
Programming in Haskell: Lecture 18

S P Suresh

October 16, 2019

Suresh PRGH 2019: Lecture 18 October 16, 2019 1 / 18



Reading a list of integers

• Read a list of non-negative integers (one on each line and terminated
by a negative integer)

main = do {ls <- readIntList; print ls;}
readIntList :: IO [Int]
readIntList = do {

inp <- readLn :: IO Int;
if (inp < 0) then return [];
else do {l <- readIntList; return (inp:l);}

}

• What if we want to signal the end of input by some other means?
• Say, input is from a file and we process each line till the file ends

Suresh PRGH 2019: Lecture 18 October 16, 2019 2 / 18



Reading a list of integers

• Read a list of non-negative integers (one on each line and terminated
by a negative integer)

main = do {ls <- readIntList; print ls;}
readIntList :: IO [Int]
readIntList = do {

inp <- readLn :: IO Int;
if (inp < 0) then return [];
else do {l <- readIntList; return (inp:l);}

}

• What if we want to signal the end of input by some other means?

• Say, input is from a file and we process each line till the file ends

Suresh PRGH 2019: Lecture 18 October 16, 2019 2 / 18



Reading a list of integers

• Read a list of non-negative integers (one on each line and terminated
by a negative integer)

main = do {ls <- readIntList; print ls;}
readIntList :: IO [Int]
readIntList = do {

inp <- readLn :: IO Int;
if (inp < 0) then return [];
else do {l <- readIntList; return (inp:l);}

}

• What if we want to signal the end of input by some other means?
• Say, input is from a file and we process each line till the file ends

Suresh PRGH 2019: Lecture 18 October 16, 2019 2 / 18



Reading a list of integers

• Use isEOF (requires import System.IO)

import System.IO
main = do {ls <- readIntList; print ls;}
readIntList = do

exitCond <- isEOF
if exitCond then return [] else do {

inp <- readLn :: IO Int;
l <- readIntList; return (inp:l);

}

• isEOF returns Truewhen end of file is reached
• If input is provided from keyboard, indicate end of input by Ctrl-D

Suresh PRGH 2019: Lecture 18 October 16, 2019 3 / 18



Reading a list of integers

• Use isEOF (requires import System.IO)

import System.IO
main = do {ls <- readIntList; print ls;}
readIntList = do

exitCond <- isEOF
if exitCond then return [] else do {

inp <- readLn :: IO Int;
l <- readIntList; return (inp:l);

}

• isEOF returns Truewhen end of file is reached

• If input is provided from keyboard, indicate end of input by Ctrl-D

Suresh PRGH 2019: Lecture 18 October 16, 2019 3 / 18



Reading a list of integers

• Use isEOF (requires import System.IO)

import System.IO
main = do {ls <- readIntList; print ls;}
readIntList = do

exitCond <- isEOF
if exitCond then return [] else do {

inp <- readLn :: IO Int;
l <- readIntList; return (inp:l);

}

• isEOF returns Truewhen end of file is reached
• If input is provided from keyboard, indicate end of input by Ctrl-D

Suresh PRGH 2019: Lecture 18 October 16, 2019 3 / 18



Repetition using forever

• Repeatedly read a list of integers on each line and print its reverse

• Use forever to repeatedly perform an action (requires import
Control.Monad)
• Use exitSuccess to exit the loop (requires import System.Exit)
• Check when to exit using isEOF

Suresh PRGH 2019: Lecture 18 October 16, 2019 4 / 18



Repetition using forever

• Repeatedly read a list of integers on each line and print its reverse
• Use forever to repeatedly perform an action (requires import

Control.Monad)

• Use exitSuccess to exit the loop (requires import System.Exit)
• Check when to exit using isEOF

Suresh PRGH 2019: Lecture 18 October 16, 2019 4 / 18



Repetition using forever

• Repeatedly read a list of integers on each line and print its reverse
• Use forever to repeatedly perform an action (requires import

Control.Monad)
• Use exitSuccess to exit the loop (requires import System.Exit)

• Check when to exit using isEOF

Suresh PRGH 2019: Lecture 18 October 16, 2019 4 / 18



Repetition using forever

• Repeatedly read a list of integers on each line and print its reverse
• Use forever to repeatedly perform an action (requires import

Control.Monad)
• Use exitSuccess to exit the loop (requires import System.Exit)
• Check when to exit using isEOF

Suresh PRGH 2019: Lecture 18 October 16, 2019 4 / 18



Repetition using forever

• Repeatedly read a list of integers on each line and print its reverse
import System.IO
import System.Exit
import Control.Monad
main = forever $ do {

exitCond <- isEOF;
if exitCond then exitSuccess else do {

inList <- readLn :: IO [Int];
print (reverse inList);

}
}

Suresh PRGH 2019: Lecture 18 October 16, 2019 5 / 18



Repetition using forever

• Convenient to use when along with forever to handle the exit case
(requires import Control.Monad)

import System.IO
import System.Exit
import Control.Monad
main = forever $ do {

exitCond <- isEOF;
when exitCond exitSuccess;
inList <- readLn :: IO [Int];
print (reverse inList);

}

Suresh PRGH 2019: Lecture 18 October 16, 2019 6 / 18



Themagic of interact

• The cleanest way of processing input is interact (requires System.IO)
interact :: (String -> String) -> IO ()

• interact f applies f (a string function) to the entire input, and
produces the entire output to the screen
• But Haskell is lazy!

• So only the portion of the input that is needed to produce a line of
output is consumed
• No waiting for user to provide the whole input
• The line of output is printed to stdout
• Rest of the input is processed (including waiting for user to provide
input)
• Truly interactive!

Suresh PRGH 2019: Lecture 18 October 16, 2019 7 / 18



Themagic of interact

• The cleanest way of processing input is interact (requires System.IO)
interact :: (String -> String) -> IO ()

• interact f applies f (a string function) to the entire input, and
produces the entire output to the screen

• But Haskell is lazy!

• So only the portion of the input that is needed to produce a line of
output is consumed
• No waiting for user to provide the whole input
• The line of output is printed to stdout
• Rest of the input is processed (including waiting for user to provide
input)
• Truly interactive!

Suresh PRGH 2019: Lecture 18 October 16, 2019 7 / 18



Themagic of interact

• The cleanest way of processing input is interact (requires System.IO)
interact :: (String -> String) -> IO ()

• interact f applies f (a string function) to the entire input, and
produces the entire output to the screen
• But Haskell is lazy!

• So only the portion of the input that is needed to produce a line of
output is consumed
• No waiting for user to provide the whole input
• The line of output is printed to stdout
• Rest of the input is processed (including waiting for user to provide
input)
• Truly interactive!

Suresh PRGH 2019: Lecture 18 October 16, 2019 7 / 18



Themagic of interact

• The cleanest way of processing input is interact (requires System.IO)
interact :: (String -> String) -> IO ()

• interact f applies f (a string function) to the entire input, and
produces the entire output to the screen
• But Haskell is lazy!
• So only the portion of the input that is needed to produce a line of
output is consumed

• No waiting for user to provide the whole input
• The line of output is printed to stdout
• Rest of the input is processed (including waiting for user to provide
input)
• Truly interactive!

Suresh PRGH 2019: Lecture 18 October 16, 2019 7 / 18



Themagic of interact

• The cleanest way of processing input is interact (requires System.IO)
interact :: (String -> String) -> IO ()

• interact f applies f (a string function) to the entire input, and
produces the entire output to the screen
• But Haskell is lazy!
• So only the portion of the input that is needed to produce a line of
output is consumed
• No waiting for user to provide the whole input

• The line of output is printed to stdout
• Rest of the input is processed (including waiting for user to provide
input)
• Truly interactive!

Suresh PRGH 2019: Lecture 18 October 16, 2019 7 / 18



Themagic of interact

• The cleanest way of processing input is interact (requires System.IO)
interact :: (String -> String) -> IO ()

• interact f applies f (a string function) to the entire input, and
produces the entire output to the screen
• But Haskell is lazy!
• So only the portion of the input that is needed to produce a line of
output is consumed
• No waiting for user to provide the whole input
• The line of output is printed to stdout

• Rest of the input is processed (including waiting for user to provide
input)
• Truly interactive!

Suresh PRGH 2019: Lecture 18 October 16, 2019 7 / 18



Themagic of interact

• The cleanest way of processing input is interact (requires System.IO)
interact :: (String -> String) -> IO ()

• interact f applies f (a string function) to the entire input, and
produces the entire output to the screen
• But Haskell is lazy!
• So only the portion of the input that is needed to produce a line of
output is consumed
• No waiting for user to provide the whole input
• The line of output is printed to stdout
• Rest of the input is processed (including waiting for user to provide
input)

• Truly interactive!

Suresh PRGH 2019: Lecture 18 October 16, 2019 7 / 18



Themagic of interact

• The cleanest way of processing input is interact (requires System.IO)
interact :: (String -> String) -> IO ()

• interact f applies f (a string function) to the entire input, and
produces the entire output to the screen
• But Haskell is lazy!
• So only the portion of the input that is needed to produce a line of
output is consumed
• No waiting for user to provide the whole input
• The line of output is printed to stdout
• Rest of the input is processed (including waiting for user to provide
input)
• Truly interactive!
Suresh PRGH 2019: Lecture 18 October 16, 2019 7 / 18



Themagic of interact

• Typically f is a function that processes one line of input

• Produces output corresponding to that line of input
• The library functions lines and unlines come to the rescue

lines "One\nTwo\nThree" = ["One", "Two", "Three"]
unlines ["One", "Two", "Three"] = "One\nTwo\nThree\n"

• Typical use of interact
main = interact (unlines . map f . lines)

• Localises input-output to one line of code
• f is a pure function

Suresh PRGH 2019: Lecture 18 October 16, 2019 8 / 18



Themagic of interact

• Typically f is a function that processes one line of input
• Produces output corresponding to that line of input

• The library functions lines and unlines come to the rescue
lines "One\nTwo\nThree" = ["One", "Two", "Three"]
unlines ["One", "Two", "Three"] = "One\nTwo\nThree\n"

• Typical use of interact
main = interact (unlines . map f . lines)

• Localises input-output to one line of code
• f is a pure function

Suresh PRGH 2019: Lecture 18 October 16, 2019 8 / 18



Themagic of interact

• Typically f is a function that processes one line of input
• Produces output corresponding to that line of input
• The library functions lines and unlines come to the rescue

lines "One\nTwo\nThree" = ["One", "Two", "Three"]
unlines ["One", "Two", "Three"] = "One\nTwo\nThree\n"

• Typical use of interact
main = interact (unlines . map f . lines)

• Localises input-output to one line of code
• f is a pure function

Suresh PRGH 2019: Lecture 18 October 16, 2019 8 / 18



Themagic of interact

• Typically f is a function that processes one line of input
• Produces output corresponding to that line of input
• The library functions lines and unlines come to the rescue

lines "One\nTwo\nThree" = ["One", "Two", "Three"]
unlines ["One", "Two", "Three"] = "One\nTwo\nThree\n"

• Typical use of interact
main = interact (unlines . map f . lines)

• Localises input-output to one line of code
• f is a pure function

Suresh PRGH 2019: Lecture 18 October 16, 2019 8 / 18



Themagic of interact

• Typically f is a function that processes one line of input
• Produces output corresponding to that line of input
• The library functions lines and unlines come to the rescue

lines "One\nTwo\nThree" = ["One", "Two", "Three"]
unlines ["One", "Two", "Three"] = "One\nTwo\nThree\n"

• Typical use of interact
main = interact (unlines . map f . lines)

• Localises input-output to one line of code

• f is a pure function

Suresh PRGH 2019: Lecture 18 October 16, 2019 8 / 18



Themagic of interact

• Typically f is a function that processes one line of input
• Produces output corresponding to that line of input
• The library functions lines and unlines come to the rescue

lines "One\nTwo\nThree" = ["One", "Two", "Three"]
unlines ["One", "Two", "Three"] = "One\nTwo\nThree\n"

• Typical use of interact
main = interact (unlines . map f . lines)

• Localises input-output to one line of code
• f is a pure function

Suresh PRGH 2019: Lecture 18 October 16, 2019 8 / 18



Themagic of interact

• Typical use of interact
main = interact (unlines . map f . lines)

• Equivalent to the following:
main = forever $ do {

exitCond <- isEOF;
when exitCond exitSuccess;
inp <- getLine;
putStrLn $ f inp;

}

Suresh PRGH 2019: Lecture 18 October 16, 2019 9 / 18



Themagic of interact

• Typical use of interact
main = interact (unlines . map f . lines)

• Equivalent to the following:
main = forever $ do {

exitCond <- isEOF;
when exitCond exitSuccess;
inp <- getLine;
putStrLn $ f inp;

}

Suresh PRGH 2019: Lecture 18 October 16, 2019 9 / 18



Themagic of interact

• Repeatedly read a list of integers on each line and print its reverse

• Using interact
import System.IO
main = interact (unlines . map f . lines)

f :: String -> String
f inp = show (reverse (read inp :: [Int]))

• f is required to be of type String -> String

• Hence we apply read to the input first, process it, and then apply show
at the end

Suresh PRGH 2019: Lecture 18 October 16, 2019 10 / 18



Themagic of interact

• Repeatedly read a list of integers on each line and print its reverse
• Using interact

import System.IO
main = interact (unlines . map f . lines)

f :: String -> String
f inp = show (reverse (read inp :: [Int]))

• f is required to be of type String -> String

• Hence we apply read to the input first, process it, and then apply show
at the end

Suresh PRGH 2019: Lecture 18 October 16, 2019 10 / 18



Themagic of interact

• Repeatedly read a list of integers on each line and print its reverse
• Using interact

import System.IO
main = interact (unlines . map f . lines)

f :: String -> String
f inp = show (reverse (read inp :: [Int]))

• f is required to be of type String -> String

• Hence we apply read to the input first, process it, and then apply show
at the end

Suresh PRGH 2019: Lecture 18 October 16, 2019 10 / 18



Themagic of interact

• Repeatedly read a list of integers on each line and print its reverse
• Using interact

import System.IO
main = interact (unlines . map f . lines)

f :: String -> String
f inp = show (reverse (read inp :: [Int]))

• f is required to be of type String -> String

• Hence we apply read to the input first, process it, and then apply show
at the end

Suresh PRGH 2019: Lecture 18 October 16, 2019 10 / 18



The bind operator

• Two fundamental functions used to construct and combine actions
return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

• Execution of act1 >>= act2

• executes act1
• unboxes and extracts the return value (of type a)
• executes act2, perhaps using the previously extracted value

• The return value of act2 is returned by the combined action

Suresh PRGH 2019: Lecture 18 October 16, 2019 11 / 18



The bind operator

• Two fundamental functions used to construct and combine actions
return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

• Execution of act1 >>= act2

• executes act1
• unboxes and extracts the return value (of type a)
• executes act2, perhaps using the previously extracted value

• The return value of act2 is returned by the combined action

Suresh PRGH 2019: Lecture 18 October 16, 2019 11 / 18



The bind operator

• Two fundamental functions used to construct and combine actions
return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

• Execution of act1 >>= act2
• executes act1

• unboxes and extracts the return value (of type a)
• executes act2, perhaps using the previously extracted value

• The return value of act2 is returned by the combined action

Suresh PRGH 2019: Lecture 18 October 16, 2019 11 / 18



The bind operator

• Two fundamental functions used to construct and combine actions
return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

• Execution of act1 >>= act2
• executes act1
• unboxes and extracts the return value (of type a)

• executes act2, perhaps using the previously extracted value
• The return value of act2 is returned by the combined action

Suresh PRGH 2019: Lecture 18 October 16, 2019 11 / 18



The bind operator

• Two fundamental functions used to construct and combine actions
return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

• Execution of act1 >>= act2
• executes act1
• unboxes and extracts the return value (of type a)
• executes act2, perhaps using the previously extracted value

• The return value of act2 is returned by the combined action

Suresh PRGH 2019: Lecture 18 October 16, 2019 11 / 18



The bind operator

• Two fundamental functions used to construct and combine actions
return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

• Execution of act1 >>= act2
• executes act1
• unboxes and extracts the return value (of type a)
• executes act2, perhaps using the previously extracted value

• The return value of act2 is returned by the combined action

Suresh PRGH 2019: Lecture 18 October 16, 2019 11 / 18



The bind operator

• Actually, return and (>>=) are functions common to all monads

• IO is an example of a monad
• Many other type constructors we have already seen produce monads –

[], Maybe&c.
• Wewill (perhaps!) see other examples of monads later
• Functions like readLn, putStrLn, print&c. are specific to the IOmonad

Suresh PRGH 2019: Lecture 18 October 16, 2019 12 / 18



The bind operator

• Actually, return and (>>=) are functions common to all monads
• IO is an example of a monad

• Many other type constructors we have already seen produce monads –
[], Maybe&c.
• Wewill (perhaps!) see other examples of monads later
• Functions like readLn, putStrLn, print&c. are specific to the IOmonad

Suresh PRGH 2019: Lecture 18 October 16, 2019 12 / 18



The bind operator

• Actually, return and (>>=) are functions common to all monads
• IO is an example of a monad
• Many other type constructors we have already seen produce monads –

[], Maybe&c.

• Wewill (perhaps!) see other examples of monads later
• Functions like readLn, putStrLn, print&c. are specific to the IOmonad

Suresh PRGH 2019: Lecture 18 October 16, 2019 12 / 18



The bind operator

• Actually, return and (>>=) are functions common to all monads
• IO is an example of a monad
• Many other type constructors we have already seen produce monads –

[], Maybe&c.
• Wewill (perhaps!) see other examples of monads later

• Functions like readLn, putStrLn, print&c. are specific to the IOmonad

Suresh PRGH 2019: Lecture 18 October 16, 2019 12 / 18



The bind operator

• Actually, return and (>>=) are functions common to all monads
• IO is an example of a monad
• Many other type constructors we have already seen produce monads –

[], Maybe&c.
• Wewill (perhaps!) see other examples of monads later
• Functions like readLn, putStrLn, print&c. are specific to the IOmonad

Suresh PRGH 2019: Lecture 18 October 16, 2019 12 / 18



Using bind

• Read a line and print it
getLine >>= putStrLn

• Read a line and print its length
getLine :: IO String
print :: Show a => a -> IO ()

getLine >>= (\str ->
print (length str)
)

Suresh PRGH 2019: Lecture 18 October 16, 2019 13 / 18



Using bind

• Read a line and print it
getLine >>= putStrLn

• Read a line and print its length
getLine :: IO String
print :: Show a => a -> IO ()

getLine >>= (\str ->
print (length str)
)

Suresh PRGH 2019: Lecture 18 October 16, 2019 13 / 18



Using bind

• Read a line and print its length twice
getLine >>= (\str ->

print (length str) >>=
print (length str)
)

• This produces a type error

• The second (>>=) expects a second argument of type () -> IO c
• But print x is of type IO ()

• Correct code!
getLine >>= (\str -> print (length str) >>=

(\str' -> print (length str)))

Suresh PRGH 2019: Lecture 18 October 16, 2019 14 / 18



Using bind

• Read a line and print its length twice
getLine >>= (\str ->

print (length str) >>=
print (length str)
)

• This produces a type error

• The second (>>=) expects a second argument of type () -> IO c
• But print x is of type IO ()

• Correct code!
getLine >>= (\str -> print (length str) >>=

(\str' -> print (length str)))

Suresh PRGH 2019: Lecture 18 October 16, 2019 14 / 18



Using bind

• Read a line and print its length twice
getLine >>= (\str ->

print (length str) >>=
print (length str)
)

• This produces a type error
• The second (>>=) expects a second argument of type () -> IO c

• But print x is of type IO ()

• Correct code!
getLine >>= (\str -> print (length str) >>=

(\str' -> print (length str)))

Suresh PRGH 2019: Lecture 18 October 16, 2019 14 / 18



Using bind

• Read a line and print its length twice
getLine >>= (\str ->

print (length str) >>=
print (length str)
)

• This produces a type error
• The second (>>=) expects a second argument of type () -> IO c
• But print x is of type IO ()

• Correct code!
getLine >>= (\str -> print (length str) >>=

(\str' -> print (length str)))

Suresh PRGH 2019: Lecture 18 October 16, 2019 14 / 18



Using bind

• Read a line and print its length twice
getLine >>= (\str ->

print (length str) >>=
print (length str)
)

• This produces a type error
• The second (>>=) expects a second argument of type () -> IO c
• But print x is of type IO ()

• Correct code!
getLine >>= (\str -> print (length str) >>=

(\str' -> print (length str)))

Suresh PRGH 2019: Lecture 18 October 16, 2019 14 / 18



Bind without arguments

• A simpler version of the previous action:
getLine >>= (\str ->

print (length str) >>
print (length str)

)

• If we do not want to unbox and use the result of the preceding action,
we use (>>)
• act1 >> act2 is equivalent to the following (where the name n is not
used in act2):

act1 >>= (\n -> act2)

Suresh PRGH 2019: Lecture 18 October 16, 2019 15 / 18



Bind without arguments

• A simpler version of the previous action:
getLine >>= (\str ->

print (length str) >>
print (length str)

)

• If we do not want to unbox and use the result of the preceding action,
we use (>>)

• act1 >> act2 is equivalent to the following (where the name n is not
used in act2):

act1 >>= (\n -> act2)

Suresh PRGH 2019: Lecture 18 October 16, 2019 15 / 18



Bind without arguments

• A simpler version of the previous action:
getLine >>= (\str ->

print (length str) >>
print (length str)

)

• If we do not want to unbox and use the result of the preceding action,
we use (>>)
• act1 >> act2 is equivalent to the following (where the name n is not
used in act2):

act1 >>= (\n -> act2)

Suresh PRGH 2019: Lecture 18 October 16, 2019 15 / 18



Bind without arguments

Consider the definitions (where y does not occur in exp2)

f x = exp1
g y = exp2
h = g (f 10)

• f 10 is not evaluated when computing h

• Given actions act1 and act2, executing act1 >> act2 always executes
act1, even though its return value is not used in act2
• The operators (>>=) and (>>) force execution of both the arguments,
the left one first and then the right one

Suresh PRGH 2019: Lecture 18 October 16, 2019 16 / 18



Bind without arguments

Consider the definitions (where y does not occur in exp2)

f x = exp1
g y = exp2
h = g (f 10)

• f 10 is not evaluated when computing h
• Given actions act1 and act2, executing act1 >> act2 always executes

act1, even though its return value is not used in act2

• The operators (>>=) and (>>) force execution of both the arguments,
the left one first and then the right one

Suresh PRGH 2019: Lecture 18 October 16, 2019 16 / 18



Bind without arguments

Consider the definitions (where y does not occur in exp2)

f x = exp1
g y = exp2
h = g (f 10)

• f 10 is not evaluated when computing h
• Given actions act1 and act2, executing act1 >> act2 always executes

act1, even though its return value is not used in act2
• The operators (>>=) and (>>) force execution of both the arguments,
the left one first and then the right one

Suresh PRGH 2019: Lecture 18 October 16, 2019 16 / 18



do is syntactic sugar

• The do blocks introduced earlier can be translated in terms of (>>=)
and (>>)

• A single action needs no do
do {putStrLn "Hello world!";}

translates to

putStrLn "Hello world!"

Suresh PRGH 2019: Lecture 18 October 16, 2019 17 / 18



do is syntactic sugar

• The do blocks introduced earlier can be translated in terms of (>>=)
and (>>)
• A single action needs no do

do {putStrLn "Hello world!";}

translates to

putStrLn "Hello world!"

Suresh PRGH 2019: Lecture 18 October 16, 2019 17 / 18



do is syntactic sugar

• If there is no <- in the first action, we use >>
do {act1; S}

translates to

act1 >> do {S}

• If there is <- in the first action, we use >>=
do {n <- act1; S}

translates to

act1 >>= \n -> do {S}

Suresh PRGH 2019: Lecture 18 October 16, 2019 18 / 18



do is syntactic sugar

• If there is no <- in the first action, we use >>
do {act1; S}

translates to

act1 >> do {S}

• If there is <- in the first action, we use >>=
do {n <- act1; S}

translates to

act1 >>= \n -> do {S}

Suresh PRGH 2019: Lecture 18 October 16, 2019 18 / 18


