
Programming in Haskell: Lecture 19

S P Suresh

October 21, 2019

Suresh PRGH 2019: Lecture 19 October 21, 2019 1 / 26

User-defined data types

• The data keyword is used to define new types

• Enumerated data types:
data Bool = False | True
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• Data types with parameters:
data Shape = Circle Double | Square Double

| Rectangle Double Double
shapes :: [Shape]
shapes = [Circle 3.0, Square 4.0, Rectangle 3.0 4.0]

Suresh PRGH 2019: Lecture 19 October 21, 2019 2 / 26

User-defined data types

• The data keyword is used to define new types
• Enumerated data types:

data Bool = False | True
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• Data types with parameters:
data Shape = Circle Double | Square Double

| Rectangle Double Double
shapes :: [Shape]
shapes = [Circle 3.0, Square 4.0, Rectangle 3.0 4.0]

Suresh PRGH 2019: Lecture 19 October 21, 2019 2 / 26

User-defined data types

• The data keyword is used to define new types
• Enumerated data types:

data Bool = False | True
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• Data types with parameters:
data Shape = Circle Double | Square Double

| Rectangle Double Double
shapes :: [Shape]
shapes = [Circle 3.0, Square 4.0, Rectangle 3.0 4.0]

Suresh PRGH 2019: Lecture 19 October 21, 2019 2 / 26

Functions on data types

• Functions can be defined using pattern matching
weekend :: Day -> Bool
weekend Sat = True
weekend Sun = True
weekend _ = False

area :: Shape -> Double
area (Circle r) = pi*r*r
area (Square x) = x*x
area (Rectangle l w) = l*w

where pi = 3.1415927

Suresh PRGH 2019: Lecture 19 October 21, 2019 3 / 26

Functions on data types

• What about the following function?
weekend2 :: Day -> Bool
weekend2 d

| (d == Sun || d == Sat) = True
| otherwise = False

• Error!
-- No instance for (Eq Day) arising from a use of '=='

Suresh PRGH 2019: Lecture 19 October 21, 2019 4 / 26

Functions on data types

• What about the following function?
weekend2 :: Day -> Bool
weekend2 d

| (d == Sun || d == Sat) = True
| otherwise = False

• Error!
-- No instance for (Eq Day) arising from a use of '=='

Suresh PRGH 2019: Lecture 19 October 21, 2019 4 / 26

Functions on data types

• What about this function?
nextday :: Day -> Day
nextday Sun = Mon
nextday Mon = Tue
...
nextday Sat = Sun

• Invoke nextday Fri in ghci
• Error again!

-- No instance for (Show Day)
arising from a use of 'print'

Suresh PRGH 2019: Lecture 19 October 21, 2019 5 / 26

Functions on data types

• What about this function?
nextday :: Day -> Day
nextday Sun = Mon
nextday Mon = Tue
...
nextday Sat = Sun

• Invoke nextday Fri in ghci

• Error again!
-- No instance for (Show Day)

arising from a use of 'print'

Suresh PRGH 2019: Lecture 19 October 21, 2019 5 / 26

Functions on data types

• What about this function?
nextday :: Day -> Day
nextday Sun = Mon
nextday Mon = Tue
...
nextday Sat = Sun

• Invoke nextday Fri in ghci
• Error again!

-- No instance for (Show Day)
arising from a use of 'print'

Suresh PRGH 2019: Lecture 19 October 21, 2019 5 / 26

Adding data type instances

• To check equality of two values of a data type a…

• there must be an Eq a instance
• We use deriving to create such instances:

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
deriving Eq

• Default behaviour – Sun == Sun, Tue /= Fri, …
• Now weekday2 compiles without error

Suresh PRGH 2019: Lecture 19 October 21, 2019 6 / 26

Adding data type instances

• To check equality of two values of a data type a…
• there must be an Eq a instance

• We use deriving to create such instances:
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

deriving Eq

• Default behaviour – Sun == Sun, Tue /= Fri, …
• Now weekday2 compiles without error

Suresh PRGH 2019: Lecture 19 October 21, 2019 6 / 26

Adding data type instances

• To check equality of two values of a data type a…
• there must be an Eq a instance
• We use deriving to create such instances:

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
deriving Eq

• Default behaviour – Sun == Sun, Tue /= Fri, …
• Now weekday2 compiles without error

Suresh PRGH 2019: Lecture 19 October 21, 2019 6 / 26

Adding data type instances

• To check equality of two values of a data type a…
• there must be an Eq a instance
• We use deriving to create such instances:

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
deriving Eq

• Default behaviour – Sun == Sun, Tue /= Fri, …

• Now weekday2 compiles without error

Suresh PRGH 2019: Lecture 19 October 21, 2019 6 / 26

Adding data type instances

• To check equality of two values of a data type a…
• there must be an Eq a instance
• We use deriving to create such instances:

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
deriving Eq

• Default behaviour – Sun == Sun, Tue /= Fri, …
• Now weekday2 compiles without error

Suresh PRGH 2019: Lecture 19 October 21, 2019 6 / 26

Adding data type instances

• Tomake nextdaywork, we must make an instance for Show Day

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
deriving (Eq, Show)

• show provides a default text representation that can be printed on
screen
• show Wed = "Wed"

Suresh PRGH 2019: Lecture 19 October 21, 2019 7 / 26

Adding data type instances

• Tomake nextdaywork, we must make an instance for Show Day

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
deriving (Eq, Show)

• show provides a default text representation that can be printed on
screen

• show Wed = "Wed"

Suresh PRGH 2019: Lecture 19 October 21, 2019 7 / 26

Adding data type instances

• Tomake nextdaywork, we must make an instance for Show Day

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
deriving (Eq, Show)

• show provides a default text representation that can be printed on
screen
• show Wed = "Wed"

Suresh PRGH 2019: Lecture 19 October 21, 2019 7 / 26

Adding data type instances

• Can also create an Ord Day instance:

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
deriving (Eq, Show, Ord)

• Default behaviour: Sun < Mon < Tue < Wed < Thu < Fri < Sat

Suresh PRGH 2019: Lecture 19 October 21, 2019 8 / 26

Adding data type instances

• Can also create an Ord Day instance:

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
deriving (Eq, Show, Ord)

• Default behaviour: Sun < Mon < Tue < Wed < Thu < Fri < Sat

Suresh PRGH 2019: Lecture 19 October 21, 2019 8 / 26

Adding data type instances

• Instances for Shape:
data Shape = Circle Double | Square Double

| Rectangle Double Double
deriving (Eq, Ord, Show)

• Default behaviours:
show (Circle 5.0) == "Circle 5.0"
Square 4.0 == Square 4.0
Square 4.0 /= Square 3.0
Circle 5.0 /= Rectangle 3.0 4.0
[Square 2.0, Circle 3.0, Square 22.0]

< [Square 2.0, Square 0.005]

Suresh PRGH 2019: Lecture 19 October 21, 2019 9 / 26

Adding data type instances

• Instances for Shape:
data Shape = Circle Double | Square Double

| Rectangle Double Double
deriving (Eq, Ord, Show)

• Default behaviours:
show (Circle 5.0) == "Circle 5.0"
Square 4.0 == Square 4.0
Square 4.0 /= Square 3.0
Circle 5.0 /= Rectangle 3.0 4.0
[Square 2.0, Circle 3.0, Square 22.0]

< [Square 2.0, Square 0.005]

Suresh PRGH 2019: Lecture 19 October 21, 2019 9 / 26

Constructors

• Square, Circle, Sun, Mon, …are constructors

• They are just functions, but start with an uppercase letter
Sun :: Day
Rectangle :: Double -> Double -> Shape
Circle :: Double -> Shape

• They can be used just like any other function
Circle 5.0 :: Shape
map Circle :: [Double] -> [Shape]
map Circle [2.0, 3.0] = [Circle 2.0, Circle 3.0]

Suresh PRGH 2019: Lecture 19 October 21, 2019 10 / 26

Constructors

• Square, Circle, Sun, Mon, …are constructors
• They are just functions, but start with an uppercase letter

Sun :: Day
Rectangle :: Double -> Double -> Shape
Circle :: Double -> Shape

• They can be used just like any other function
Circle 5.0 :: Shape
map Circle :: [Double] -> [Shape]
map Circle [2.0, 3.0] = [Circle 2.0, Circle 3.0]

Suresh PRGH 2019: Lecture 19 October 21, 2019 10 / 26

Constructors

• Square, Circle, Sun, Mon, …are constructors
• They are just functions, but start with an uppercase letter

Sun :: Day
Rectangle :: Double -> Double -> Shape
Circle :: Double -> Shape

• They can be used just like any other function
Circle 5.0 :: Shape
map Circle :: [Double] -> [Shape]
map Circle [2.0, 3.0] = [Circle 2.0, Circle 3.0]

Suresh PRGH 2019: Lecture 19 October 21, 2019 10 / 26

Records

• Data types with a single constructor

• Convention: The single constructor has the same name as the type
data Person = Person String Int Double String

deriving (Eq, Show)
gal = Person "Ashvini" 21 5.9 "ashvini@me.com"

• The four parameters are supposed to stand for name, age, height and
email id
• How do we extract the height of gal?
• We need destructors

Suresh PRGH 2019: Lecture 19 October 21, 2019 11 / 26

Records

• Data types with a single constructor
• Convention: The single constructor has the same name as the type

data Person = Person String Int Double String
deriving (Eq, Show)

gal = Person "Ashvini" 21 5.9 "ashvini@me.com"

• The four parameters are supposed to stand for name, age, height and
email id
• How do we extract the height of gal?
• We need destructors

Suresh PRGH 2019: Lecture 19 October 21, 2019 11 / 26

Records

• Data types with a single constructor
• Convention: The single constructor has the same name as the type

data Person = Person String Int Double String
deriving (Eq, Show)

gal = Person "Ashvini" 21 5.9 "ashvini@me.com"

• The four parameters are supposed to stand for name, age, height and
email id

• How do we extract the height of gal?
• We need destructors

Suresh PRGH 2019: Lecture 19 October 21, 2019 11 / 26

Records

• Data types with a single constructor
• Convention: The single constructor has the same name as the type

data Person = Person String Int Double String
deriving (Eq, Show)

gal = Person "Ashvini" 21 5.9 "ashvini@me.com"

• The four parameters are supposed to stand for name, age, height and
email id
• How do we extract the height of gal?

• We need destructors

Suresh PRGH 2019: Lecture 19 October 21, 2019 11 / 26

Records

• Data types with a single constructor
• Convention: The single constructor has the same name as the type

data Person = Person String Int Double String
deriving (Eq, Show)

gal = Person "Ashvini" 21 5.9 "ashvini@me.com"

• The four parameters are supposed to stand for name, age, height and
email id
• How do we extract the height of gal?
• We need destructors

Suresh PRGH 2019: Lecture 19 October 21, 2019 11 / 26

Destructors

name :: Person -> String
name (Person n _ _ _) = n

age :: Person -> Int
age (Person _ a _ _) = a

height :: Person -> Double
height (Person _ _ h _) = h

email :: Person -> String
email (Person _ _ _ e) = e

Suresh PRGH 2019: Lecture 19 October 21, 2019 12 / 26

Record syntax

• We can name the fields:
data Person = Person { name :: String, age :: Int

, height :: Double, email :: String
} deriving Show

• We can name fields while creating values of type Person
gal = Person {name = "Ashvini", email = "ashvini@me.com"

age = 21, height = 5.9}

• Order of fields not important
• The following also works, but fields have to be in order!

gal = Person "Ashvini" 21 5.9 "ashvini@me.com"

Suresh PRGH 2019: Lecture 19 October 21, 2019 13 / 26

Record syntax

• We can name the fields:
data Person = Person { name :: String, age :: Int

, height :: Double, email :: String
} deriving Show

• We can name fields while creating values of type Person
gal = Person {name = "Ashvini", email = "ashvini@me.com"

age = 21, height = 5.9}

• Order of fields not important
• The following also works, but fields have to be in order!

gal = Person "Ashvini" 21 5.9 "ashvini@me.com"

Suresh PRGH 2019: Lecture 19 October 21, 2019 13 / 26

Record syntax

• We can name the fields:
data Person = Person { name :: String, age :: Int

, height :: Double, email :: String
} deriving Show

• We can name fields while creating values of type Person
gal = Person {name = "Ashvini", email = "ashvini@me.com"

age = 21, height = 5.9}

• Order of fields not important

• The following also works, but fields have to be in order!
gal = Person "Ashvini" 21 5.9 "ashvini@me.com"

Suresh PRGH 2019: Lecture 19 October 21, 2019 13 / 26

Record syntax

• We can name the fields:
data Person = Person { name :: String, age :: Int

, height :: Double, email :: String
} deriving Show

• We can name fields while creating values of type Person
gal = Person {name = "Ashvini", email = "ashvini@me.com"

age = 21, height = 5.9}

• Order of fields not important
• The following also works, but fields have to be in order!

gal = Person "Ashvini" 21 5.9 "ashvini@me.com"

Suresh PRGH 2019: Lecture 19 October 21, 2019 13 / 26

Record syntax

• We can name the fields:
data Person = Person { name :: String, age :: Int

, height :: Double , email :: String
} deriving Show

• The field names are actually functions
• Automatically defined for us when we use record syntax

name :: Person -> String
age :: Person -> Int
height :: Person -> Double
email :: Person -> String

Suresh PRGH 2019: Lecture 19 October 21, 2019 14 / 26

Record syntax

• We can name the fields:
data Person = Person { name :: String, age :: Int

, height :: Double , email :: String
} deriving Show

• The field names are actually functions

• Automatically defined for us when we use record syntax
name :: Person -> String
age :: Person -> Int
height :: Person -> Double
email :: Person -> String

Suresh PRGH 2019: Lecture 19 October 21, 2019 14 / 26

Record syntax

• We can name the fields:
data Person = Person { name :: String, age :: Int

, height :: Double , email :: String
} deriving Show

• The field names are actually functions
• Automatically defined for us when we use record syntax

name :: Person -> String
age :: Person -> Int
height :: Person -> Double
email :: Person -> String

Suresh PRGH 2019: Lecture 19 October 21, 2019 14 / 26

Stack

• Consider a Stack data type

• A collection of Ints stacked one on top of the other
• push: place an element on top of the stack
• pop: remove the topmost element of the stack
• Behaviour similar to lists: top of stack is head of list

Suresh PRGH 2019: Lecture 19 October 21, 2019 15 / 26

Stack

• Consider a Stack data type
• A collection of Ints stacked one on top of the other

• push: place an element on top of the stack
• pop: remove the topmost element of the stack
• Behaviour similar to lists: top of stack is head of list

Suresh PRGH 2019: Lecture 19 October 21, 2019 15 / 26

Stack

• Consider a Stack data type
• A collection of Ints stacked one on top of the other
• push: place an element on top of the stack

• pop: remove the topmost element of the stack
• Behaviour similar to lists: top of stack is head of list

Suresh PRGH 2019: Lecture 19 October 21, 2019 15 / 26

Stack

• Consider a Stack data type
• A collection of Ints stacked one on top of the other
• push: place an element on top of the stack
• pop: remove the topmost element of the stack

• Behaviour similar to lists: top of stack is head of list

Suresh PRGH 2019: Lecture 19 October 21, 2019 15 / 26

Stack

• Consider a Stack data type
• A collection of Ints stacked one on top of the other
• push: place an element on top of the stack
• pop: remove the topmost element of the stack
• Behaviour similar to lists: top of stack is head of list

Suresh PRGH 2019: Lecture 19 October 21, 2019 15 / 26

Stack

• We could declare Stack to be a type synonym
type Stack = [Int]
push :: Int -> Stack -> Stack
push n st = n:st
pop :: Stack -> (Int, Stack)
pop (n:st) = (n, st)

• But this allows operations other than push and pop
take n st
st1 ++ st2
take (n-1) st ++ [x] ++ drop (n-1) st

Suresh PRGH 2019: Lecture 19 October 21, 2019 16 / 26

Stack

• We could declare Stack to be a type synonym
type Stack = [Int]
push :: Int -> Stack -> Stack
push n st = n:st
pop :: Stack -> (Int, Stack)
pop (n:st) = (n, st)

• But this allows operations other than push and pop
take n st
st1 ++ st2
take (n-1) st ++ [x] ++ drop (n-1) st

Suresh PRGH 2019: Lecture 19 October 21, 2019 16 / 26

Stack

• Wewant to allow only functions defined for stack

• First step: make it a data type
data Stack = Stack [Int]
push :: Int -> Stack -> Stack
push x (Stack xs) = Stack (x:xs)
pop :: Stack -> (Int, Stack)
pop (Stack (x:xs)) = (x, Stack xs)

• If st, st1, st2 are of type Stack, the following will not typecheck!
take n st
st1 ++ st2
take (n-1) st ++ [x] ++ drop (n-1) st

Suresh PRGH 2019: Lecture 19 October 21, 2019 17 / 26

Stack

• Wewant to allow only functions defined for stack
• First step: make it a data type

data Stack = Stack [Int]
push :: Int -> Stack -> Stack
push x (Stack xs) = Stack (x:xs)
pop :: Stack -> (Int, Stack)
pop (Stack (x:xs)) = (x, Stack xs)

• If st, st1, st2 are of type Stack, the following will not typecheck!
take n st
st1 ++ st2
take (n-1) st ++ [x] ++ drop (n-1) st

Suresh PRGH 2019: Lecture 19 October 21, 2019 17 / 26

Stack

• Wewant to allow only functions defined for stack
• First step: make it a data type

data Stack = Stack [Int]
push :: Int -> Stack -> Stack
push x (Stack xs) = Stack (x:xs)
pop :: Stack -> (Int, Stack)
pop (Stack (x:xs)) = (x, Stack xs)

• If st, st1, st2 are of type Stack, the following will not typecheck!
take n st
st1 ++ st2
take (n-1) st ++ [x] ++ drop (n-1) st

Suresh PRGH 2019: Lecture 19 October 21, 2019 17 / 26

Type parameters

• Clearly, the operations of a stack do not depend on the type of
elements stored

• Polymorphic stack
data Stack a = Stack [a]
push :: a -> Stack a -> Stack a
push x (Stack xs) = Stack (x:xs)
pop :: Stack a -> (a, Stack a)
pop (Stack (x:xs)) = (x, Stack xs)
empty :: Stack a
empty = Stack []
isEmpty :: Stack a -> Bool
isEmpty (Stack xs) = null xs

Suresh PRGH 2019: Lecture 19 October 21, 2019 18 / 26

Type parameters

• Clearly, the operations of a stack do not depend on the type of
elements stored
• Polymorphic stack

data Stack a = Stack [a]
push :: a -> Stack a -> Stack a
push x (Stack xs) = Stack (x:xs)
pop :: Stack a -> (a, Stack a)
pop (Stack (x:xs)) = (x, Stack xs)
empty :: Stack a
empty = Stack []
isEmpty :: Stack a -> Bool
isEmpty (Stack xs) = null xs
Suresh PRGH 2019: Lecture 19 October 21, 2019 18 / 26

Type parameters

• Polymorphic stack
data Stack a = Stack [a]

• Stack (occurring on the left) is not a type
• It is a type constructor
• For any type a, Stack a is a type
• The Stack on the right is a value constructor or a data constructor
• Given xs :: [a], it constructs a value of type Stack a

• Stack xs :: Stack a

Suresh PRGH 2019: Lecture 19 October 21, 2019 19 / 26

Type parameters

• Polymorphic stack
data Stack a = Stack [a]

• Stack (occurring on the left) is not a type

• It is a type constructor
• For any type a, Stack a is a type
• The Stack on the right is a value constructor or a data constructor
• Given xs :: [a], it constructs a value of type Stack a

• Stack xs :: Stack a

Suresh PRGH 2019: Lecture 19 October 21, 2019 19 / 26

Type parameters

• Polymorphic stack
data Stack a = Stack [a]

• Stack (occurring on the left) is not a type
• It is a type constructor

• For any type a, Stack a is a type
• The Stack on the right is a value constructor or a data constructor
• Given xs :: [a], it constructs a value of type Stack a

• Stack xs :: Stack a

Suresh PRGH 2019: Lecture 19 October 21, 2019 19 / 26

Type parameters

• Polymorphic stack
data Stack a = Stack [a]

• Stack (occurring on the left) is not a type
• It is a type constructor
• For any type a, Stack a is a type

• The Stack on the right is a value constructor or a data constructor
• Given xs :: [a], it constructs a value of type Stack a

• Stack xs :: Stack a

Suresh PRGH 2019: Lecture 19 October 21, 2019 19 / 26

Type parameters

• Polymorphic stack
data Stack a = Stack [a]

• Stack (occurring on the left) is not a type
• It is a type constructor
• For any type a, Stack a is a type
• The Stack on the right is a value constructor or a data constructor

• Given xs :: [a], it constructs a value of type Stack a

• Stack xs :: Stack a

Suresh PRGH 2019: Lecture 19 October 21, 2019 19 / 26

Type parameters

• Polymorphic stack
data Stack a = Stack [a]

• Stack (occurring on the left) is not a type
• It is a type constructor
• For any type a, Stack a is a type
• The Stack on the right is a value constructor or a data constructor
• Given xs :: [a], it constructs a value of type Stack a

• Stack xs :: Stack a

Suresh PRGH 2019: Lecture 19 October 21, 2019 19 / 26

Type parameters

• Polymorphic stack
data Stack a = Stack [a]

• Stack (occurring on the left) is not a type
• It is a type constructor
• For any type a, Stack a is a type
• The Stack on the right is a value constructor or a data constructor
• Given xs :: [a], it constructs a value of type Stack a
• Stack xs :: Stack a

Suresh PRGH 2019: Lecture 19 October 21, 2019 19 / 26

Type parameters

• Polymorphic stack
data Stack a = Stack [a]

• Suppose we want to define sumStack:
sumStack (Stack xs) = sum xs

• What is the type of sumStack?
• Makes sense only when xs consists of numeric elements

sumStack :: Num a => Stack a -> a

Suresh PRGH 2019: Lecture 19 October 21, 2019 20 / 26

Type parameters

• Polymorphic stack
data Stack a = Stack [a]

• Suppose we want to define sumStack:
sumStack (Stack xs) = sum xs

• What is the type of sumStack?
• Makes sense only when xs consists of numeric elements

sumStack :: Num a => Stack a -> a

Suresh PRGH 2019: Lecture 19 October 21, 2019 20 / 26

Type parameters

• Polymorphic stack
data Stack a = Stack [a]

• Suppose we want to define sumStack:
sumStack (Stack xs) = sum xs

• What is the type of sumStack?

• Makes sense only when xs consists of numeric elements
sumStack :: Num a => Stack a -> a

Suresh PRGH 2019: Lecture 19 October 21, 2019 20 / 26

Type parameters

• Polymorphic stack
data Stack a = Stack [a]

• Suppose we want to define sumStack:
sumStack (Stack xs) = sum xs

• What is the type of sumStack?
• Makes sense only when xs consists of numeric elements

sumStack :: Num a => Stack a -> a

Suresh PRGH 2019: Lecture 19 October 21, 2019 20 / 26

Maybe

• Recall Maybe

• It is a type constructor!
data Maybe a = Nothing | Just a

Suresh PRGH 2019: Lecture 19 October 21, 2019 21 / 26

Maybe

• Recall Maybe
• It is a type constructor!

data Maybe a = Nothing | Just a

Suresh PRGH 2019: Lecture 19 October 21, 2019 21 / 26

Maybe

• Consider a table representing a list of scores
type Name = String
type Score = Int
type Scorelist = [(Name, Score)]

• Suppose you want to find the score corresponding to a name
• If name is not in the list

• Return a default value
• Not always easy to find a default value that is not also a possible score

• Use Maybe instead

Suresh PRGH 2019: Lecture 19 October 21, 2019 22 / 26

Maybe

• Consider a table representing a list of scores
type Name = String
type Score = Int
type Scorelist = [(Name, Score)]

• Suppose you want to find the score corresponding to a name

• If name is not in the list

• Return a default value
• Not always easy to find a default value that is not also a possible score

• Use Maybe instead

Suresh PRGH 2019: Lecture 19 October 21, 2019 22 / 26

Maybe

• Consider a table representing a list of scores
type Name = String
type Score = Int
type Scorelist = [(Name, Score)]

• Suppose you want to find the score corresponding to a name
• If name is not in the list

• Return a default value
• Not always easy to find a default value that is not also a possible score

• Use Maybe instead

Suresh PRGH 2019: Lecture 19 October 21, 2019 22 / 26

Maybe

• Consider a table representing a list of scores
type Name = String
type Score = Int
type Scorelist = [(Name, Score)]

• Suppose you want to find the score corresponding to a name
• If name is not in the list
• Return a default value

• Not always easy to find a default value that is not also a possible score
• Use Maybe instead

Suresh PRGH 2019: Lecture 19 October 21, 2019 22 / 26

Maybe

• Consider a table representing a list of scores
type Name = String
type Score = Int
type Scorelist = [(Name, Score)]

• Suppose you want to find the score corresponding to a name
• If name is not in the list
• Return a default value
• Not always easy to find a default value that is not also a possible score

• Use Maybe instead

Suresh PRGH 2019: Lecture 19 October 21, 2019 22 / 26

Maybe

• Consider a table representing a list of scores
type Name = String
type Score = Int
type Scorelist = [(Name, Score)]

• Suppose you want to find the score corresponding to a name
• If name is not in the list
• Return a default value
• Not always easy to find a default value that is not also a possible score

• Use Maybe instead

Suresh PRGH 2019: Lecture 19 October 21, 2019 22 / 26

Maybe

• Built-in function lookup
lookup :: Name -> Scorelist -> Maybe Score
lookup n [] = Nothing
lookup n ((n0,s0):sl)

| n == n0 = Just s0
| otherwise = lookup n sl

Suresh PRGH 2019: Lecture 19 October 21, 2019 23 / 26

Maybe

• Handle Maybe objects using case
f :: Name -> Scorelist -> String
f n sl =

case lookup n sl of
Nothing -> "Looks like you were absent!"
Just x -> "Your score is " ++ show x

Suresh PRGH 2019: Lecture 19 October 21, 2019 24 / 26

Either

• Either is the simplest union type constructor

data Either a b = Left a | Right b

• Handle Either objects also using case
f :: (Show a, Show b) => Either a b -> String
f = case value of

Left x -> "You have a left " ++ show x
Right y -> "You have a right " ++ show y

Suresh PRGH 2019: Lecture 19 October 21, 2019 25 / 26

Either

• Either is the simplest union type constructor

data Either a b = Left a | Right b

• Handle Either objects also using case
f :: (Show a, Show b) => Either a b -> String
f = case value of

Left x -> "You have a left " ++ show x
Right y -> "You have a right " ++ show y

Suresh PRGH 2019: Lecture 19 October 21, 2019 25 / 26

Summary

• The keyword data is used to declare new data types

• The keyword deriving to derive as an instance of a type class
• Data types with parameters – Shape, Person
• Sum type or union – Day, Shape
• Product type or struct – Person
• Type constructors – Maybe, Either, Stack

Suresh PRGH 2019: Lecture 19 October 21, 2019 26 / 26

Summary

• The keyword data is used to declare new data types
• The keyword deriving to derive as an instance of a type class

• Data types with parameters – Shape, Person
• Sum type or union – Day, Shape
• Product type or struct – Person
• Type constructors – Maybe, Either, Stack

Suresh PRGH 2019: Lecture 19 October 21, 2019 26 / 26

Summary

• The keyword data is used to declare new data types
• The keyword deriving to derive as an instance of a type class
• Data types with parameters – Shape, Person

• Sum type or union – Day, Shape
• Product type or struct – Person
• Type constructors – Maybe, Either, Stack

Suresh PRGH 2019: Lecture 19 October 21, 2019 26 / 26

Summary

• The keyword data is used to declare new data types
• The keyword deriving to derive as an instance of a type class
• Data types with parameters – Shape, Person
• Sum type or union – Day, Shape

• Product type or struct – Person
• Type constructors – Maybe, Either, Stack

Suresh PRGH 2019: Lecture 19 October 21, 2019 26 / 26

Summary

• The keyword data is used to declare new data types
• The keyword deriving to derive as an instance of a type class
• Data types with parameters – Shape, Person
• Sum type or union – Day, Shape
• Product type or struct – Person

• Type constructors – Maybe, Either, Stack

Suresh PRGH 2019: Lecture 19 October 21, 2019 26 / 26

Summary

• The keyword data is used to declare new data types
• The keyword deriving to derive as an instance of a type class
• Data types with parameters – Shape, Person
• Sum type or union – Day, Shape
• Product type or struct – Person
• Type constructors – Maybe, Either, Stack

Suresh PRGH 2019: Lecture 19 October 21, 2019 26 / 26

