Programming in Haskell: Lecture 18

S P Suresh

October 16, 2019

Suresh PRGH 2019: Lecture 18 October 16, 2019 1/18



Reading a list of integers

® Read alist of non-negative integers (one on each line and terminated

by a negative integer)

main = do {ls <- readIntlList; print 1s;}
readIntlList :: IO [Int]
readIntlList = do {

inp <- readLn :: I0 Int;

if (inp < @) then return [];

else do {1l <- readIntlList; return (Cinp:1);}

Suresh PRGH 2019: Lecture 18 October 16, 2019 2/18



Reading a list of integers

® Read alist of non-negative integers (one on each line and terminated

by a negative integer)

main = do {ls <- readIntlList; print 1s;}
readIntlList :: IO [Int]
readIntlList = do {

inp <- readLn :: I0 Int;

if (inp < @) then return [];

else do {1l <- readIntlList; return (Cinp:1);}
ks

e What if we want to signal the end of input by some other means?

Suresh PRGH 2019: Lecture 18 October 16, 2019 2/18



Reading a list of integers

® Read alist of non-negative integers (one on each line and terminated

by a negative integer)

main = do {ls <- readIntlList; print 1s;}
readIntlList :: IO [Int]
readIntlList = do {

inp <- readLn :: I0 Int;

if (inp < @) then return [];

else do {1l <- readIntlList; return (Cinp:1);}
ks

e What if we want to signal the end of input by some other means?

e Say, input is from a file and we process each line till the file ends

Suresh PRGH 2019: Lecture 18 October 16, 2019 2/18



Reading a list of integers

® Use isEOF (requires import System.IO)

import System.IO
main = do {ls <- readIntlList; print 1s;}
readIntlList = do
exitCond <- isEOF
if exitCond then return [] else do {
inp <- readLn :: I0 Int;
1 <- readIntlList; return (inp:1);

Suresh PRGH 2019: Lecture 18 October 16, 2019 3/18



Reading a list of integers

® Use isEOF (requires import System.IO)

import System.IO
main = do {ls <- readIntlList; print 1s;}
readIntlList = do
exitCond <- isEOF
if exitCond then return [] else do {
inp <- readLn :: I0 Int;
1 <- readIntlList; return (inp:1);
ks

® isEOF returns True when end of file is reached

Suresh PRGH 2019: Lecture 18 October 16, 2019 3/18



Reading a list of integers

® Use isEOF (requires import System.IO)

import System.IO
main = do {ls <- readIntlList; print 1s;}
readIntlList = do
exitCond <- isEOF
if exitCond then return [] else do {
inp <- readLn :: I0 Int;
1 <- readIntlList; return (inp:1);
ks

® isEOF returns True when end of file is reached

e Ifinput is provided from keyboard, indicate end of input by Ctrl-D

Suresh PRGH 2019: Lecture 18 October 16, 2019 3/18



Repetition using forever

® Repeatedly read a list of integers on each line and print its reverse

Suresh PRGH 2019: Lecture 18 October 16, 2019 4/18



Repetition using forever

® Repeatedly read a list of integers on each line and print its reverse

e Use forever to repeatedly perform an action (requires import
Control .Monad)

Suresh PRGH 2019: Lecture 18 October 16, 2019 4/18



Repetition using forever

® Repeatedly read a list of integers on each line and print its reverse

e Use forever to repeatedly perform an action (requires import
Control .Monad)

® Use exitSuccess to exit the Ioop (requires import System.Exit)

Suresh PRGH 2019: Lecture 18 October 16, 2019 4/18



Repetition using forever

Repeatedly read a list of integers on each line and print its reverse

Use forever to repeatedly perform an action (requires import
Control .Monad)

Use exitSuccess to exit the loop (requires import System.Exit)

Check when to exit using isEOF

Suresh PRGH 2019: Lecture 18 October 16, 2019

4/18



Repetition using forever

® Repeatedly read a list of integers on each line and print its reverse

import System.IO
import System.Exit
import Control.Monad
main = forever $ do {
exitCond <- isEOF;
if exitCond then exitSuccess else do {
inlList <- readLn :: IO [Int];

print (reverse inList);

Suresh PRGH 2019: Lecture 18 October 16, 2019 5/18



Repetition using forever

® Convenient to use when along with forever to handle the exit case

(requires import Control.Monad)

import System.IO

import System.Exit

import Control.Monad

main = forever $ do {
exitCond <- 1isEOF;
when exitCond exitSuccess;
inList <- readLn :: I0 [Int];

print (reverse inlList);

Suresh PRGH 2019: Lecture 18 October 16, 2019 6/18



The magic of interact

¢ The cleanest way of processing input is interact (requires System.I0)

interact :: (String -> String) -> I0 O

Suresh PRGH 2019: Lecture 18 October 16, 2019 7/18



The magic of interact

¢ The cleanest way of processing input is interact (requires System.I0)

interact :: (String -> String) -> I0 O

® interact f applies f (a string function) to the entire input, and

produces the entire output to the screen

Suresh PRGH 2019: Lecture 18 October 16, 2019 7/18



The magic of interact
¢ The cleanest way of processing input is interact (requires System.I0)
interact :: (String -> String) -> I0 O

® interact f applies f (a string function) to the entire input, and
produces the entire output to the screen

® But Haskell is lazy!

Suresh PRGH 2019: Lecture 18 October 16, 2019 7/18



The magic of interact

¢ The cleanest way of processing input is interact (requires System.I0)

interact :: (String -> String) -> I0 O

® interact f applies f (a string function) to the entire input, and
produces the entire output to the screen
® But Haskell is lazy!
® So only the portion of the input that is needed to produce a line of

output is consumed

Suresh PRGH 2019: Lecture 18 October 16, 2019 7/18



The magic of interact

¢ The cleanest way of processing input is interact (requires System.I0)

interact :: (String -> String) -> I0 O

® interact f applies f (a string function) to the entire input, and
produces the entire output to the screen
® But Haskell is lazy!
® So only the portion of the input that is needed to produce a line of

output is consumed
¢ No waiting for user to provide the whole input

Suresh PRGH 2019: Lecture 18 October 16, 2019 7/18



The magic of interact

¢ The cleanest way of processing input is interact (requires System.I0)
interact :: (String -> String) -> I0 O

® interact f applies f (a string function) to the entire input, and
produces the entire output to the screen
® But Haskell is lazy!
® So only the portion of the input that is needed to produce a line of
output is consumed
¢ No waiting for user to provide the whole input
¢ The line of output is printed to stdout

Suresh PRGH 2019: Lecture 18 October 16, 2019 7/18



The magic of interact

¢ The cleanest way of processing input is interact (requires System.I0)

interact :: (String -> String) -> I0 O

® interact f applies f (a string function) to the entire input, and
produces the entire output to the screen

® But Haskell is lazy!
® So only the portion of the input that is needed to produce a line of
output is consumed
® No waiting for user to provide the whole input
® The line of output is printed to stdout
® Rest of the input is processed (including waiting for user to provide

input)

Suresh PRGH 2019: Lecture 18 October 16, 2019 7/18



The magic of interact

¢ The cleanest way of processing input is interact (requires System.I0)
interact :: (String -> String) -> I0 O

® interact f applies f (a string function) to the entire input, and
produces the entire output to the screen
® But Haskell is lazy!
® So only the portion of the input that is needed to produce a line of
output is consumed
¢ No waiting for user to provide the whole input
¢ The line of output is printed to stdout
® Rest of the input is processed (including waiting for user to provide
input)
® Truly interactive!

Suresh PRGH 2019: Lecture 18 October 16, 2019 7/18



The magic of interact

e Typically f is a function that processes one line of input

Suresh PRGH 2019: Lecture 18 October 16, 2019 8/18



The magic of interact

e Typically f is a function that processes one line of input

® Produces output corresponding to that line of input

Suresh PRGH 2019: Lecture 18 October 16, 2019 8/18



The magic of interact

e Typically f is a function that processes one line of input
® Produces output corresponding to that line of input

e The library functions lines and unlines come to the rescue

lines "One\nTwo\nThree" = ["One", "Two", "Three"]

unlines ["One", "Two", "Three"] = "One\nTwo\nThree\n"

Suresh PRGH 2019: Lecture 18 October 16, 2019 8/18



The magic of interact

Typically f is a function that processes one line of input
Produces output corresponding to that line of input

The library functions lines and unlines come to the rescue

lines "One\nTwo\nThree" = ["One", "Two", "Three"]

unlines ["One", "Two", "Three"] = "One\nTwo\nThree\n"

Typical use of interact

main = interact (unlines . map f . lines)

Suresh PRGH 2019: Lecture 18 October 16, 2019

8/18



The magic of interact

Typically f is a function that processes one line of input
Produces output corresponding to that line of input

The library functions lines and unlines come to the rescue

lines "One\nTwo\nThree" = ["One", "Two", "Three"]

unlines ["One", "Two", "Three"] = "One\nTwo\nThree\n"

Typical use of interact

main = interact (unlines . map f . lines)

Localises input-output to one line of code

Suresh PRGH 2019: Lecture 18 October 16, 2019

8/18



The magic of interact

Typically f is a function that processes one line of input
Produces output corresponding to that line of input

The library functions lines and unlines come to the rescue

lines "One\nTwo\nThree" = ["One", "Two", "Three"]

unlines ["One", "Two", "Three"] = "One\nTwo\nThree\n"

Typical use of interact

main = interact (unlines . map f . lines)

Localises input-output to one line of code

f is a pure function

Suresh PRGH 2019: Lecture 18 October 16, 2019

8/18



The magic of interact

¢ Typical use of interact

main = interact (unlines . map f . lines)

Suresh PRGH 2019: Lecture 18 October 16, 2019 9/18



The magic of interact

¢ Typical use of interact

main = interact (unlines . map f . lines)

¢ Equivalent to the following:

main = forever $ do {
exitCond <- isEOF;
when exitCond exitSuccess;
inp <- getLine;
putStrLn $ f inp;

Suresh PRGH 2019: Lecture 18 October 16, 2019 9/18



The magic of interact

® Repeatedly read a list of integers on each line and print its reverse

Suresh PRGH 2019: Lecture 18 October 16, 2019 10/18



The magic of interact

® Repeatedly read a list of integers on each line and print its reverse

® Using interact

import System.IO

main = interact (unlines . map f . lines)

f :: String -> String
f inp = show (reverse (read inp :: [Int]))

Suresh PRGH 2019: Lecture 18 October 16, 2019 10/18



The magic of interact

® Repeatedly read a list of integers on each line and print its reverse
® Using interact

import System.IO

main = interact (unlines . map f . lines)

f :: String -> String

f inp = show (reverse (read inp :: [Int]))

e fisrequired to be of type String -> String

Suresh PRGH 2019: Lecture 18 October 16, 2019 10/18



The magic of interact

® Repeatedly read a list of integers on each line and print its reverse

® Using interact

import System.IO

main = interact (unlines . map f . lines)
f :: String -> String
f inp = show (reverse (read inp :: [Int]))

e fisrequired to be of type String -> String

¢ Hence we apply read to the input first, process it, and then apply show
at the end

Suresh PRGH 2019: Lecture 18 October 16, 2019 10/18



The bind operator

e Two fundamental functions used to construct and combine actions

return :: a -> I0 a
(>=) ::I0a ->(Ca->I0b) ->I0D

Suresh PRGH 2019: Lecture 18 October 16, 2019 /18



The bind operator

e Two fundamental functions used to construct and combine actions

return :: a -> I0 a
(>=) ::I0a ->(Ca->I0b) ->I0D

® Execution of actl >>= act2

Suresh PRGH 2019: Lecture 18 October 16, 2019 /18



The bind operator

e Two fundamental functions used to construct and combine actions

return :: a -> I0 a
(>=) ::I0a ->(Ca->I0b) ->I0D

® Execution of actl >>= act2

® executesactl

Suresh PRGH 2019: Lecture 18 October 16, 2019 /18



The bind operator

e Two fundamental functions used to construct and combine actions

return :: a -> I0 a
(>=) ::I0a ->(Ca->I0b) ->I0D

® Execution of actl >>= act2

® executesactl

® unboxes and extracts the return value (of type a)

Suresh PRGH 2019: Lecture 18 October 16, 2019 /18



The bind operator

e Two fundamental functions used to construct and combine actions

return :: a -> I0 a
(>=) ::I0a ->(Ca->I0b) ->I0D

® Execution of actl >>= act2

® executes actl
® unboxes and extracts the return value (of type a)

® executes act2, perhaps using the previously extracted value

Suresh PRGH 2019: Lecture 18 October 16, 2019 /18



The bind operator

e Two fundamental functions used to construct and combine actions

return :: a -> I0 a
G>=) ::I0a ->(Ca->I0b) ->I0b

® Execution of actl >>= act2

® executes actl
® unboxes and extracts the return value (of type a)

® executes act2, perhaps using the previously extracted value

¢ The return value of act? is returned by the combined action

Suresh PRGH 2019: Lecture 18 October 16, 2019 /18



The bind operator

¢ Actually, return and (>>=) are functions common to all monads

Suresh PRGH 2019: Lecture 18 October 16, 2019 12/18



The bind operator

¢ Actually, return and (>>=) are functions common to all monads

® 10 is an example of a monad

Suresh PRGH 2019: Lecture 18 October 16, 2019 12/18



The bind operator

¢ Actually, return and (>>=) are functions common to all monads
® I0isan example of a monad

® Many other type constructors we have already seen produce monads -
[], Maybe &c.

Suresh PRGH 2019: Lecture 18 October 16, 2019 12/18



The bind operator

Actually, return and (>>=) are functions common to all monads
I0 is an example of a monad

Many other type constructors we have already seen produce monads -
[], Maybe &c.

We will (perhaps!) see other examples of monads later

Suresh PRGH 2019: Lecture 18 October 16, 2019 12/18



The bind operator

Actually, return and (>>=) are functions common to all monads

® 10 is an example of a monad

Many other type constructors we have already seen produce monads -
[], Maybe &c.

We will (perhaps!) see other examples of monads later

Functions like readLn, putStrLn, print &c. are specific to the I0 monad

Suresh PRGH 2019: Lecture 18 October 16, 2019 12/18



Using bind

® Read aline and print it

getLine >>= putStrlLn

Suresh PRGH 2019: Lecture 18 October 16, 2019 13/18



Using bind

® Read aline and print it

getLine >>= putStrlLn

® Read aline and print its Iength

getLine :: IO String
print :: Show a => a -> I0 ()

getlLine >>= (\str ->

print (length str)
)

Suresh PRGH 2019: Lecture 18 October 16, 2019 13/18



Using bind

® Read aline and print its length twice

getlLine >>= (\str ->
print (length str) >>=
print (length str)
D)

Suresh PRGH 2019: Lecture 18 October 16, 2019 14/18



Using bind

® Read aline and print its length twice

getlLine >>= (\str ->
print (length str) >>=
print (length str)
D)

e This produces a type error

Suresh PRGH 2019: Lecture 18 October 16, 2019 14/18



Using bind

® Read aline and print its length twice
getlLine >>= (\str ->
print (length str) >>=
print (length str)
D)

e This produces a type error

® The second (>>=) expects a second argument of type () -> I0 ¢

Suresh PRGH 2019: Lecture 18 October 16, 2019 14/18



Using bind

® Read aline and print its length twice

getlLine >>= (\str ->
print (length str) >>=
print (length str)
D)

e This produces a type error
® The second (>>=) expects a second argument of type () -> I0 ¢
® Butprint xisoftypeI0 O

Suresh PRGH 2019: Lecture 18 October 16, 2019 14/18



Using bind

® Read aline and print its length twice

getlLine >>= (\str ->
print (length str) >>=
print (length str)
D)

e This produces a type error
® The second (>>=) expects a second argument of type () -> I0 ¢
® Butprint xisoftypeI0 O

e Correct code!

getLine >>= (\str -> print (length str) >>=
(\str' -> print (length str)))

Suresh PRGH 2019: Lecture 18 October 16, 2019 14/18



Bind without arguments

¢ A simpler version of the previous action:

getlLine >>= (\str ->
print (length str) >>
print (length str)

Suresh PRGH 2019: Lecture 18 October 16, 2019 15/18



Bind without arguments

¢ A simpler version of the previous action:

getlLine >>= (\str ->
print (length str) >>
print (length str)

)

* If we do not want to unbox and use the result of the preceding action,

we use (>>)

Suresh PRGH 2019: Lecture 18 October 16, 2019 15/18



Bind without arguments

¢ A simpler version of the previous action:

getlLine >>= (\str ->
print (length str) >>
print (length str)

)

* If we do not want to unbox and use the result of the preceding action,

we use (>>)

® actl >> act2 is equivalent to the following (where the name n is not

used in act2):

actl >>= (\n -> act2)

Suresh PRGH 2019: Lecture 18 October 16, 2019 15/18



Bind without arguments

Consider the definitions (where y does not occur in exp2)

f x
gy
h =

® f 10 1is not evaluated when computing h

Suresh

9

expl
exp2
(f 10

PRGH 2019: Lecture 18

October 16, 2019

16 /18



Bind without arguments

Consider the definitions (where y does not occur in exp2)

f x
gy

® f 10 1is not evaluated when computing h

9

expl
exp2
(f 10

® Given actions actl and act2, executing actl >> act2 always executes

actl, even though its return value is not used in act2

Suresh

PRGH 2019: Lecture 18

October 16, 2019

16 /18



Bind without arguments

Consider the definitions (where y does not occur in exp2)

f x
gy
h =

® f 10 1is not evaluated when computing h

9

expl
exp2
(f 10

® Given actions actl and act2, executing actl >> act2 always executes

actl, even though its return value is not used in act2

¢ The operators (>>=) and (>>) force execution of both the arguments,

the left one first and then the right one

Suresh

PRGH 2019: Lecture 18

October 16, 2019

16 /18



do s syntactic sugar

e The do blocks introduced earlier can be translated in terms of (>>=)

and (>>)

Suresh PRGH 2019: Lecture 18 October 16, 2019 17/18



do s syntactic sugar

e The do blocks introduced earlier can be translated in terms of (>>=)

and (>>)

® A single action needs no do
do {putStrLn "Hello world!";}
translates to

putStrLn "Hello world!"

Suresh PRGH 2019: Lecture 18 October 16, 2019 17/18



do s syntactic sugar

e Ifthere is no <- in the first action, we use >>
do {actl; S}
translates to

actl >> do {S}

Suresh PRGH 2019: Lecture 18 October 16, 2019 18/18



do s syntactic sugar

e Ifthere is no <- in the first action, we use >>
do {actl; S}
translates to

actl >> do {S}

e Ifthere is <- in the first action, we use >>=
do {n <- actl; S}
translates to

actl >>= \n -> do {S}

Suresh PRGH 2019: Lecture 18 October 16, 2019 18/18



