty, isEmpty) where
data Stack a = Stack [a]

...

• In Stack(Stack), the left Stack is the export of the type constructor
• The right Stack is the data constructor
• In case there are many data constructors, we export them all by:

module Stack(Stack(..), push, pop, empty, isEmpty) where

Suresh PRGH 2019: Lecture 20 October 23, 2019 9 / 30

Using the Stackmodule

• We create module Stack in Stack.hs

• exporting the type constructor but not the data constructor
• We create postfix.hs, importing Stack
• If we load postfix.hs in ghci, Stack.hs is also compiled
• But we can only use the exported functions
• One flaw in hiding our internal representation:

show (push 5 empty) = "Stack [5]"

• There is a need for a custom show

Suresh PRGH 2019: Lecture 20 October 23, 2019 10 / 30

Using the Stackmodule

• We create module Stack in Stack.hs
• exporting the type constructor but not the data constructor

• We create postfix.hs, importing Stack
• If we load postfix.hs in ghci, Stack.hs is also compiled
• But we can only use the exported functions
• One flaw in hiding our internal representation:

show (push 5 empty) = "Stack [5]"

• There is a need for a custom show

Suresh PRGH 2019: Lecture 20 October 23, 2019 10 / 30

Using the Stackmodule

• We create module Stack in Stack.hs
• exporting the type constructor but not the data constructor

• We create postfix.hs, importing Stack

• If we load postfix.hs in ghci, Stack.hs is also compiled
• But we can only use the exported functions
• One flaw in hiding our internal representation:

show (push 5 empty) = "Stack [5]"

• There is a need for a custom show

Suresh PRGH 2019: Lecture 20 October 23, 2019 10 / 30

Using the Stackmodule

• We create module Stack in Stack.hs
• exporting the type constructor but not the data constructor

• We create postfix.hs, importing Stack
• If we load postfix.hs in ghci, Stack.hs is also compiled

• But we can only use the exported functions
• One flaw in hiding our internal representation:

show (push 5 empty) = "Stack [5]"

• There is a need for a custom show

Suresh PRGH 2019: Lecture 20 October 23, 2019 10 / 30

Using the Stackmodule

• We create module Stack in Stack.hs
• exporting the type constructor but not the data constructor

• We create postfix.hs, importing Stack
• If we load postfix.hs in ghci, Stack.hs is also compiled
• But we can only use the exported functions

• One flaw in hiding our internal representation:
show (push 5 empty) = "Stack [5]"

• There is a need for a custom show

Suresh PRGH 2019: Lecture 20 October 23, 2019 10 / 30

Using the Stackmodule

• We create module Stack in Stack.hs
• exporting the type constructor but not the data constructor

• We create postfix.hs, importing Stack
• If we load postfix.hs in ghci, Stack.hs is also compiled
• But we can only use the exported functions
• One flaw in hiding our internal representation:

show (push 5 empty) = "Stack [5]"

• There is a need for a custom show

Suresh PRGH 2019: Lecture 20 October 23, 2019 10 / 30

Using the Stackmodule

• We create module Stack in Stack.hs
• exporting the type constructor but not the data constructor

• We create postfix.hs, importing Stack
• If we load postfix.hs in ghci, Stack.hs is also compiled
• But we can only use the exported functions
• One flaw in hiding our internal representation:

show (push 5 empty) = "Stack [5]"

• There is a need for a custom show

Suresh PRGH 2019: Lecture 20 October 23, 2019 10 / 30

A custom show

• Our original definition of Stack:
data Stack a = Stack [a]

deriving (Eq, Ord, Show)

• But the default show reveals the internal structure
• We create a custom Show instance of Stack a as follows:

data Stack a = Stack [a]
deriving (Eq, Ord)

instance Show a => Show (Stack a) where
show (Stack l) = fancyShow l

Suresh PRGH 2019: Lecture 20 October 23, 2019 11 / 30

A custom show

• Our original definition of Stack:
data Stack a = Stack [a]

deriving (Eq, Ord, Show)

• But the default show reveals the internal structure

• We create a custom Show instance of Stack a as follows:

data Stack a = Stack [a]
deriving (Eq, Ord)

instance Show a => Show (Stack a) where
show (Stack l) = fancyShow l

Suresh PRGH 2019: Lecture 20 October 23, 2019 11 / 30

A custom show

• Our original definition of Stack:
data Stack a = Stack [a]

deriving (Eq, Ord, Show)

• But the default show reveals the internal structure
• We create a custom Show instance of Stack a as follows:

data Stack a = Stack [a]
deriving (Eq, Ord)

instance Show a => Show (Stack a) where
show (Stack l) = fancyShow l

Suresh PRGH 2019: Lecture 20 October 23, 2019 11 / 30

A custom show

• Suppose we want show (Stack [1,2,3]) = "1->2->3"

• We create a custom Show instance as follows:

data Stack a = Stack [a]
deriving (Eq, Ord)

instance Show a => Show (Stack a) where
show (Stack l) = fancyShow l

fancyShow :: Show a => [a] -> String
fancyShow = (intercalate "->") . (map show)

Suresh PRGH 2019: Lecture 20 October 23, 2019 12 / 30

A custom show

• Suppose we want show (Stack [1,2,3]) = "1->2->3"

• We create a custom Show instance as follows:

data Stack a = Stack [a]
deriving (Eq, Ord)

instance Show a => Show (Stack a) where
show (Stack l) = fancyShow l

fancyShow :: Show a => [a] -> String
fancyShow = (intercalate "->") . (map show)

Suresh PRGH 2019: Lecture 20 October 23, 2019 12 / 30

Using Stack – postfix expressions

• A postfix expression is an arithmetic expression where the operator
appears after the operands

• No parentheses required in a postfix expression
3 5 8 * + = (3 + (5 * 8)) = 43
2 3 + 7 2 + - = ((2 + 3) - (7 + 2)) = (-4)

Suresh PRGH 2019: Lecture 20 October 23, 2019 13 / 30

Using Stack – postfix expressions

• A postfix expression is an arithmetic expression where the operator
appears after the operands
• No parentheses required in a postfix expression

3 5 8 * + = (3 + (5 * 8)) = 43
2 3 + 7 2 + - = ((2 + 3) - (7 + 2)) = (-4)

Suresh PRGH 2019: Lecture 20 October 23, 2019 13 / 30

Using Stack – postfix expressions

• Every postfix expression can be converted uniquely to an infix
expression

• Start with an empty stack of expressions
• Scan the postfix expression from the left
• If the symbol is a number, it is a standalone expression

• Push it on to the stack

• If the symbol is an operator, bracket it with the top two expressions on
stack

• Pop the top two and push the result on to stack

Suresh PRGH 2019: Lecture 20 October 23, 2019 14 / 30

Using Stack – postfix expressions

• Every postfix expression can be converted uniquely to an infix
expression
• Start with an empty stack of expressions

• Scan the postfix expression from the left
• If the symbol is a number, it is a standalone expression

• Push it on to the stack

• If the symbol is an operator, bracket it with the top two expressions on
stack

• Pop the top two and push the result on to stack

Suresh PRGH 2019: Lecture 20 October 23, 2019 14 / 30

Using Stack – postfix expressions

• Every postfix expression can be converted uniquely to an infix
expression
• Start with an empty stack of expressions
• Scan the postfix expression from the left

• If the symbol is a number, it is a standalone expression

• Push it on to the stack

• If the symbol is an operator, bracket it with the top two expressions on
stack

• Pop the top two and push the result on to stack

Suresh PRGH 2019: Lecture 20 October 23, 2019 14 / 30

Using Stack – postfix expressions

• Every postfix expression can be converted uniquely to an infix
expression
• Start with an empty stack of expressions
• Scan the postfix expression from the left
• If the symbol is a number, it is a standalone expression

• Push it on to the stack
• If the symbol is an operator, bracket it with the top two expressions on
stack

• Pop the top two and push the result on to stack

Suresh PRGH 2019: Lecture 20 October 23, 2019 14 / 30

Using Stack – postfix expressions

• Every postfix expression can be converted uniquely to an infix
expression
• Start with an empty stack of expressions
• Scan the postfix expression from the left
• If the symbol is a number, it is a standalone expression
• Push it on to the stack

• If the symbol is an operator, bracket it with the top two expressions on
stack

• Pop the top two and push the result on to stack

Suresh PRGH 2019: Lecture 20 October 23, 2019 14 / 30

Using Stack – postfix expressions

• Every postfix expression can be converted uniquely to an infix
expression
• Start with an empty stack of expressions
• Scan the postfix expression from the left
• If the symbol is a number, it is a standalone expression
• Push it on to the stack

• If the symbol is an operator, bracket it with the top two expressions on
stack

• Pop the top two and push the result on to stack

Suresh PRGH 2019: Lecture 20 October 23, 2019 14 / 30

Using Stack – postfix expressions

• Every postfix expression can be converted uniquely to an infix
expression
• Start with an empty stack of expressions
• Scan the postfix expression from the left
• If the symbol is a number, it is a standalone expression
• Push it on to the stack

• If the symbol is an operator, bracket it with the top two expressions on
stack
• Pop the top two and push the result on to stack

Suresh PRGH 2019: Lecture 20 October 23, 2019 14 / 30

Using Stack – evaluating postfix expressions

• Use the same logic described earlier

• Start with an empty stack of numbers
• Scan the postfix expression from the left
• If the symbol is a number, push it on to the stack
• If the symbol is an operator

• pop the top two numbers on the stack
• apply operation
• push the result on to stack

Suresh PRGH 2019: Lecture 20 October 23, 2019 15 / 30

Using Stack – evaluating postfix expressions

• Use the same logic described earlier
• Start with an empty stack of numbers

• Scan the postfix expression from the left
• If the symbol is a number, push it on to the stack
• If the symbol is an operator

• pop the top two numbers on the stack
• apply operation
• push the result on to stack

Suresh PRGH 2019: Lecture 20 October 23, 2019 15 / 30

Using Stack – evaluating postfix expressions

• Use the same logic described earlier
• Start with an empty stack of numbers
• Scan the postfix expression from the left

• If the symbol is a number, push it on to the stack
• If the symbol is an operator

• pop the top two numbers on the stack
• apply operation
• push the result on to stack

Suresh PRGH 2019: Lecture 20 October 23, 2019 15 / 30

Using Stack – evaluating postfix expressions

• Use the same logic described earlier
• Start with an empty stack of numbers
• Scan the postfix expression from the left
• If the symbol is a number, push it on to the stack

• If the symbol is an operator

• pop the top two numbers on the stack
• apply operation
• push the result on to stack

Suresh PRGH 2019: Lecture 20 October 23, 2019 15 / 30

Using Stack – evaluating postfix expressions

• Use the same logic described earlier
• Start with an empty stack of numbers
• Scan the postfix expression from the left
• If the symbol is a number, push it on to the stack
• If the symbol is an operator

• pop the top two numbers on the stack
• apply operation
• push the result on to stack

Suresh PRGH 2019: Lecture 20 October 23, 2019 15 / 30

Using Stack – evaluating postfix expressions

• Use the same logic described earlier
• Start with an empty stack of numbers
• Scan the postfix expression from the left
• If the symbol is a number, push it on to the stack
• If the symbol is an operator
• pop the top two numbers on the stack

• apply operation
• push the result on to stack

Suresh PRGH 2019: Lecture 20 October 23, 2019 15 / 30

Using Stack – evaluating postfix expressions

• Use the same logic described earlier
• Start with an empty stack of numbers
• Scan the postfix expression from the left
• If the symbol is a number, push it on to the stack
• If the symbol is an operator
• pop the top two numbers on the stack
• apply operation

• push the result on to stack

Suresh PRGH 2019: Lecture 20 October 23, 2019 15 / 30

Using Stack – evaluating postfix expressions

• Use the same logic described earlier
• Start with an empty stack of numbers
• Scan the postfix expression from the left
• If the symbol is a number, push it on to the stack
• If the symbol is an operator
• pop the top two numbers on the stack
• apply operation
• push the result on to stack

Suresh PRGH 2019: Lecture 20 October 23, 2019 15 / 30

A calculator program

• A postfix expression is a sequence of numbers and operators

• We represent it as a list of tokens
import Stack
import Data.List (foldl')

data Token = Val Int | Op Char
type Expr = [Token]

Suresh PRGH 2019: Lecture 20 October 23, 2019 16 / 30

A calculator program

• A postfix expression is a sequence of numbers and operators
• We represent it as a list of tokens

import Stack
import Data.List (foldl')

data Token = Val Int | Op Char
type Expr = [Token]

Suresh PRGH 2019: Lecture 20 October 23, 2019 16 / 30

Evaluating expressions

step :: Stack Int -> Token -> Stack Int
step st (Val n) = push n st
step st (Op c)

| c == '+' = push (n2+n1) st2
| c == '-' = push (n2-n1) st2
| c == '*' = push (n2*n1) st2
| c == '/' = push (n2 `div` n1) st2
where (n1, st1) = pop st

(n2, st2) = pop st1
eval :: Expr -> Int
eval = fst . pop . (foldl' step empty)

Suresh PRGH 2019: Lecture 20 October 23, 2019 17 / 30

A calculator program

• Not convenient to provide input of the form [Val 2, Val 3, Op '+']

• Need a translator from strings to expressions (assuming only “correct”
strings as input)

toExpr :: String -> Expr
toExpr str = map tokenize (words str)
tokenize :: String -> Token
tokenize "+" = Op '+'
tokenize "-" = Op '-'
tokenize "*" = Op '*'
tokenize "/" = Op '/'
tokenize str = Val (read str::Int)

Suresh PRGH 2019: Lecture 20 October 23, 2019 18 / 30

A calculator program

• Not convenient to provide input of the form [Val 2, Val 3, Op '+']

• Need a translator from strings to expressions (assuming only “correct”
strings as input)

toExpr :: String -> Expr
toExpr str = map tokenize (words str)
tokenize :: String -> Token
tokenize "+" = Op '+'
tokenize "-" = Op '-'
tokenize "*" = Op '*'
tokenize "/" = Op '/'
tokenize str = Val (read str::Int)

Suresh PRGH 2019: Lecture 20 October 23, 2019 18 / 30

A calculator program

• We can even make the program interactive
eval :: String -> Int
eval str = fst $ pop $ foldl' step empty (toExpr str)
main :: IO ()
main = interact (unlines . map (show . eval) . lines)

• Add lines like these to postfix.in
22 34 +
2 5 + 8 *
2 5 8 + *

• Compile and run ./postfix < postfix.in to see the results

Suresh PRGH 2019: Lecture 20 October 23, 2019 19 / 30

A calculator program

• We can even make the program interactive
eval :: String -> Int
eval str = fst $ pop $ foldl' step empty (toExpr str)
main :: IO ()
main = interact (unlines . map (show . eval) . lines)

• Add lines like these to postfix.in
22 34 +
2 5 + 8 *
2 5 8 + *

• Compile and run ./postfix < postfix.in to see the results

Suresh PRGH 2019: Lecture 20 October 23, 2019 19 / 30

A calculator program

• We can even make the program interactive
eval :: String -> Int
eval str = fst $ pop $ foldl' step empty (toExpr str)
main :: IO ()
main = interact (unlines . map (show . eval) . lines)

• Add lines like these to postfix.in
22 34 +
2 5 + 8 *
2 5 8 + *

• Compile and run ./postfix < postfix.in to see the results

Suresh PRGH 2019: Lecture 20 October 23, 2019 19 / 30

A Queuemodule

• In a stack, elements are pushed and popped at the top

• In a queue, elements are added at the rear and removed from the head
• The Queuemodule, saved in Queue.hs

module Queue(Queue, enqueue, dequeue, empty, isEmpty) where

data Queue a = Queue [a]
deriving (Eq, Ord)

enqueue x (Queue xs) = Queue (xs++[x])
dequeue (Queue (x:xs)) = (x, Queue xs)
empty = Queue []
isEmpty (Queue xs) = null xs

Suresh PRGH 2019: Lecture 20 October 23, 2019 20 / 30

A Queuemodule

• In a stack, elements are pushed and popped at the top
• In a queue, elements are added at the rear and removed from the head

• The Queuemodule, saved in Queue.hs
module Queue(Queue, enqueue, dequeue, empty, isEmpty) where

data Queue a = Queue [a]
deriving (Eq, Ord)

enqueue x (Queue xs) = Queue (xs++[x])
dequeue (Queue (x:xs)) = (x, Queue xs)
empty = Queue []
isEmpty (Queue xs) = null xs

Suresh PRGH 2019: Lecture 20 October 23, 2019 20 / 30

A Queuemodule

• In a stack, elements are pushed and popped at the top
• In a queue, elements are added at the rear and removed from the head
• The Queuemodule, saved in Queue.hs

module Queue(Queue, enqueue, dequeue, empty, isEmpty) where

data Queue a = Queue [a]
deriving (Eq, Ord)

enqueue x (Queue xs) = Queue (xs++[x])
dequeue (Queue (x:xs)) = (x, Queue xs)
empty = Queue []
isEmpty (Queue xs) = null xs

Suresh PRGH 2019: Lecture 20 October 23, 2019 20 / 30

A Queuemodule

• Each enqueue on a queue of length n takesO(n) time

• Enqueueing and dequeueing n elements might takeO(n2) time
• Amore efficient queue can be built by using two lists front and back
• queue == front ++ reverse back

• To enqueue, add an element to the head of back
• To dequeue, remove an element from the head of front

• What if front is empty?
• Reverse back into front and dequeue

Suresh PRGH 2019: Lecture 20 October 23, 2019 21 / 30

A Queuemodule

• Each enqueue on a queue of length n takesO(n) time
• Enqueueing and dequeueing n elements might takeO(n2) time

• Amore efficient queue can be built by using two lists front and back
• queue == front ++ reverse back

• To enqueue, add an element to the head of back
• To dequeue, remove an element from the head of front

• What if front is empty?
• Reverse back into front and dequeue

Suresh PRGH 2019: Lecture 20 October 23, 2019 21 / 30

A Queuemodule

• Each enqueue on a queue of length n takesO(n) time
• Enqueueing and dequeueing n elements might takeO(n2) time
• Amore efficient queue can be built by using two lists front and back

• queue == front ++ reverse back

• To enqueue, add an element to the head of back
• To dequeue, remove an element from the head of front

• What if front is empty?
• Reverse back into front and dequeue

Suresh PRGH 2019: Lecture 20 October 23, 2019 21 / 30

A Queuemodule

• Each enqueue on a queue of length n takesO(n) time
• Enqueueing and dequeueing n elements might takeO(n2) time
• Amore efficient queue can be built by using two lists front and back
• queue == front ++ reverse back

• To enqueue, add an element to the head of back
• To dequeue, remove an element from the head of front

• What if front is empty?
• Reverse back into front and dequeue

Suresh PRGH 2019: Lecture 20 October 23, 2019 21 / 30

A Queuemodule

• Each enqueue on a queue of length n takesO(n) time
• Enqueueing and dequeueing n elements might takeO(n2) time
• Amore efficient queue can be built by using two lists front and back
• queue == front ++ reverse back

• To enqueue, add an element to the head of back

• To dequeue, remove an element from the head of front

• What if front is empty?
• Reverse back into front and dequeue

Suresh PRGH 2019: Lecture 20 October 23, 2019 21 / 30

A Queuemodule

• Each enqueue on a queue of length n takesO(n) time
• Enqueueing and dequeueing n elements might takeO(n2) time
• Amore efficient queue can be built by using two lists front and back
• queue == front ++ reverse back

• To enqueue, add an element to the head of back
• To dequeue, remove an element from the head of front

• What if front is empty?
• Reverse back into front and dequeue

Suresh PRGH 2019: Lecture 20 October 23, 2019 21 / 30

A Queuemodule

• Each enqueue on a queue of length n takesO(n) time
• Enqueueing and dequeueing n elements might takeO(n2) time
• Amore efficient queue can be built by using two lists front and back
• queue == front ++ reverse back

• To enqueue, add an element to the head of back
• To dequeue, remove an element from the head of front
• What if front is empty?

• Reverse back into front and dequeue

Suresh PRGH 2019: Lecture 20 October 23, 2019 21 / 30

A Queuemodule

• Each enqueue on a queue of length n takesO(n) time
• Enqueueing and dequeueing n elements might takeO(n2) time
• Amore efficient queue can be built by using two lists front and back
• queue == front ++ reverse back

• To enqueue, add an element to the head of back
• To dequeue, remove an element from the head of front
• What if front is empty?
• Reverse back into front and dequeue

Suresh PRGH 2019: Lecture 20 October 23, 2019 21 / 30

A Queuemodule

• Efficient queue
module Queue(Queue, enqueue, dequeue, empty, isEmpty,

fromList, toList) where

data Queue a = Queue [a] [a]
deriving (Eq, Ord)

instance Show a => Show (Queue a) where
show q = "{" ++ show (toList q) ++ "}"

fromList l = Queue (l, [])
toList (Queue f b) = f ++ reverse b

Suresh PRGH 2019: Lecture 20 October 23, 2019 22 / 30

A Queuemodule

• Efficient queue
module Queue(Queue, enqueue, dequeue, empty, isEmpty,

fromList, toList) where
....
enqueue x (Queue f b) = Queue f (x:b)

dequeue (Queue [] b) = dequeue (Queue (reverse b) [])
dequeue (Queue (x:f) b) = (x, Queue f b)

empty = Queue [] []
isEmpty (Queue f b) = null f && null b

Suresh PRGH 2019: Lecture 20 October 23, 2019 23 / 30

Amortized analysis

• If we add n elements, we get a queue
Queue [] [qn,qn-1,...,q1]

• The next dequeue takesO(n) time to reverse the list
• After one dequeue we get:

Queue [q2,...,qn] []

• Next n-1 dequeue operations takeO(1) time

Suresh PRGH 2019: Lecture 20 October 23, 2019 24 / 30

Amortized analysis

• If we add n elements, we get a queue
Queue [] [qn,qn-1,...,q1]

• The next dequeue takesO(n) time to reverse the list

• After one dequeue we get:
Queue [q2,...,qn] []

• Next n-1 dequeue operations takeO(1) time

Suresh PRGH 2019: Lecture 20 October 23, 2019 24 / 30

Amortized analysis

• If we add n elements, we get a queue
Queue [] [qn,qn-1,...,q1]

• The next dequeue takesO(n) time to reverse the list
• After one dequeue we get:

Queue [q2,...,qn] []

• Next n-1 dequeue operations takeO(1) time

Suresh PRGH 2019: Lecture 20 October 23, 2019 24 / 30

Amortized analysis

• If we add n elements, we get a queue
Queue [] [qn,qn-1,...,q1]

• The next dequeue takesO(n) time to reverse the list
• After one dequeue we get:

Queue [q2,...,qn] []

• Next n-1 dequeue operations takeO(1) time

Suresh PRGH 2019: Lecture 20 October 23, 2019 24 / 30

Amortized analysis

• Howmany times is an element touched?

• Once when it is added to the second list
• Twice when it is moved from the second to first
• Once when it is removed from the first list

• Each element is touched at most four times
• Any sequence of n instructions involves at most n elements
• So any sequence of n instructions takes onlyO(n) steps

Suresh PRGH 2019: Lecture 20 October 23, 2019 25 / 30

Amortized analysis

• Howmany times is an element touched?
• Once when it is added to the second list

• Twice when it is moved from the second to first
• Once when it is removed from the first list

• Each element is touched at most four times
• Any sequence of n instructions involves at most n elements
• So any sequence of n instructions takes onlyO(n) steps

Suresh PRGH 2019: Lecture 20 October 23, 2019 25 / 30

Amortized analysis

• Howmany times is an element touched?
• Once when it is added to the second list
• Twice when it is moved from the second to first

• Once when it is removed from the first list
• Each element is touched at most four times
• Any sequence of n instructions involves at most n elements
• So any sequence of n instructions takes onlyO(n) steps

Suresh PRGH 2019: Lecture 20 October 23, 2019 25 / 30

Amortized analysis

• Howmany times is an element touched?
• Once when it is added to the second list
• Twice when it is moved from the second to first
• Once when it is removed from the first list

• Each element is touched at most four times
• Any sequence of n instructions involves at most n elements
• So any sequence of n instructions takes onlyO(n) steps

Suresh PRGH 2019: Lecture 20 October 23, 2019 25 / 30

Amortized analysis

• Howmany times is an element touched?
• Once when it is added to the second list
• Twice when it is moved from the second to first
• Once when it is removed from the first list

• Each element is touched at most four times

• Any sequence of n instructions involves at most n elements
• So any sequence of n instructions takes onlyO(n) steps

Suresh PRGH 2019: Lecture 20 October 23, 2019 25 / 30

Amortized analysis

• Howmany times is an element touched?
• Once when it is added to the second list
• Twice when it is moved from the second to first
• Once when it is removed from the first list

• Each element is touched at most four times
• Any sequence of n instructions involves at most n elements

• So any sequence of n instructions takes onlyO(n) steps

Suresh PRGH 2019: Lecture 20 October 23, 2019 25 / 30

Amortized analysis

• Howmany times is an element touched?
• Once when it is added to the second list
• Twice when it is moved from the second to first
• Once when it is removed from the first list

• Each element is touched at most four times
• Any sequence of n instructions involves at most n elements
• So any sequence of n instructions takes onlyO(n) steps

Suresh PRGH 2019: Lecture 20 October 23, 2019 25 / 30

Applying queues – an ancient Telugu riddle

15 brahmins and 15 thieves had to spend a dark night at an isolated temple
of Durga. At midnight, the Goddess appeared in person and wanted to
devour just 15 persons because She was hungry. The thieves naturally
suggested that She should eat the 15 soft-limbed brahmins. But the
brahmins proposed that all the 30 would stand in a circle and that Durga
should eat each ninth person. The proposal was accepted by Durga and the
thieves. So the brahmins arranged themselves and the thieves in a circle,
telling each one where to stand. Durga counted out each ninth person and
devoured him. When 15 were thus eaten, She was satiated and disappeared,
and only brahmins now remained in the circle.
How do you arrange the brahmins and thieves in the circle?

Suresh PRGH 2019: Lecture 20 October 23, 2019 26 / 30

The Vanadurga riddle

• Imagine a circle with a “current position”

• The people starting from that position can be listed in clockwise order
• The person in the current position would be at the head of the list
• The person to the right would be next in the list, and so on
• The person to the left would be the last element of the list

Suresh PRGH 2019: Lecture 20 October 23, 2019 27 / 30

The Vanadurga riddle

• Imagine a circle with a “current position”
• The people starting from that position can be listed in clockwise order

• The person in the current position would be at the head of the list
• The person to the right would be next in the list, and so on
• The person to the left would be the last element of the list

Suresh PRGH 2019: Lecture 20 October 23, 2019 27 / 30

The Vanadurga riddle

• Imagine a circle with a “current position”
• The people starting from that position can be listed in clockwise order
• The person in the current position would be at the head of the list

• The person to the right would be next in the list, and so on
• The person to the left would be the last element of the list

Suresh PRGH 2019: Lecture 20 October 23, 2019 27 / 30

The Vanadurga riddle

• Imagine a circle with a “current position”
• The people starting from that position can be listed in clockwise order
• The person in the current position would be at the head of the list
• The person to the right would be next in the list, and so on

• The person to the left would be the last element of the list

Suresh PRGH 2019: Lecture 20 October 23, 2019 27 / 30

The Vanadurga riddle

• Imagine a circle with a “current position”
• The people starting from that position can be listed in clockwise order
• The person in the current position would be at the head of the list
• The person to the right would be next in the list, and so on
• The person to the left would be the last element of the list

Suresh PRGH 2019: Lecture 20 October 23, 2019 27 / 30

The Vanadurga riddle

• What if we move one step clockwise? What is the list representing the
new configuration?

• Instead of the position moving right, you can think of the list moving
left
• The previous head is now the tail

moveRight (x:xs) = xs ++ [x]

• Can use efficient queues to avoid the costly (++) operator
moveRight q = let (x,q') = dequeue q in enqueue q' x

Suresh PRGH 2019: Lecture 20 October 23, 2019 28 / 30

The Vanadurga riddle

• What if we move one step clockwise? What is the list representing the
new configuration?
• Instead of the position moving right, you can think of the list moving
left

• The previous head is now the tail
moveRight (x:xs) = xs ++ [x]

• Can use efficient queues to avoid the costly (++) operator
moveRight q = let (x,q') = dequeue q in enqueue q' x

Suresh PRGH 2019: Lecture 20 October 23, 2019 28 / 30

The Vanadurga riddle

• What if we move one step clockwise? What is the list representing the
new configuration?
• Instead of the position moving right, you can think of the list moving
left
• The previous head is now the tail

moveRight (x:xs) = xs ++ [x]

• Can use efficient queues to avoid the costly (++) operator
moveRight q = let (x,q') = dequeue q in enqueue q' x

Suresh PRGH 2019: Lecture 20 October 23, 2019 28 / 30

The Vanadurga riddle

• What if we move one step clockwise? What is the list representing the
new configuration?
• Instead of the position moving right, you can think of the list moving
left
• The previous head is now the tail

moveRight (x:xs) = xs ++ [x]

• Can use efficient queues to avoid the costly (++) operator
moveRight q = let (x,q') = dequeue q in enqueue q' x

Suresh PRGH 2019: Lecture 20 October 23, 2019 28 / 30

The Vanadurga riddle – full solution

import Queue
-- Assume m >= 2, r < n, r >= 0
-- In the Vanadurga example, m = 9, r = 15, n = 30
vanadurga m r n = kill m r n (fromList [1..n], empty)
kill m r n (surv, dead)

| r == 0 = (surv, dead)
| otherwise = kill m (r-1) (n-1) $

shift (m-1 `mod` n) (surv, dead)
shift n (surv,dead)

| n == 0 = (surv', enqueue x dead)
| otherwise = shift (n-1) (enqueue x surv', dead)
where (x,surv') = dequeue surv

Suresh PRGH 2019: Lecture 20 October 23, 2019 29 / 30

Summary

• Modules to hide implementation details

• Exporting type constructors, but hiding data constructors
• The instance keyword to create custom instances
• Using a stack to build a postfix calculator
• Efficient queues and amortized analysis

Suresh PRGH 2019: Lecture 20 October 23, 2019 30 / 30

Summary

• Modules to hide implementation details
• Exporting type constructors, but hiding data constructors

• The instance keyword to create custom instances
• Using a stack to build a postfix calculator
• Efficient queues and amortized analysis

Suresh PRGH 2019: Lecture 20 October 23, 2019 30 / 30

Summary

• Modules to hide implementation details
• Exporting type constructors, but hiding data constructors
• The instance keyword to create custom instances

• Using a stack to build a postfix calculator
• Efficient queues and amortized analysis

Suresh PRGH 2019: Lecture 20 October 23, 2019 30 / 30

Summary

• Modules to hide implementation details
• Exporting type constructors, but hiding data constructors
• The instance keyword to create custom instances
• Using a stack to build a postfix calculator

• Efficient queues and amortized analysis

Suresh PRGH 2019: Lecture 20 October 23, 2019 30 / 30

Summary

• Modules to hide implementation details
• Exporting type constructors, but hiding data constructors
• The instance keyword to create custom instances
• Using a stack to build a postfix calculator
• Efficient queues and amortized analysis

Suresh PRGH 2019: Lecture 20 October 23, 2019 30 / 30

