
Programming in Haskell: Lecture 17

S P Suresh

October 14, 2019

Suresh PRGH 2019: Lecture 17 October 14, 2019 1 / 21



Summary of IO

• Actions of type IO t1, t1 -> IO t2, t1 -> t2 -> IO t3&c.

• As opposed to pure functions whose type does not involve IO
• Actions have side effects – reading input from user and printing
output to screen
• Actions and pure functions can be embedded inside other actions
• Actions cannot be embedded inside pure functions

Suresh PRGH 2019: Lecture 17 October 14, 2019 2 / 21



Summary of IO

• Actions of type IO t1, t1 -> IO t2, t1 -> t2 -> IO t3&c.
• As opposed to pure functions whose type does not involve IO

• Actions have side effects – reading input from user and printing
output to screen
• Actions and pure functions can be embedded inside other actions
• Actions cannot be embedded inside pure functions

Suresh PRGH 2019: Lecture 17 October 14, 2019 2 / 21



Summary of IO

• Actions of type IO t1, t1 -> IO t2, t1 -> t2 -> IO t3&c.
• As opposed to pure functions whose type does not involve IO
• Actions have side effects – reading input from user and printing
output to screen

• Actions and pure functions can be embedded inside other actions
• Actions cannot be embedded inside pure functions

Suresh PRGH 2019: Lecture 17 October 14, 2019 2 / 21



Summary of IO

• Actions of type IO t1, t1 -> IO t2, t1 -> t2 -> IO t3&c.
• As opposed to pure functions whose type does not involve IO
• Actions have side effects – reading input from user and printing
output to screen
• Actions and pure functions can be embedded inside other actions

• Actions cannot be embedded inside pure functions

Suresh PRGH 2019: Lecture 17 October 14, 2019 2 / 21



Summary of IO

• Actions of type IO t1, t1 -> IO t2, t1 -> t2 -> IO t3&c.
• As opposed to pure functions whose type does not involve IO
• Actions have side effects – reading input from user and printing
output to screen
• Actions and pure functions can be embedded inside other actions
• Actions cannot be embedded inside pure functions

Suresh PRGH 2019: Lecture 17 October 14, 2019 2 / 21



Summary of IO

• Actions can be chained inside a do block
bigact = do {

act1;
act2;
...
actn;

}

• The actions are executed in order, one after the other
• There can be recursive calls to bigact inside the do block
• The return type of bigact is the return type of actn

Suresh PRGH 2019: Lecture 17 October 14, 2019 3 / 21



Summary of IO

• Actions can be chained inside a do block
bigact = do {

act1;
act2;
...
actn;

}

• The actions are executed in order, one after the other

• There can be recursive calls to bigact inside the do block
• The return type of bigact is the return type of actn

Suresh PRGH 2019: Lecture 17 October 14, 2019 3 / 21



Summary of IO

• Actions can be chained inside a do block
bigact = do {

act1;
act2;
...
actn;

}

• The actions are executed in order, one after the other
• There can be recursive calls to bigact inside the do block

• The return type of bigact is the return type of actn

Suresh PRGH 2019: Lecture 17 October 14, 2019 3 / 21



Summary of IO

• Actions can be chained inside a do block
bigact = do {

act1;
act2;
...
actn;

}

• The actions are executed in order, one after the other
• There can be recursive calls to bigact inside the do block
• The return type of bigact is the return type of actn

Suresh PRGH 2019: Lecture 17 October 14, 2019 3 / 21



Summary of IO

• main is a distinguished action where computation begins

• Standalone programs should have a main action
• Compiled using ghc and run on the terminal, outside ghci
• Binding the return value of an action to a name is achieved using <-
• We use return to promote a value of type a to an action of type IO a

Suresh PRGH 2019: Lecture 17 October 14, 2019 4 / 21



Summary of IO

• main is a distinguished action where computation begins
• Standalone programs should have a main action

• Compiled using ghc and run on the terminal, outside ghci
• Binding the return value of an action to a name is achieved using <-
• We use return to promote a value of type a to an action of type IO a

Suresh PRGH 2019: Lecture 17 October 14, 2019 4 / 21



Summary of IO

• main is a distinguished action where computation begins
• Standalone programs should have a main action
• Compiled using ghc and run on the terminal, outside ghci

• Binding the return value of an action to a name is achieved using <-
• We use return to promote a value of type a to an action of type IO a

Suresh PRGH 2019: Lecture 17 October 14, 2019 4 / 21



Summary of IO

• main is a distinguished action where computation begins
• Standalone programs should have a main action
• Compiled using ghc and run on the terminal, outside ghci
• Binding the return value of an action to a name is achieved using <-

• We use return to promote a value of type a to an action of type IO a

Suresh PRGH 2019: Lecture 17 October 14, 2019 4 / 21



Summary of IO

• main is a distinguished action where computation begins
• Standalone programs should have a main action
• Compiled using ghc and run on the terminal, outside ghci
• Binding the return value of an action to a name is achieved using <-
• We use return to promote a value of type a to an action of type IO a

Suresh PRGH 2019: Lecture 17 October 14, 2019 4 / 21



More actions

• print :: Show a => a -> IO ()

• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()

• Write the character argument to the screen

• getLine :: IO String

• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 17 October 14, 2019 5 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()

• Write the character argument to the screen

• getLine :: IO String

• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 17 October 14, 2019 5 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()

• Write the character argument to the screen
• getLine :: IO String

• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 17 October 14, 2019 5 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()
• Write the character argument to the screen

• getLine :: IO String

• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 17 October 14, 2019 5 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()
• Write the character argument to the screen

• getLine :: IO String

• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 17 October 14, 2019 5 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()
• Write the character argument to the screen

• getLine :: IO String
• Read a line from the standard input and return it as a string

• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 17 October 14, 2019 5 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()
• Write the character argument to the screen

• getLine :: IO String
• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input

• The return value is a string
• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 17 October 14, 2019 5 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()
• Write the character argument to the screen

• getLine :: IO String
• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 17 October 14, 2019 5 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()
• Write the character argument to the screen

• getLine :: IO String
• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 17 October 14, 2019 5 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()
• Write the character argument to the screen

• getLine :: IO String
• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char
• Read the next character from the standard input

Suresh PRGH 2019: Lecture 17 October 14, 2019 5 / 21



Functions vs. Actions

• A function that takes an integer as argument and returns an integer as
result has type Int -> Int

• An action that has a side effect in addition has type Int -> IO Int

• This is in contrast to a language like C or Java, where the type
signatures are just int -> int, and any function can produce a side
effect

Suresh PRGH 2019: Lecture 17 October 14, 2019 6 / 21



Functions vs. Actions

• A function that takes an integer as argument and returns an integer as
result has type Int -> Int

• An action that has a side effect in addition has type Int -> IO Int

• This is in contrast to a language like C or Java, where the type
signatures are just int -> int, and any function can produce a side
effect

Suresh PRGH 2019: Lecture 17 October 14, 2019 6 / 21



Functions vs. Actions

• A function that takes an integer as argument and returns an integer as
result has type Int -> Int

• An action that has a side effect in addition has type Int -> IO Int

• This is in contrast to a language like C or Java, where the type
signatures are just int -> int, and any function can produce a side
effect

Suresh PRGH 2019: Lecture 17 October 14, 2019 6 / 21



Functions vs. Actions

• The functions we have seen till now (free of side effects) are called pure
functions

• Their type gives all the information we need about them
• Invoking a function on the same arguments always yields the same
result
• The order of evaluation of the subcomputations does not matter –
Haskell takes advantage this in applying its lazy strategy

Suresh PRGH 2019: Lecture 17 October 14, 2019 7 / 21



Functions vs. Actions

• The functions we have seen till now (free of side effects) are called pure
functions
• Their type gives all the information we need about them

• Invoking a function on the same arguments always yields the same
result
• The order of evaluation of the subcomputations does not matter –
Haskell takes advantage this in applying its lazy strategy

Suresh PRGH 2019: Lecture 17 October 14, 2019 7 / 21



Functions vs. Actions

• The functions we have seen till now (free of side effects) are called pure
functions
• Their type gives all the information we need about them
• Invoking a function on the same arguments always yields the same
result

• The order of evaluation of the subcomputations does not matter –
Haskell takes advantage this in applying its lazy strategy

Suresh PRGH 2019: Lecture 17 October 14, 2019 7 / 21



Functions vs. Actions

• The functions we have seen till now (free of side effects) are called pure
functions
• Their type gives all the information we need about them
• Invoking a function on the same arguments always yields the same
result
• The order of evaluation of the subcomputations does not matter –
Haskell takes advantage this in applying its lazy strategy

Suresh PRGH 2019: Lecture 17 October 14, 2019 7 / 21



Functions vs. Actions

• The presence of IO in the type indicates that actions potentially have
side effects

• External state is changed
• Order of computation is important – sequencing

Suresh PRGH 2019: Lecture 17 October 14, 2019 8 / 21



Functions vs. Actions

• The presence of IO in the type indicates that actions potentially have
side effects
• External state is changed

• Order of computation is important – sequencing

Suresh PRGH 2019: Lecture 17 October 14, 2019 8 / 21



Functions vs. Actions

• The presence of IO in the type indicates that actions potentially have
side effects
• External state is changed
• Order of computation is important – sequencing

Suresh PRGH 2019: Lecture 17 October 14, 2019 8 / 21



Functions vs. Actions

• Performing the same action on the same arguments twice might have
different results

greetUser :: String -> IO ()
greetUser greeting = do {

putStrLn "Please enter your name";
name <- getLine;
putStrLn ("Hi " ++ name ++ ". " ++ greeting);

}
main = do {

greetUser "Welcome!";
greetUser "Welcome!";

}
Suresh PRGH 2019: Lecture 17 October 14, 2019 9 / 21



Combining pure functions and IO actions

• Haskell type system allows us to combine pure functions and actions
in a safe manner

• Nomechanism to execute an action inside a pure function
• But pure functions can be used as subroutines inside actions
• IO is performed by an action only if it is executed from within another
action
• main is where all the action begins

Suresh PRGH 2019: Lecture 17 October 14, 2019 10 / 21



Combining pure functions and IO actions

• Haskell type system allows us to combine pure functions and actions
in a safe manner
• Nomechanism to execute an action inside a pure function

• But pure functions can be used as subroutines inside actions
• IO is performed by an action only if it is executed from within another
action
• main is where all the action begins

Suresh PRGH 2019: Lecture 17 October 14, 2019 10 / 21



Combining pure functions and IO actions

• Haskell type system allows us to combine pure functions and actions
in a safe manner
• Nomechanism to execute an action inside a pure function
• But pure functions can be used as subroutines inside actions

• IO is performed by an action only if it is executed from within another
action
• main is where all the action begins

Suresh PRGH 2019: Lecture 17 October 14, 2019 10 / 21



Combining pure functions and IO actions

• Haskell type system allows us to combine pure functions and actions
in a safe manner
• Nomechanism to execute an action inside a pure function
• But pure functions can be used as subroutines inside actions
• IO is performed by an action only if it is executed from within another
action

• main is where all the action begins

Suresh PRGH 2019: Lecture 17 October 14, 2019 10 / 21



Combining pure functions and IO actions

• Haskell type system allows us to combine pure functions and actions
in a safe manner
• Nomechanism to execute an action inside a pure function
• But pure functions can be used as subroutines inside actions
• IO is performed by an action only if it is executed from within another
action
• main is where all the action begins

Suresh PRGH 2019: Lecture 17 October 14, 2019 10 / 21



IO example

• First item
main = do {

putStrLn "Enter your name: ";
name <- getLine;
putStrLn $ "Hi " ++ name ++ "! Welcome to Haskell!";

}

• Wewould like to let the user enter their name on the same line as the
prompt
• Use putStr instead of putStrLn
• Works as expected in ghci

Suresh PRGH 2019: Lecture 17 October 14, 2019 11 / 21



IO example

• First item
main = do {

putStrLn "Enter your name: ";
name <- getLine;
putStrLn $ "Hi " ++ name ++ "! Welcome to Haskell!";

}

• Wewould like to let the user enter their name on the same line as the
prompt

• Use putStr instead of putStrLn
• Works as expected in ghci

Suresh PRGH 2019: Lecture 17 October 14, 2019 11 / 21



IO example

• First item
main = do {

putStrLn "Enter your name: ";
name <- getLine;
putStrLn $ "Hi " ++ name ++ "! Welcome to Haskell!";

}

• Wewould like to let the user enter their name on the same line as the
prompt
• Use putStr instead of putStrLn

• Works as expected in ghci

Suresh PRGH 2019: Lecture 17 October 14, 2019 11 / 21



IO example

• First item
main = do {

putStrLn "Enter your name: ";
name <- getLine;
putStrLn $ "Hi " ++ name ++ "! Welcome to Haskell!";

}

• Wewould like to let the user enter their name on the same line as the
prompt
• Use putStr instead of putStrLn
• Works as expected in ghci

Suresh PRGH 2019: Lecture 17 October 14, 2019 11 / 21



IO example – buffering

• But IO is usually buffered

• Means that output is printed on screen only on user pressing Enter
• On compiling the above using ghc and running on the command line,
we see this:

Suresh
Enter your name: Hi Suresh! Welcome to Haskell!

• Solution – explicitly prohibit buffering

Suresh PRGH 2019: Lecture 17 October 14, 2019 12 / 21



IO example – buffering

• But IO is usually buffered
• Means that output is printed on screen only on user pressing Enter

• On compiling the above using ghc and running on the command line,
we see this:

Suresh
Enter your name: Hi Suresh! Welcome to Haskell!

• Solution – explicitly prohibit buffering

Suresh PRGH 2019: Lecture 17 October 14, 2019 12 / 21



IO example – buffering

• But IO is usually buffered
• Means that output is printed on screen only on user pressing Enter
• On compiling the above using ghc and running on the command line,
we see this:

Suresh
Enter your name: Hi Suresh! Welcome to Haskell!

• Solution – explicitly prohibit buffering

Suresh PRGH 2019: Lecture 17 October 14, 2019 12 / 21



IO example – buffering

• But IO is usually buffered
• Means that output is printed on screen only on user pressing Enter
• On compiling the above using ghc and running on the command line,
we see this:

Suresh
Enter your name: Hi Suresh! Welcome to Haskell!

• Solution – explicitly prohibit buffering

Suresh PRGH 2019: Lecture 17 October 14, 2019 12 / 21



IO example

• First item
import System.IO
main = do {

hSetBuffering stdout NoBuffering;
putStr "Enter your name: ";
name <- getLine;
putStrLn $ "Hi " ++ name ++ "! Welcome to Haskell!";

}

• stdout refers to the standard output, typically the screen
• import System.IO required for hSetBuffering

Suresh PRGH 2019: Lecture 17 October 14, 2019 13 / 21



IO example

• First item
import System.IO
main = do {

hSetBuffering stdout NoBuffering;
putStr "Enter your name: ";
name <- getLine;
putStrLn $ "Hi " ++ name ++ "! Welcome to Haskell!";

}

• stdout refers to the standard output, typically the screen

• import System.IO required for hSetBuffering

Suresh PRGH 2019: Lecture 17 October 14, 2019 13 / 21



IO example

• First item
import System.IO
main = do {

hSetBuffering stdout NoBuffering;
putStr "Enter your name: ";
name <- getLine;
putStrLn $ "Hi " ++ name ++ "! Welcome to Haskell!";

}

• stdout refers to the standard output, typically the screen
• import System.IO required for hSetBuffering

Suresh PRGH 2019: Lecture 17 October 14, 2019 13 / 21



IO example, repetition

• Read a line and print it out ten times

• Use recursion
main = do {

inp <- getLine;
printOften 10 inp;

}
printOften :: Int -> String -> IO ()
printOften 1 str = putStrLn str
printOften n str = do {

putStrLn str;
printOften (n-1) str;

}

Suresh PRGH 2019: Lecture 17 October 14, 2019 14 / 21



IO example, repetition

• Read a line and print it out ten times
• Use recursion

main = do {
inp <- getLine;
printOften 10 inp;

}
printOften :: Int -> String -> IO ()
printOften 1 str = putStrLn str
printOften n str = do {

putStrLn str;
printOften (n-1) str;

}
Suresh PRGH 2019: Lecture 17 October 14, 2019 14 / 21



IO example, repetition

• How do we define printOften 0 str?

• Can we just define it to be ()?
• But then the output would be of type (), not IO ()

• Need a way to promote () to an object of type IO ()

• Achieved by the return function
• If v is a value of type a, return v is of type IO a
• Not to be confused with return in languages like C, Java&c.

• In imperative languages, return is used to return control to the caller
• Here it just wraps an action around a value
• x <- return e; act; is the same as let x = e in act;

Suresh PRGH 2019: Lecture 17 October 14, 2019 15 / 21



IO example, repetition

• How do we define printOften 0 str?
• Can we just define it to be ()?

• But then the output would be of type (), not IO ()

• Need a way to promote () to an object of type IO ()

• Achieved by the return function
• If v is a value of type a, return v is of type IO a
• Not to be confused with return in languages like C, Java&c.

• In imperative languages, return is used to return control to the caller
• Here it just wraps an action around a value
• x <- return e; act; is the same as let x = e in act;

Suresh PRGH 2019: Lecture 17 October 14, 2019 15 / 21



IO example, repetition

• How do we define printOften 0 str?
• Can we just define it to be ()?
• But then the output would be of type (), not IO ()

• Need a way to promote () to an object of type IO ()

• Achieved by the return function
• If v is a value of type a, return v is of type IO a
• Not to be confused with return in languages like C, Java&c.

• In imperative languages, return is used to return control to the caller
• Here it just wraps an action around a value
• x <- return e; act; is the same as let x = e in act;

Suresh PRGH 2019: Lecture 17 October 14, 2019 15 / 21



IO example, repetition

• How do we define printOften 0 str?
• Can we just define it to be ()?
• But then the output would be of type (), not IO ()

• Need a way to promote () to an object of type IO ()

• Achieved by the return function
• If v is a value of type a, return v is of type IO a
• Not to be confused with return in languages like C, Java&c.

• In imperative languages, return is used to return control to the caller
• Here it just wraps an action around a value
• x <- return e; act; is the same as let x = e in act;

Suresh PRGH 2019: Lecture 17 October 14, 2019 15 / 21



IO example, repetition

• How do we define printOften 0 str?
• Can we just define it to be ()?
• But then the output would be of type (), not IO ()

• Need a way to promote () to an object of type IO ()

• Achieved by the return function

• If v is a value of type a, return v is of type IO a
• Not to be confused with return in languages like C, Java&c.

• In imperative languages, return is used to return control to the caller
• Here it just wraps an action around a value
• x <- return e; act; is the same as let x = e in act;

Suresh PRGH 2019: Lecture 17 October 14, 2019 15 / 21



IO example, repetition

• How do we define printOften 0 str?
• Can we just define it to be ()?
• But then the output would be of type (), not IO ()

• Need a way to promote () to an object of type IO ()

• Achieved by the return function
• If v is a value of type a, return v is of type IO a

• Not to be confused with return in languages like C, Java&c.

• In imperative languages, return is used to return control to the caller
• Here it just wraps an action around a value
• x <- return e; act; is the same as let x = e in act;

Suresh PRGH 2019: Lecture 17 October 14, 2019 15 / 21



IO example, repetition

• How do we define printOften 0 str?
• Can we just define it to be ()?
• But then the output would be of type (), not IO ()

• Need a way to promote () to an object of type IO ()

• Achieved by the return function
• If v is a value of type a, return v is of type IO a
• Not to be confused with return in languages like C, Java&c.

• In imperative languages, return is used to return control to the caller
• Here it just wraps an action around a value
• x <- return e; act; is the same as let x = e in act;

Suresh PRGH 2019: Lecture 17 October 14, 2019 15 / 21



IO example, repetition

• How do we define printOften 0 str?
• Can we just define it to be ()?
• But then the output would be of type (), not IO ()

• Need a way to promote () to an object of type IO ()

• Achieved by the return function
• If v is a value of type a, return v is of type IO a
• Not to be confused with return in languages like C, Java&c.
• In imperative languages, return is used to return control to the caller

• Here it just wraps an action around a value
• x <- return e; act; is the same as let x = e in act;

Suresh PRGH 2019: Lecture 17 October 14, 2019 15 / 21



IO example, repetition

• How do we define printOften 0 str?
• Can we just define it to be ()?
• But then the output would be of type (), not IO ()

• Need a way to promote () to an object of type IO ()

• Achieved by the return function
• If v is a value of type a, return v is of type IO a
• Not to be confused with return in languages like C, Java&c.
• In imperative languages, return is used to return control to the caller
• Here it just wraps an action around a value

• x <- return e; act; is the same as let x = e in act;

Suresh PRGH 2019: Lecture 17 October 14, 2019 15 / 21



IO example, repetition

• How do we define printOften 0 str?
• Can we just define it to be ()?
• But then the output would be of type (), not IO ()

• Need a way to promote () to an object of type IO ()

• Achieved by the return function
• If v is a value of type a, return v is of type IO a
• Not to be confused with return in languages like C, Java&c.
• In imperative languages, return is used to return control to the caller
• Here it just wraps an action around a value
• x <- return e; act; is the same as let x = e in act;

Suresh PRGH 2019: Lecture 17 October 14, 2019 15 / 21



IO example, repetition

• Read a line and print it out ten times
main = do {

inp <- getLine;
printOften 10 inp;

}
printOften :: Int -> String -> IO ()
printOften 0 str = return ()
printOften n str = do {

putStrLn str;
printOften (n-1) str;

}

Suresh PRGH 2019: Lecture 17 October 14, 2019 16 / 21



IO example, repetition – getLine

• Here is a possible implementation of getLine
getLine :: IO String
getLine = do {

c <- getChar;
if (c == '\n') then return "";
else do {

cs <- getLine;
return (c:cs);

}
}

• Note the use of return and the recursion

Suresh PRGH 2019: Lecture 17 October 14, 2019 17 / 21



IO example, repetition – getLine

• Here is a possible implementation of getLine
getLine :: IO String
getLine = do {

c <- getChar;
if (c == '\n') then return "";
else do {

cs <- getLine;
return (c:cs);

}
}

• Note the use of return and the recursion
Suresh PRGH 2019: Lecture 17 October 14, 2019 17 / 21



Repetition and IO, another example

• Repeat an IO action n times
ntimes :: Int -> IO () -> IO ()
ntimes 0 a = return ()
ntimes n a = do { a; ntimes (n-1) a;}

• Read and print 100 lines
main = ntimes 100 $ do {

inp <- getLine;
putStrLn inp;

}

Suresh PRGH 2019: Lecture 17 October 14, 2019 18 / 21



Repetition and IO, another example

• Repeat an IO action n times
ntimes :: Int -> IO () -> IO ()
ntimes 0 a = return ()
ntimes n a = do { a; ntimes (n-1) a;}

• Read and print 100 lines
main = ntimes 100 $ do {

inp <- getLine;
putStrLn inp;

}

Suresh PRGH 2019: Lecture 17 October 14, 2019 18 / 21



Reading other types

• The function readLn reads the value of any type a that is an instance of
the typeclass Read

readLn :: Read a => IO a

• All basic types (Int, Bool, Char,&c.) are instances of Read
• Basic type constructors also preserve readability
• [Int], (Int, Bool, Char),&c. are also instances of Read
• Syntax to read an integer

inp <- readLn :: IO Int

Suresh PRGH 2019: Lecture 17 October 14, 2019 19 / 21



Reading other types

• The function readLn reads the value of any type a that is an instance of
the typeclass Read

readLn :: Read a => IO a

• All basic types (Int, Bool, Char,&c.) are instances of Read

• Basic type constructors also preserve readability
• [Int], (Int, Bool, Char),&c. are also instances of Read
• Syntax to read an integer

inp <- readLn :: IO Int

Suresh PRGH 2019: Lecture 17 October 14, 2019 19 / 21



Reading other types

• The function readLn reads the value of any type a that is an instance of
the typeclass Read

readLn :: Read a => IO a

• All basic types (Int, Bool, Char,&c.) are instances of Read
• Basic type constructors also preserve readability

• [Int], (Int, Bool, Char),&c. are also instances of Read
• Syntax to read an integer

inp <- readLn :: IO Int

Suresh PRGH 2019: Lecture 17 October 14, 2019 19 / 21



Reading other types

• The function readLn reads the value of any type a that is an instance of
the typeclass Read

readLn :: Read a => IO a

• All basic types (Int, Bool, Char,&c.) are instances of Read
• Basic type constructors also preserve readability
• [Int], (Int, Bool, Char),&c. are also instances of Read

• Syntax to read an integer
inp <- readLn :: IO Int

Suresh PRGH 2019: Lecture 17 October 14, 2019 19 / 21



Reading other types

• The function readLn reads the value of any type a that is an instance of
the typeclass Read

readLn :: Read a => IO a

• All basic types (Int, Bool, Char,&c.) are instances of Read
• Basic type constructors also preserve readability
• [Int], (Int, Bool, Char),&c. are also instances of Read
• Syntax to read an integer

inp <- readLn :: IO Int

Suresh PRGH 2019: Lecture 17 October 14, 2019 19 / 21



Reading integers, example

• Read a list of non-negative integers (one on each line and terminated
by a negative integer)

• Print out the list at the end
main = do {ls <- readIntList; print ls;}

readIntList :: IO [Int]
readIntList = do {

inp <- readLn :: IO Int;
if (inp < 0) then return [];
else do {l <- readIntList; return (inp:l);}

}

Suresh PRGH 2019: Lecture 17 October 14, 2019 20 / 21



Reading integers, example

• Read a list of non-negative integers (one on each line and terminated
by a negative integer)
• Print out the list at the end

main = do {ls <- readIntList; print ls;}

readIntList :: IO [Int]
readIntList = do {

inp <- readLn :: IO Int;
if (inp < 0) then return [];
else do {l <- readIntList; return (inp:l);}

}

Suresh PRGH 2019: Lecture 17 October 14, 2019 20 / 21



Rudimentary file IO

• Simplest way to read from files and write into files is by input/ output
redirection

• Usual input is from standard input (which is the keyboard)
• Read input from a file by input redirection

$ ./myprogram < inputfile

• Usual output is to standard output (which is the screen)
• Send output to a file by output redirection

$ ./myprogram > outputfile

• Can combine the two:
$ ./myprogram < inputfile > outputfile

Suresh PRGH 2019: Lecture 17 October 14, 2019 21 / 21



Rudimentary file IO

• Simplest way to read from files and write into files is by input/ output
redirection
• Usual input is from standard input (which is the keyboard)

• Read input from a file by input redirection
$ ./myprogram < inputfile

• Usual output is to standard output (which is the screen)
• Send output to a file by output redirection

$ ./myprogram > outputfile

• Can combine the two:
$ ./myprogram < inputfile > outputfile

Suresh PRGH 2019: Lecture 17 October 14, 2019 21 / 21



Rudimentary file IO

• Simplest way to read from files and write into files is by input/ output
redirection
• Usual input is from standard input (which is the keyboard)
• Read input from a file by input redirection

$ ./myprogram < inputfile

• Usual output is to standard output (which is the screen)
• Send output to a file by output redirection

$ ./myprogram > outputfile

• Can combine the two:
$ ./myprogram < inputfile > outputfile

Suresh PRGH 2019: Lecture 17 October 14, 2019 21 / 21



Rudimentary file IO

• Simplest way to read from files and write into files is by input/ output
redirection
• Usual input is from standard input (which is the keyboard)
• Read input from a file by input redirection

$ ./myprogram < inputfile

• Usual output is to standard output (which is the screen)

• Send output to a file by output redirection
$ ./myprogram > outputfile

• Can combine the two:
$ ./myprogram < inputfile > outputfile

Suresh PRGH 2019: Lecture 17 October 14, 2019 21 / 21



Rudimentary file IO

• Simplest way to read from files and write into files is by input/ output
redirection
• Usual input is from standard input (which is the keyboard)
• Read input from a file by input redirection

$ ./myprogram < inputfile

• Usual output is to standard output (which is the screen)
• Send output to a file by output redirection

$ ./myprogram > outputfile

• Can combine the two:
$ ./myprogram < inputfile > outputfile

Suresh PRGH 2019: Lecture 17 October 14, 2019 21 / 21



Rudimentary file IO

• Simplest way to read from files and write into files is by input/ output
redirection
• Usual input is from standard input (which is the keyboard)
• Read input from a file by input redirection

$ ./myprogram < inputfile

• Usual output is to standard output (which is the screen)
• Send output to a file by output redirection

$ ./myprogram > outputfile

• Can combine the two:
$ ./myprogram < inputfile > outputfile

Suresh PRGH 2019: Lecture 17 October 14, 2019 21 / 21


