Programming in Haskell: Lecture 17

S P Suresh

October 14, 2019

Suresh PRGH 2019: Lecture 17 October 14, 2019 1/21



Summary of 10

e Actionsof type I0 t1,t1 -> I0 t2,t1 -> t2 -> I0 t3 &

Suresh PRGH 2019: Lecture 17 October 14, 2019 2/21



Summary of 10

e Actionsof type I0 t1,t1 -> I0 t2,t1 -> t2 -> I0 t3 &

® As opposed to pure functions whose type does not involve I0

Suresh PRGH 2019: Lecture 17 October 14, 2019 2/21



Summary of 10

® Actionsof type I0 t1,t1 -> I0 t2,t1 -> t2 -> I0 t3 &
® As opposed to pure functions whose type does not involve I0

¢ Actions have side effects - reading input from user and printing

output to screen

Suresh PRGH 2019: Lecture 17 October 14, 2019 2/21



Summary of 10

Actions of type I0 t1,t1 -> I0 t2,t1 -> t2 -> I0 t3 &
As opposed to pure functions whose type does not involve I0

Actions have side effects - reading input from user and printing

output to screen

Actions and pure functions can be embedded inside other actions

Suresh PRGH 2019: Lecture 17 October 14, 2019

2/21



Summary of 10

Actions of type I0 t1,t1 -> I0 t2,t1 -> t2 -> I0 t3 &
As opposed to pure functions whose type does not involve I0

Actions have side effects - reading input from user and printing

output to screen
Actions and pure functions can be embedded inside other actions

Actions cannot be embedded inside pure functions

Suresh PRGH 2019: Lecture 17 October 14, 2019

2/21



Summary of 10

® Actions can be chained inside a do block

bigact = do {
actl;
act2;
actn;

}

Suresh PRGH 2019: Lecture 17 October 14, 2019 3/21



Summary of 10

® Actions can be chained inside a do block

bigact = do {
actl;
act2;

actn;

}

e The actions are executed in order, one after the other

Suresh PRGH 2019: Lecture 17 October 14, 2019 3/21



Summary of 10

® Actions can be chained inside a do block

bigact = do {
actl;
act2;

actn;

}

e The actions are executed in order, one after the other

e There can be recursive calls to bigact inside the do block

Suresh PRGH 2019: Lecture 17 October 14, 2019 3/21



Summary of 10

® Actions can be chained inside a do block

bigact = do {
actl;
act2;

actn;

}

e The actions are executed in order, one after the other
e There can be recursive calls to bigact inside the do block

¢ The return type of bigact is the return type of actn

Suresh PRGH 2019: Lecture 17 October 14, 2019 3/21



Summary of 10

® main is a distinguished action where computation begins

Suresh PRGH 2019: Lecture 17 October 14, 2019 4/21



Summary of 10

® main is a distinguished action where computation begins

¢ Standalone programs should have a main action

Suresh PRGH 2019: Lecture 17 October 14, 2019 4/21



Summary of 10

® main is a distinguished action where computation begins
¢ Standalone programs should have a main action

¢ Compiled using ghc and run on the terminal, outside ghci

Suresh PRGH 2019: Lecture 17 October 14, 2019 4/21



Summary of 10

main is a distinguished action where computation begins
Standalone programs should have a main action
Compiled using ghc and run on the terminal, outside ghci

Binding the return value of an action to a name is achieved using <-

Suresh PRGH 2019: Lecture 17 October 14, 2019

4/ 21



Summary of 10

main is a distinguished action where computation begins
Standalone programs should have a main action

Compiled using ghc and run on the terminal, outside ghci

Binding the return value of an action to a name is achieved using <-

We use return to promote a value of type a to an action of type I0 a

Suresh PRGH 2019: Lecture 17 October 14, 2019

4/ 21



More actions

® print :: Show a => a -> I0 OO

Suresh PRGH 2019: Lecture 17 October 14, 2019 5/21



More actions

® print :: Show a => a -> I0 OO
® Output a value of any printable type to the standard output (screen),
and add a newline

Suresh PRGH 2019: Lecture 17 October 14, 2019 5/ 21



More actions

® print :: Show a => a -> I0 OO
® Output a value of any printable type to the standard output (screen),
and add a newline

® putChar :: Char -> I0 OO

Suresh PRGH 2019: Lecture 17 October 14, 2019 5/ 21



More actions

® print :: Show a => a -> I0 OO
® Output a value of any printable type to the standard output (screen),
and add a newline

® putChar :: Char -> I0 OO

® Write the character argument to the screen

Suresh PRGH 2019: Lecture 17 October 14, 2019 5/ 21



More actions

® print :: Show a => a -> I0 OO
® Output a value of any printable type to the standard output (screen),
and add a newline

® putChar :: Char -> I0 OO
® Write the character argument to the screen

® getline :: IO String

Suresh PRGH 2019: Lecture 17 October 14, 2019 5/ 21



More actions

® print :: Show a => a -> I0 OO
® Output a value of any printable type to the standard output (screen),
and add a newline

® putChar :: Char -> I0 OO
® Write the character argument to the screen
® getline :: IO String

® Read aline from the standard input and return it as a string

Suresh PRGH 2019: Lecture 17 October 14, 2019 5/ 21



More actions

® print :: Show a => a -> I0 OO
® Output a value of any printable type to the standard output (screen),
and add a newline

® putChar :: Char -> I0 OO
® Write the character argument to the screen
® getline :: IO String
® Read aline from the standard input and return it as a string
® The side effect of getLine is the consumption of a line of input

Suresh PRGH 2019: Lecture 17 October 14, 2019 5/ 21



More actions

® print :: Show a => a -> I0 OO
® Output a value of any printable type to the standard output (screen),
and add a newline

® putChar :: Char -> I0 OO
® Write the character argument to the screen
® getline :: IO String
® Read aline from the standard input and return it as a string

® The side effect of getLine is the consumption of a line of input

® The return value is a string

Suresh PRGH 2019: Lecture 17 October 14, 2019 5/ 21



More actions

print :: Show a => a -> I0 OO
® Output a value of any printable type to the standard output (screen),
and add a newline

putChar :: Char -> I0 OO
® Write the character argument to the screen
getLine :: IO String
® Read aline from the standard input and return it as a string

® The side effect of getLine is the consumption of a line of input

® The return value is a string

getChar :: I0 Char

Suresh PRGH 2019: Lecture 17 October 14, 2019

5/21



More actions

print :: Show a => a -> I0 OO
® Output a value of any printable type to the standard output (screen),
and add a newline

putChar :: Char -> I0 OO
® Write the character argument to the screen
getLine :: IO String
® Read aline from the standard input and return it as a string

® The side effect of getLine is the consumption of a line of input

® The return value is a string
getChar :: I0 Char

® Read the next character from the standard input

Suresh PRGH 2019: Lecture 17 October 14, 2019

5/21



Functions vs. Actions

e A function that takes an integer as argument and returns an integer as
result has type Int -> Int

Suresh PRGH 2019: Lecture 17 October 14, 2019 6/21



Functions vs. Actions

e A function that takes an integer as argument and returns an integer as
result has type Int -> Int

¢ An action that has a side effect in addition has type Int -> I0 Int

Suresh PRGH 2019: Lecture 17 October 14, 2019 6/21



Functions vs. Actions

e A function that takes an integer as argument and returns an integer as
result has type Int -> Int

¢ An action that has a side effect in addition has type Int -> I0 Int

® This is in contrast to a language like C or Java, where the type
signatures are just int -> int, and any function can produce a side
effect

Suresh PRGH 2019: Lecture 17 October 14, 2019 6/21



Functions vs. Actions

¢ The functions we have seen till now (free of side effects) are called pure

functions

Suresh PRGH 2019: Lecture 17 October 14, 2019 7/ 21



Functions vs. Actions

¢ The functions we have seen till now (free of side effects) are called pure

functions

e Their type gives all the information we need about them

Suresh PRGH 2019: Lecture 17 October 14, 2019 7/ 21



Functions vs. Actions

¢ The functions we have seen till now (free of side effects) are called pure

functions
e Their type gives all the information we need about them

¢ Invoking a function on the same arguments always yields the same

result

Suresh PRGH 2019: Lecture 17 October 14, 2019 7/ 21



Functions vs. Actions

¢ The functions we have seen till now (free of side effects) are called pure

functions
e Their type gives all the information we need about them

¢ Invoking a function on the same arguments always yields the same

result

¢ The order of evaluation of the subcomputations does not matter -

Haskell takes advantage this in applying its lazy strategy

Suresh PRGH 2019: Lecture 17 October 14, 2019 7/ 21



Functions vs. Actions

¢ The presence of I0 in the type indicates that actions potentially have
side effects

Suresh PRGH 2019: Lecture 17 October 14, 2019 8/21



Functions vs. Actions

¢ The presence of I0 in the type indicates that actions potentially have
side effects

® External state is changed

Suresh PRGH 2019: Lecture 17 October 14, 2019 8/21



Functions vs. Actions

¢ The presence of I0 in the type indicates that actions potentially have
side effects

® External state is changed

® Order of computation is important - sequencing

Suresh PRGH 2019: Lecture 17 October 14, 2019 8/21



Functions vs. Actions

® Performing the same action on the same arguments twice might have

different results

greetUser :: String -> 10 OO
greetUser greeting = do {
putStrLn "Please enter your name";
name <- getline;

" "

putStrLn ("Hi " ++ name ++ ++ greeting);

3

main = do {
greetUser "Welcome!";
greetUser "Welcome!";

}

Suresh PRGH 2019: Lecture 17 October 14, 2019 9/21



Combining pure functions and I0 actions

¢ Haskell type system allows us to combine pure functions and actions

in a safe manner

Suresh PRGH 2019: Lecture 17 October 14, 2019 10/ 21



Combining pure functions and I0 actions

¢ Haskell type system allows us to combine pure functions and actions

in a safe manner

¢ No mechanism to execute an action inside a pure function

Suresh PRGH 2019: Lecture 17 October 14, 2019 10/ 21



Combining pure functions and I0 actions

¢ Haskell type system allows us to combine pure functions and actions

in a safe manner
¢ No mechanism to execute an action inside a pure function

¢ But pure functions can be used as subroutines inside actions

Suresh PRGH 2019: Lecture 17 October 14, 2019 10/ 21



Combining pure functions and I0 actions

Haskell type system allows us to combine pure functions and actions

in a safe manner
No mechanism to execute an action inside a pure function
But pure functions can be used as subroutines inside actions

IO is performed by an action only if it is executed from within another

action

Suresh PRGH 2019: Lecture 17 October 14, 2019 10/ 21



Combining pure functions and I0 actions

Haskell type system allows us to combine pure functions and actions

in a safe manner
No mechanism to execute an action inside a pure function
But pure functions can be used as subroutines inside actions

IO is performed by an action only if it is executed from within another

action

main is where all the action begins

Suresh PRGH 2019: Lecture 17 October 14, 2019 10/ 21



10 example

e Firstitem

main = do {
putStrLn "Enter your name: ";
name <- getlLine;

putStrLn $ "Hi " ++ name ++ "! Welcome to Haskell!";

Suresh PRGH 2019: Lecture 17 October 14, 2019 /21



10 example

e Firstitem

main = do {
putStrLn "Enter your name: ";
name <- getlLine;
putStrLn $ "Hi " ++ name ++ "! Welcome to Haskell!";

}

o We would like to let the user enter their name on the same line as the

prompt

Suresh PRGH 2019: Lecture 17 October 14, 2019 /21



10 example

e Firstitem

main = do {
putStrLn "Enter your name: ";
name <- getlLine;

putStrLn $ "Hi " ++ name ++ "! Welcome to Haskell!";

}

o We would like to let the user enter their name on the same line as the
prompt
e Use putStr instead of putStrLn

Suresh PRGH 2019: Lecture 17 October 14, 2019 /21



10 example

e Firstitem

main = do {
putStrLn "Enter your name: ";
name <- getlLine;

putStrLn $ "Hi " ++ name ++ "! Welcome to Haskell!";

}

o We would like to let the user enter their name on the same line as the
prompt
e Use putStr instead of putStrLn

e Works as expected in ghci

Suresh PRGH 2019: Lecture 17 October 14, 2019 /21



IO example — buffering

e But IO is usually buffered

Suresh PRGH 2019: Lecture 17 October 14, 2019 12/ 21



IO example - buffering

e But IO is usually buffered

® Means that output is printed on screen only on user pressing Enter

Suresh PRGH 2019: Lecture 17 October 14, 2019 12/21



IO example - buffering

e But IO is usually buffered
® Means that output is printed on screen only on user pressing Enter

® On compiling the above using ghc and running on the command line,

we see this:

Suresh

Enter your name: Hi Suresh! Welcome to Haskell!

Suresh PRGH 2019: Lecture 17 October 14, 2019 12/21



IO example - buffering

But IO is usually buffered
Means that output is printed on screen only on user pressing Enter

On compiling the above using ghc and running on the command line,

we see this:

Suresh

Enter your name: Hi Suresh! Welcome to Haskell!

Solution - explicitly prohibit buffering

Suresh PRGH 2019: Lecture 17 October 14, 2019 12/21



10 example

e Firstitem

import System.IO

main = do {
hSetBuffering stdout NoBuffering;
putStr "Enter your name: ";
name <- getline;

putStrLn $ "Hi " ++ name ++ "! Welcome to Haskell!";

Suresh PRGH 2019: Lecture 17 October 14, 2019 13/21



10 example

e Firstitem

import System.IO
main = do {
hSetBuffering stdout NoBuffering;
putStr "Enter your name: ";
name <- getline;
putStrLn $ "Hi " ++ name ++ "! Welcome to Haskell!";

}

® stdout refers to the standard output, typically the screen

Suresh PRGH 2019: Lecture 17 October 14, 2019 13/21



10 example

First item

import System.IO
main = do {
hSetBuffering stdout NoBuffering;
putStr "Enter your name: ";
name <- getline;
putStrLn $ "Hi " ++ name ++ "! Welcome to Haskell!";

}

stdout refers to the standard output, typically the screen
import System.IO required for hSetBuffering

Suresh PRGH 2019: Lecture 17 October 14, 2019

13/ 21



10 example, repetition

® Read aline and print it out ten times

Suresh PRGH 2019: Lecture 17 October 14, 2019 14/ 21



10 example, repetition

® Read aline and print it out ten times

e Use recursion

main = do {

inp <- getlLine;

printOften 10 inp;
}
printOften :: Int -> String -> I0 (O
printOften 1 str = putStrLn str
printOften n str = do {

putStrLn str;

printOften (n-1) str;

Suresh PRGH 2019: Lecture 17 October 14, 2019 14/ 21



10 example, repetition

e How do we define printOften @ str?

Suresh PRGH 2019: Lecture 17 October 14, 2019 15/ 21



10 example, repetition

e How do we define printOften @ str?

¢ Can we just define it to be ()?

Suresh PRGH 2019: Lecture 17 October 14, 2019 15/ 21



10 example, repetition

e How do we define printOften @ str?
¢ Can we just define it to be ()?
¢ But then the output would be of type (), not 10 O

Suresh PRGH 2019: Lecture 17 October 14, 2019 15/ 21



10 example, repetition

How do we define printOften @ str?

Can we just define it to be (0?

But then the output would be of type (), not 10 OO
Need a way to promote () to an object of type I0 O

Suresh PRGH 2019: Lecture 17

October 14, 2019

15/ 21



10 example, repetition

How do we define printOften @ str?

Can we just define it to be (0?

But then the output would be of type (), not 10 OO
Need a way to promote () to an object of type I0 O
Achieved by the return function

Suresh PRGH 2019: Lecture 17

October 14, 2019

15/ 21



10 example, repetition

How do we define printOften @ str?

Can we just define it to be (0?

But then the output would be of type (), not 10 OO
Need a way to promote () to an object of type I0 O
Achieved by the return function

If v is a value of type a, return v is of type I0 a

Suresh PRGH 2019: Lecture 17

October 14, 2019

15/ 21



10 example, repetition

How do we define printOften @ str?

Can we just define it to be (0?

But then the output would be of type (), not 10 OO
Need a way to promote () to an object of type I0 O
Achieved by the return function

If v is a value of type a, return v is of type I0 a
Not to be confused with return in languages like C, Java &.

Suresh PRGH 2019: Lecture 17 October 14, 2019

15/ 21



10 example, repetition

How do we define printOften @ str?

Can we just define it to be (0?

But then the output would be of type (), not 10 OO
Need a way to promote () to an object of type I0 O
Achieved by the return function

If v is a value of type a, return v is of type I0 a
Not to be confused with return in languages like C, Java &.

® Inimperative languages, return is used to return control to the caller

Suresh PRGH 2019: Lecture 17 October 14, 2019

15/ 21



10 example, repetition

How do we define printOften @ str?

Can we just define it to be (0?

But then the output would be of type (), not 10 OO
Need a way to promote () to an object of type I0 O
Achieved by the return function

If v is a value of type a, return v is of type I0 a
Not to be confused with return in languages like C, Java &.

® In imperative languages, return is used to return control to the caller

® Here it just wraps an action around a value

Suresh PRGH 2019: Lecture 17 October 14, 2019

15/ 21



10 example, repetition

How do we define printOften @ str?

Can we just define it to be (0?

But then the output would be of type (), not 10 OO
Need a way to promote () to an object of type I0 O
Achieved by the return function

If v is a value of type a, return v is of type I0 a
Not to be confused with return in languages like C, Java &.

® Inimperative languages, return is used to return control to the caller
® Here it just wraps an action around a value

® x <- return e; act; isthesameaslet x = e in act;

Suresh PRGH 2019: Lecture 17 October 14, 2019

15/ 21



10 example, repetition

® Read aline and print it out ten times

main = do {

inp <- getlLine;

printOften 10 inp;
I
printOften :: Int -> String -> I0 )
printOften @ str = return ()
printOften n str = do {

putStrLn str;

printOften (n-1) str;

Suresh PRGH 2019: Lecture 17 October 14, 2019 16/ 21



10 example, repetition — getLine

® Here is a possible implementation of getLine

getLine :: IO String
getLine = do {
c <- getChar;
if (c == '\n') then return "";
else do {
cs <- getline;

return (c:cs);

Suresh PRGH 2019: Lecture 17 October 14, 2019 17/ 21



10 example, repetition — getLine

® Here is a possible implementation of getLine

getLine :: IO String
getLine = do {
c <- getChar;
if (c == '\n') then return "";
else do {
cs <- getline;

return (c:cs);

}

e Note the use of return and the recursion

Suresh PRGH 2019: Lecture 17 October 14, 2019 17/ 21



Repetition and IO, another example

® Repeat an IO action n times

ntimes :: Int -> I0 O -> I0 O

ntimes @ a = return ()

ntimes n a = do { a; ntimes (n-1) a;}

Suresh PRGH 2019: Lecture 17 October 14, 2019 18/ 21



Repetition and IO, another example

® Repeat an IO action n times

ntimes :: Int -> I0 O -> I0 O

ntimes @ a = return ()

ntimes n a = do { a; ntimes (n-1) a;}

® Read and print 100 lines

main = ntimes 100 $ do {
inp <- getLine;

putStrLn inp;

Suresh PRGH 2019: Lecture 17 October 14, 2019 18/ 21



Reading other types

¢ The function readLn reads the value of any type a that is an instance of
the typeclass Read

readLn :: Read a => I0 a

Suresh PRGH 2019: Lecture 17 October 14, 2019 19/ 21



Reading other types

¢ The function readLn reads the value of any type a that is an instance of
the typeclass Read

readLn :: Read a => I0 a

e All basic types (Int, Bool, Char, &c.) are instances of Read

Suresh PRGH 2019: Lecture 17 October 14, 2019 19/ 21



Reading other types

¢ The function readLn reads the value of any type a that is an instance of

the typeclass Read

readLn :: Read a => I0 a

e All basic types (Int, Bool, Char, &c.) are instances of Read

® Basic type constructors also preserve readability

Suresh PRGH 2019: Lecture 17 October 14, 2019 19/ 21



Reading other types

The function readLn reads the value of any type a that is an instance of
the typeclass Read

readLn :: Read a => I0 a

All basic types (Int, Bool, Char, &.) are instances of Read
Basic type constructors also preserve readability

[Int], (Int, Bool, Char), &. are also instances of Read

Suresh PRGH 2019: Lecture 17 October 14, 2019 19/ 21



Reading other types
The function readLn reads the value of any type a that is an instance of
the typeclass Read
readLn :: Read a => I0 a
All basic types (Int, Bool, Char, &.) are instances of Read
Basic type constructors also preserve readability

[Int], (Int, Bool, Char), &. are also instances of Read

Syntax to read an integer

inp <- readLn :: IO Int

Suresh PRGH 2019: Lecture 17 October 14, 2019 19/ 21



Reading integers, example

® Read alist of non-negative integers (one on each line and terminated

by a negative integer)

Suresh PRGH 2019: Lecture 17 October 14, 2019 20/ 21



Reading integers, example

® Read alist of non-negative integers (one on each line and terminated
by a negative integer)

® DPrint out the list at the end

main = do {ls <- readIntlList; print 1s;}

readIntlList :: IO [Int]
readIntlList = do {
inp <- readLn :: IO Int;
if (inp < @) then return [];
else do {1l <- readIntlList; return (Cinp:1);}

Suresh PRGH 2019: Lecture 17 October 14, 2019 20/ 21



Rudimentary file IO

e Simplest way to read from files and write into files is by input/ output

redirection

Suresh PRGH 2019: Lecture 17 October 14, 2019 21/21



Rudimentary file IO

® Simplest way to read from files and write into files is by input/ output
redirection

® Usual input is from standard input (which is the keyboard)

Suresh PRGH 2019: Lecture 17 October 14, 2019 21/21



Rudimentary file IO

® Simplest way to read from files and write into files is by input/ output
redirection
¢ Usual input is from standard input (which is the keyboard)

¢ Read input from a file by input redirection

$ ./myprogram < inputfile

Suresh PRGH 2019: Lecture 17 October 14, 2019 21/ 21



Rudimentary file IO

Simplest way to read from files and write into files is by input/ output
redirection

Usual input is from standard input (which is the keyboard)

Read input from a file by input redirection

$ ./myprogram < inputfile

Usual output is to standard output (which is the screen)

Suresh PRGH 2019: Lecture 17 October 14, 2019 21/ 21



Rudimentary file IO

Simplest way to read from files and write into files is by input/ output
redirection

Usual input is from standard input (which is the keyboard)

Read input from a file by input redirection

$ ./myprogram < inputfile

Usual output is to standard output (which is the screen)

Send output to a file by output redirection

$ ./myprogram > outputfile

Suresh PRGH 2019: Lecture 17 October 14, 2019 21/ 21



Rudimentary file IO

Simplest way to read from files and write into files is by input/ output
redirection

Usual input is from standard input (which is the keyboard)

Read input from a file by input redirection

$ ./myprogram < inputfile

Usual output is to standard output (which is the screen)

Send output to a file by output redirection
$ ./myprogram > outputfile

Can combine the two:

$ ./myprogram < inputfile > outputfile

Suresh PRGH 2019: Lecture 17 October 14, 2019 21/ 21



