
Programming in Haskell: Lecture 16

S P Suresh

October 9, 2019

Suresh PRGH 2019: Lecture 16 October 9, 2019 1 / 21



Till now…

• A program is a bunch of functions

• A function of type a -> b produces a result of type b on an argument
of type a
• The programs are run in ghci – by invoking a function on some
arguments
• ghci automatically displays the result on the screen (provided it can be
shown)

Suresh PRGH 2019: Lecture 16 October 9, 2019 2 / 21



Till now…

• A program is a bunch of functions
• A function of type a -> b produces a result of type b on an argument
of type a

• The programs are run in ghci – by invoking a function on some
arguments
• ghci automatically displays the result on the screen (provided it can be
shown)

Suresh PRGH 2019: Lecture 16 October 9, 2019 2 / 21



Till now…

• A program is a bunch of functions
• A function of type a -> b produces a result of type b on an argument
of type a
• The programs are run in ghci – by invoking a function on some
arguments

• ghci automatically displays the result on the screen (provided it can be
shown)

Suresh PRGH 2019: Lecture 16 October 9, 2019 2 / 21



Till now…

• A program is a bunch of functions
• A function of type a -> b produces a result of type b on an argument
of type a
• The programs are run in ghci – by invoking a function on some
arguments
• ghci automatically displays the result on the screen (provided it can be
shown)

Suresh PRGH 2019: Lecture 16 October 9, 2019 2 / 21



User interaction

• Can we execute programs outside ghci?

• How do we let the programs interact with users?

• Accept user inputs midway through a program execution
• Print output and diagnostics on screen or to a file

• Can interaction with the outside world be achieved without violating
the spirit of Haskell?

Suresh PRGH 2019: Lecture 16 October 9, 2019 3 / 21



User interaction

• Can we execute programs outside ghci?
• How do we let the programs interact with users?

• Accept user inputs midway through a program execution
• Print output and diagnostics on screen or to a file

• Can interaction with the outside world be achieved without violating
the spirit of Haskell?

Suresh PRGH 2019: Lecture 16 October 9, 2019 3 / 21



User interaction

• Can we execute programs outside ghci?
• How do we let the programs interact with users?
• Accept user inputs midway through a program execution

• Print output and diagnostics on screen or to a file
• Can interaction with the outside world be achieved without violating
the spirit of Haskell?

Suresh PRGH 2019: Lecture 16 October 9, 2019 3 / 21



User interaction

• Can we execute programs outside ghci?
• How do we let the programs interact with users?
• Accept user inputs midway through a program execution
• Print output and diagnostics on screen or to a file

• Can interaction with the outside world be achieved without violating
the spirit of Haskell?

Suresh PRGH 2019: Lecture 16 October 9, 2019 3 / 21



User interaction

• Can we execute programs outside ghci?
• How do we let the programs interact with users?
• Accept user inputs midway through a program execution
• Print output and diagnostics on screen or to a file

• Can interaction with the outside world be achieved without violating
the spirit of Haskell?

Suresh PRGH 2019: Lecture 16 October 9, 2019 3 / 21



Standalone programs and main

• Execution of a Haskell program starts with the function main

• Every standalone Haskell program should have a main function

Suresh PRGH 2019: Lecture 16 October 9, 2019 4 / 21



Standalone programs and main

• Execution of a Haskell program starts with the function main
• Every standalone Haskell program should have a main function

Suresh PRGH 2019: Lecture 16 October 9, 2019 4 / 21



First program

• First compilable program
main = putStr "Hello, world!\n"

• Save this into a file named hw.hs
• Compile it using the command ghc hw.hs

• This generates the files hw.hi, hw.o and hw (with execute permissions)
• Run the executable using the command ./hw

Suresh PRGH 2019: Lecture 16 October 9, 2019 5 / 21



First program

• First compilable program
main = putStr "Hello, world!\n"

• Save this into a file named hw.hs

• Compile it using the command ghc hw.hs

• This generates the files hw.hi, hw.o and hw (with execute permissions)
• Run the executable using the command ./hw

Suresh PRGH 2019: Lecture 16 October 9, 2019 5 / 21



First program

• First compilable program
main = putStr "Hello, world!\n"

• Save this into a file named hw.hs
• Compile it using the command ghc hw.hs

• This generates the files hw.hi, hw.o and hw (with execute permissions)
• Run the executable using the command ./hw

Suresh PRGH 2019: Lecture 16 October 9, 2019 5 / 21



First program

• First compilable program
main = putStr "Hello, world!\n"

• Save this into a file named hw.hs
• Compile it using the command ghc hw.hs

• This generates the files hw.hi, hw.o and hw (with execute permissions)

• Run the executable using the command ./hw

Suresh PRGH 2019: Lecture 16 October 9, 2019 5 / 21



First program

• First compilable program
main = putStr "Hello, world!\n"

• Save this into a file named hw.hs
• Compile it using the command ghc hw.hs

• This generates the files hw.hi, hw.o and hw (with execute permissions)
• Run the executable using the command ./hw

Suresh PRGH 2019: Lecture 16 October 9, 2019 5 / 21



ghc

• ghc is the Glasgow Haskell Compiler

• ghci is the interactive version of the compiler
• One can view ghci as an interpreter or a playground in which to test
programs
• Software intended for use by others is written as a standalone
program, compiled using ghc and shipped

Suresh PRGH 2019: Lecture 16 October 9, 2019 6 / 21



ghc

• ghc is the Glasgow Haskell Compiler
• ghci is the interactive version of the compiler

• One can view ghci as an interpreter or a playground in which to test
programs
• Software intended for use by others is written as a standalone
program, compiled using ghc and shipped

Suresh PRGH 2019: Lecture 16 October 9, 2019 6 / 21



ghc

• ghc is the Glasgow Haskell Compiler
• ghci is the interactive version of the compiler
• One can view ghci as an interpreter or a playground in which to test
programs

• Software intended for use by others is written as a standalone
program, compiled using ghc and shipped

Suresh PRGH 2019: Lecture 16 October 9, 2019 6 / 21



ghc

• ghc is the Glasgow Haskell Compiler
• ghci is the interactive version of the compiler
• One can view ghci as an interpreter or a playground in which to test
programs
• Software intended for use by others is written as a standalone
program, compiled using ghc and shipped

Suresh PRGH 2019: Lecture 16 October 9, 2019 6 / 21



ghc

• Compiled versions of programs run much faster and use much less
memory, compared to running them in ghci

• Check out commonly used compiler options using ghc --help

• Use ghc --show-options to know all options (a huge list!)
• TheGHCManual is a comprehensive document about both ghc and

ghci

• Available at https:
//downloads.haskell.org/~ghc/latest/docs/html/users_guide/

Suresh PRGH 2019: Lecture 16 October 9, 2019 7 / 21

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/


ghc

• Compiled versions of programs run much faster and use much less
memory, compared to running them in ghci
• Check out commonly used compiler options using ghc --help

• Use ghc --show-options to know all options (a huge list!)
• TheGHCManual is a comprehensive document about both ghc and

ghci

• Available at https:
//downloads.haskell.org/~ghc/latest/docs/html/users_guide/

Suresh PRGH 2019: Lecture 16 October 9, 2019 7 / 21

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/


ghc

• Compiled versions of programs run much faster and use much less
memory, compared to running them in ghci
• Check out commonly used compiler options using ghc --help

• Use ghc --show-options to know all options (a huge list!)

• TheGHCManual is a comprehensive document about both ghc and
ghci

• Available at https:
//downloads.haskell.org/~ghc/latest/docs/html/users_guide/

Suresh PRGH 2019: Lecture 16 October 9, 2019 7 / 21

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/


ghc

• Compiled versions of programs run much faster and use much less
memory, compared to running them in ghci
• Check out commonly used compiler options using ghc --help

• Use ghc --show-options to know all options (a huge list!)
• TheGHCManual is a comprehensive document about both ghc and

ghci

• Available at https:
//downloads.haskell.org/~ghc/latest/docs/html/users_guide/

Suresh PRGH 2019: Lecture 16 October 9, 2019 7 / 21

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/


ghc

• Compiled versions of programs run much faster and use much less
memory, compared to running them in ghci
• Check out commonly used compiler options using ghc --help

• Use ghc --show-options to know all options (a huge list!)
• TheGHCManual is a comprehensive document about both ghc and

ghci
• Available at https:

//downloads.haskell.org/~ghc/latest/docs/html/users_guide/

Suresh PRGH 2019: Lecture 16 October 9, 2019 7 / 21

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/


Hello, world!

• main = putStr "Hello, world!\n"

• putStr str prints the string str on screen
• Clearly putStr is of type String -> b, for some b
• The return value is not used at all, so perhaps it returns nothing of
significance
• The type (), pronounced unit

• Consists of a single value, also denoted by ()
• Can be used to model nothing

• So is String -> () the type of putStr?

Suresh PRGH 2019: Lecture 16 October 9, 2019 8 / 21



Hello, world!

• main = putStr "Hello, world!\n"

• putStr str prints the string str on screen

• Clearly putStr is of type String -> b, for some b
• The return value is not used at all, so perhaps it returns nothing of
significance
• The type (), pronounced unit

• Consists of a single value, also denoted by ()
• Can be used to model nothing

• So is String -> () the type of putStr?

Suresh PRGH 2019: Lecture 16 October 9, 2019 8 / 21



Hello, world!

• main = putStr "Hello, world!\n"

• putStr str prints the string str on screen
• Clearly putStr is of type String -> b, for some b

• The return value is not used at all, so perhaps it returns nothing of
significance
• The type (), pronounced unit

• Consists of a single value, also denoted by ()
• Can be used to model nothing

• So is String -> () the type of putStr?

Suresh PRGH 2019: Lecture 16 October 9, 2019 8 / 21



Hello, world!

• main = putStr "Hello, world!\n"

• putStr str prints the string str on screen
• Clearly putStr is of type String -> b, for some b
• The return value is not used at all, so perhaps it returns nothing of
significance

• The type (), pronounced unit

• Consists of a single value, also denoted by ()
• Can be used to model nothing

• So is String -> () the type of putStr?

Suresh PRGH 2019: Lecture 16 October 9, 2019 8 / 21



Hello, world!

• main = putStr "Hello, world!\n"

• putStr str prints the string str on screen
• Clearly putStr is of type String -> b, for some b
• The return value is not used at all, so perhaps it returns nothing of
significance
• The type (), pronounced unit

• Consists of a single value, also denoted by ()
• Can be used to model nothing

• So is String -> () the type of putStr?

Suresh PRGH 2019: Lecture 16 October 9, 2019 8 / 21



Hello, world!

• main = putStr "Hello, world!\n"

• putStr str prints the string str on screen
• Clearly putStr is of type String -> b, for some b
• The return value is not used at all, so perhaps it returns nothing of
significance
• The type (), pronounced unit
• Consists of a single value, also denoted by ()

• Can be used to model nothing
• So is String -> () the type of putStr?

Suresh PRGH 2019: Lecture 16 October 9, 2019 8 / 21



Hello, world!

• main = putStr "Hello, world!\n"

• putStr str prints the string str on screen
• Clearly putStr is of type String -> b, for some b
• The return value is not used at all, so perhaps it returns nothing of
significance
• The type (), pronounced unit
• Consists of a single value, also denoted by ()
• Can be used to model nothing

• So is String -> () the type of putStr?

Suresh PRGH 2019: Lecture 16 October 9, 2019 8 / 21



Hello, world!

• main = putStr "Hello, world!\n"

• putStr str prints the string str on screen
• Clearly putStr is of type String -> b, for some b
• The return value is not used at all, so perhaps it returns nothing of
significance
• The type (), pronounced unit
• Consists of a single value, also denoted by ()
• Can be used to model nothing

• So is String -> () the type of putStr?

Suresh PRGH 2019: Lecture 16 October 9, 2019 8 / 21



Hello, world!

• Is putStr of type String -> ()?

• No, because it does not return the value ()!
• Further, how do we account for the side effect of printing something
on screen?

• ghci> :t putStr
putStr :: String -> IO ()

ghci> :t putStr "Hello, world!"
putStr "Hello, world!" :: IO ()

Suresh PRGH 2019: Lecture 16 October 9, 2019 9 / 21



Hello, world!

• Is putStr of type String -> ()?
• No, because it does not return the value ()!

• Further, how do we account for the side effect of printing something
on screen?

• ghci> :t putStr
putStr :: String -> IO ()

ghci> :t putStr "Hello, world!"
putStr "Hello, world!" :: IO ()

Suresh PRGH 2019: Lecture 16 October 9, 2019 9 / 21



Hello, world!

• Is putStr of type String -> ()?
• No, because it does not return the value ()!
• Further, how do we account for the side effect of printing something
on screen?

• ghci> :t putStr
putStr :: String -> IO ()

ghci> :t putStr "Hello, world!"
putStr "Hello, world!" :: IO ()

Suresh PRGH 2019: Lecture 16 October 9, 2019 9 / 21



Hello, world!

• Is putStr of type String -> ()?
• No, because it does not return the value ()!
• Further, how do we account for the side effect of printing something
on screen?

• ghci> :t putStr
putStr :: String -> IO ()

ghci> :t putStr "Hello, world!"
putStr "Hello, world!" :: IO ()

Suresh PRGH 2019: Lecture 16 October 9, 2019 9 / 21



IO a

• IO is a type constructor, just like Maybe or []

• If a is a type, then Maybe a and [a] are types
• Likewise, IO a is a type whenever a is a type

• Values of type Maybe a

• Either Nothing or Just x for x :: a
• Nothing and Just are value constructors

• Unlike other type constructors like Maybe, the internal structure and
constructors of IO are not visible to the user

Suresh PRGH 2019: Lecture 16 October 9, 2019 10 / 21



IO a

• IO is a type constructor, just like Maybe or []
• If a is a type, then Maybe a and [a] are types

• Likewise, IO a is a type whenever a is a type
• Values of type Maybe a

• Either Nothing or Just x for x :: a
• Nothing and Just are value constructors

• Unlike other type constructors like Maybe, the internal structure and
constructors of IO are not visible to the user

Suresh PRGH 2019: Lecture 16 October 9, 2019 10 / 21



IO a

• IO is a type constructor, just like Maybe or []
• If a is a type, then Maybe a and [a] are types
• Likewise, IO a is a type whenever a is a type

• Values of type Maybe a

• Either Nothing or Just x for x :: a
• Nothing and Just are value constructors

• Unlike other type constructors like Maybe, the internal structure and
constructors of IO are not visible to the user

Suresh PRGH 2019: Lecture 16 October 9, 2019 10 / 21



IO a

• IO is a type constructor, just like Maybe or []
• If a is a type, then Maybe a and [a] are types
• Likewise, IO a is a type whenever a is a type

• Values of type Maybe a

• Either Nothing or Just x for x :: a
• Nothing and Just are value constructors

• Unlike other type constructors like Maybe, the internal structure and
constructors of IO are not visible to the user

Suresh PRGH 2019: Lecture 16 October 9, 2019 10 / 21



IO a

• IO is a type constructor, just like Maybe or []
• If a is a type, then Maybe a and [a] are types
• Likewise, IO a is a type whenever a is a type

• Values of type Maybe a
• Either Nothing or Just x for x :: a

• Nothing and Just are value constructors

• Unlike other type constructors like Maybe, the internal structure and
constructors of IO are not visible to the user

Suresh PRGH 2019: Lecture 16 October 9, 2019 10 / 21



IO a

• IO is a type constructor, just like Maybe or []
• If a is a type, then Maybe a and [a] are types
• Likewise, IO a is a type whenever a is a type

• Values of type Maybe a
• Either Nothing or Just x for x :: a
• Nothing and Just are value constructors

• Unlike other type constructors like Maybe, the internal structure and
constructors of IO are not visible to the user

Suresh PRGH 2019: Lecture 16 October 9, 2019 10 / 21



IO a

• IO is a type constructor, just like Maybe or []
• If a is a type, then Maybe a and [a] are types
• Likewise, IO a is a type whenever a is a type

• Values of type Maybe a
• Either Nothing or Just x for x :: a
• Nothing and Just are value constructors

• Unlike other type constructors like Maybe, the internal structure and
constructors of IO are not visible to the user

Suresh PRGH 2019: Lecture 16 October 9, 2019 10 / 21



IO a

• IO a can be understood to be the type

RealWorld -> (RealWorld,a)

• So an object of type IO a is a function:

• Takes the current state of the real world as input
• Produces a new state of the real world and a value of type a

• In other words, objects of IO a consist of two things:

• A value of type a that can be extracted
• A side effect (the change in state of the world)

Suresh PRGH 2019: Lecture 16 October 9, 2019 11 / 21



IO a

• IO a can be understood to be the type

RealWorld -> (RealWorld,a)

• So an object of type IO a is a function:

• Takes the current state of the real world as input
• Produces a new state of the real world and a value of type a

• In other words, objects of IO a consist of two things:

• A value of type a that can be extracted
• A side effect (the change in state of the world)

Suresh PRGH 2019: Lecture 16 October 9, 2019 11 / 21



IO a

• IO a can be understood to be the type

RealWorld -> (RealWorld,a)

• So an object of type IO a is a function:
• Takes the current state of the real world as input

• Produces a new state of the real world and a value of type a
• In other words, objects of IO a consist of two things:

• A value of type a that can be extracted
• A side effect (the change in state of the world)

Suresh PRGH 2019: Lecture 16 October 9, 2019 11 / 21



IO a

• IO a can be understood to be the type

RealWorld -> (RealWorld,a)

• So an object of type IO a is a function:
• Takes the current state of the real world as input
• Produces a new state of the real world and a value of type a

• In other words, objects of IO a consist of two things:

• A value of type a that can be extracted
• A side effect (the change in state of the world)

Suresh PRGH 2019: Lecture 16 October 9, 2019 11 / 21



IO a

• IO a can be understood to be the type

RealWorld -> (RealWorld,a)

• So an object of type IO a is a function:
• Takes the current state of the real world as input
• Produces a new state of the real world and a value of type a

• In other words, objects of IO a consist of two things:

• A value of type a that can be extracted
• A side effect (the change in state of the world)

Suresh PRGH 2019: Lecture 16 October 9, 2019 11 / 21



IO a

• IO a can be understood to be the type

RealWorld -> (RealWorld,a)

• So an object of type IO a is a function:
• Takes the current state of the real world as input
• Produces a new state of the real world and a value of type a

• In other words, objects of IO a consist of two things:
• A value of type a that can be extracted

• A side effect (the change in state of the world)

Suresh PRGH 2019: Lecture 16 October 9, 2019 11 / 21



IO a

• IO a can be understood to be the type

RealWorld -> (RealWorld,a)

• So an object of type IO a is a function:
• Takes the current state of the real world as input
• Produces a new state of the real world and a value of type a

• In other words, objects of IO a consist of two things:
• A value of type a that can be extracted
• A side effect (the change in state of the world)

Suresh PRGH 2019: Lecture 16 October 9, 2019 11 / 21



IO a and actions

• Technically, an object of type IO a is not a function

• It is an action of return type IO a

• An IO action produces a side effect when its value is extracted
• Any function that produces a side effect will have return type IO a

Suresh PRGH 2019: Lecture 16 October 9, 2019 12 / 21



IO a and actions

• Technically, an object of type IO a is not a function
• It is an action of return type IO a

• An IO action produces a side effect when its value is extracted
• Any function that produces a side effect will have return type IO a

Suresh PRGH 2019: Lecture 16 October 9, 2019 12 / 21



IO a and actions

• Technically, an object of type IO a is not a function
• It is an action of return type IO a

• An IO action produces a side effect when its value is extracted

• Any function that produces a side effect will have return type IO a

Suresh PRGH 2019: Lecture 16 October 9, 2019 12 / 21



IO a and actions

• Technically, an object of type IO a is not a function
• It is an action of return type IO a

• An IO action produces a side effect when its value is extracted
• Any function that produces a side effect will have return type IO a

Suresh PRGH 2019: Lecture 16 October 9, 2019 12 / 21



putStr and main

• putStr :: String -> IO ()

• putStr takes a string as argument and returns ()
• Produces a side effect when the return value is extracted
• The side effect is that of printing the string on screen
• main :: IO ()

• main is always of type IO a

Suresh PRGH 2019: Lecture 16 October 9, 2019 13 / 21



putStr and main

• putStr :: String -> IO ()

• putStr takes a string as argument and returns ()

• Produces a side effect when the return value is extracted
• The side effect is that of printing the string on screen
• main :: IO ()

• main is always of type IO a

Suresh PRGH 2019: Lecture 16 October 9, 2019 13 / 21



putStr and main

• putStr :: String -> IO ()

• putStr takes a string as argument and returns ()
• Produces a side effect when the return value is extracted

• The side effect is that of printing the string on screen
• main :: IO ()

• main is always of type IO a

Suresh PRGH 2019: Lecture 16 October 9, 2019 13 / 21



putStr and main

• putStr :: String -> IO ()

• putStr takes a string as argument and returns ()
• Produces a side effect when the return value is extracted
• The side effect is that of printing the string on screen

• main :: IO ()

• main is always of type IO a

Suresh PRGH 2019: Lecture 16 October 9, 2019 13 / 21



putStr and main

• putStr :: String -> IO ()

• putStr takes a string as argument and returns ()
• Produces a side effect when the return value is extracted
• The side effect is that of printing the string on screen
• main :: IO ()

• main is always of type IO a

Suresh PRGH 2019: Lecture 16 October 9, 2019 13 / 21



putStr and main

• putStr :: String -> IO ()

• putStr takes a string as argument and returns ()
• Produces a side effect when the return value is extracted
• The side effect is that of printing the string on screen
• main :: IO ()

• main is always of type IO a

Suresh PRGH 2019: Lecture 16 October 9, 2019 13 / 21



Side effects

• Kind of side effects

• Printing on screen
• Reading a user input from the terminal
• Opening or closing a file
• Changing a directory
• Writing into a file
• Launching a missile

Suresh PRGH 2019: Lecture 16 October 9, 2019 14 / 21



Side effects

• Kind of side effects
• Printing on screen

• Reading a user input from the terminal
• Opening or closing a file
• Changing a directory
• Writing into a file
• Launching a missile

Suresh PRGH 2019: Lecture 16 October 9, 2019 14 / 21



Side effects

• Kind of side effects
• Printing on screen
• Reading a user input from the terminal

• Opening or closing a file
• Changing a directory
• Writing into a file
• Launching a missile

Suresh PRGH 2019: Lecture 16 October 9, 2019 14 / 21



Side effects

• Kind of side effects
• Printing on screen
• Reading a user input from the terminal
• Opening or closing a file

• Changing a directory
• Writing into a file
• Launching a missile

Suresh PRGH 2019: Lecture 16 October 9, 2019 14 / 21



Side effects

• Kind of side effects
• Printing on screen
• Reading a user input from the terminal
• Opening or closing a file
• Changing a directory

• Writing into a file
• Launching a missile

Suresh PRGH 2019: Lecture 16 October 9, 2019 14 / 21



Side effects

• Kind of side effects
• Printing on screen
• Reading a user input from the terminal
• Opening or closing a file
• Changing a directory
• Writing into a file

• Launching a missile

Suresh PRGH 2019: Lecture 16 October 9, 2019 14 / 21



Side effects

• Kind of side effects
• Printing on screen
• Reading a user input from the terminal
• Opening or closing a file
• Changing a directory
• Writing into a file
• Launching a missile

Suresh PRGH 2019: Lecture 16 October 9, 2019 14 / 21



putStr and putStrLn

• putStr "Hello world!" prints the string on the screen

• putStrLn "Hello world!" prints the string and a newline ('\n') on
the screen
• putStrLn str is equivalent to putStr (str ++ "\n")

Suresh PRGH 2019: Lecture 16 October 9, 2019 15 / 21



putStr and putStrLn

• putStr "Hello world!" prints the string on the screen
• putStrLn "Hello world!" prints the string and a newline ('\n') on
the screen

• putStrLn str is equivalent to putStr (str ++ "\n")

Suresh PRGH 2019: Lecture 16 October 9, 2019 15 / 21



putStr and putStrLn

• putStr "Hello world!" prints the string on the screen
• putStrLn "Hello world!" prints the string and a newline ('\n') on
the screen
• putStrLn str is equivalent to putStr (str ++ "\n")

Suresh PRGH 2019: Lecture 16 October 9, 2019 15 / 21



Chaining actions

• We use the command do to chain multiple actions
main = do

putStrLn "Hello!"
putStrLn "What's your name?"

• domakes the actions take effect in sequential order, one after the other
• Indentation is important
• Alternative, friendlier syntax

main = do {
putStrLn "Hello!";
putStrLn "What's your name?";

}

Suresh PRGH 2019: Lecture 16 October 9, 2019 16 / 21



Chaining actions

• We use the command do to chain multiple actions
main = do

putStrLn "Hello!"
putStrLn "What's your name?"

• domakes the actions take effect in sequential order, one after the other

• Indentation is important
• Alternative, friendlier syntax

main = do {
putStrLn "Hello!";
putStrLn "What's your name?";

}

Suresh PRGH 2019: Lecture 16 October 9, 2019 16 / 21



Chaining actions

• We use the command do to chain multiple actions
main = do

putStrLn "Hello!"
putStrLn "What's your name?"

• domakes the actions take effect in sequential order, one after the other
• Indentation is important

• Alternative, friendlier syntax
main = do {

putStrLn "Hello!";
putStrLn "What's your name?";

}

Suresh PRGH 2019: Lecture 16 October 9, 2019 16 / 21



Chaining actions

• We use the command do to chain multiple actions
main = do

putStrLn "Hello!"
putStrLn "What's your name?"

• domakes the actions take effect in sequential order, one after the other
• Indentation is important
• Alternative, friendlier syntax

main = do {
putStrLn "Hello!";
putStrLn "What's your name?";

}

Suresh PRGH 2019: Lecture 16 October 9, 2019 16 / 21



Chaining actions

• Actions can occur inside let, where, if-then-else&c.
main = let fibs = 0:1:zipWith (+) fibs (tail fibs)

in do {
putStrLn $ show fibs!!5;
putStrLn $ show fibs!!10;

}

main = do {act1; act2;}
where

act1 = putStr "Hello, "
act2 = putStrLn "world!"

Suresh PRGH 2019: Lecture 16 October 9, 2019 17 / 21



More actions

• print :: Show a => a -> IO ()

• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()

• Write the character argument to the screen

• getLine :: IO String

• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 16 October 9, 2019 18 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()

• Write the character argument to the screen

• getLine :: IO String

• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 16 October 9, 2019 18 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()

• Write the character argument to the screen
• getLine :: IO String

• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 16 October 9, 2019 18 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()
• Write the character argument to the screen

• getLine :: IO String

• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 16 October 9, 2019 18 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()
• Write the character argument to the screen

• getLine :: IO String

• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 16 October 9, 2019 18 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()
• Write the character argument to the screen

• getLine :: IO String
• Read a line from the standard input and return it as a string

• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 16 October 9, 2019 18 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()
• Write the character argument to the screen

• getLine :: IO String
• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input

• The return value is a string
• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 16 October 9, 2019 18 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()
• Write the character argument to the screen

• getLine :: IO String
• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 16 October 9, 2019 18 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()
• Write the character argument to the screen

• getLine :: IO String
• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char

• Read the next character from the standard input

Suresh PRGH 2019: Lecture 16 October 9, 2019 18 / 21



More actions

• print :: Show a => a -> IO ()
• Output a value of any printable type to the standard output (screen),
and add a newline

• putChar :: Char -> IO ()
• Write the character argument to the screen

• getLine :: IO String
• Read a line from the standard input and return it as a string
• The side effect of getLine is the consumption of a line of input
• The return value is a string

• getChar :: IO Char
• Read the next character from the standard input

Suresh PRGH 2019: Lecture 16 October 9, 2019 18 / 21



Binding

• getLine is of type IO String

• Is there a way to use the return value?
• We need to bind the return value to an object of type String and use it
elsewhere
• The syntax for binding is <-

main = do {
putStrLn "Please type your name!";
n <- getLine;
putStrLn ("Hello, " ++ n);

}

Suresh PRGH 2019: Lecture 16 October 9, 2019 19 / 21



Binding

• getLine is of type IO String

• Is there a way to use the return value?

• We need to bind the return value to an object of type String and use it
elsewhere
• The syntax for binding is <-

main = do {
putStrLn "Please type your name!";
n <- getLine;
putStrLn ("Hello, " ++ n);

}

Suresh PRGH 2019: Lecture 16 October 9, 2019 19 / 21



Binding

• getLine is of type IO String

• Is there a way to use the return value?
• We need to bind the return value to an object of type String and use it
elsewhere

• The syntax for binding is <-
main = do {

putStrLn "Please type your name!";
n <- getLine;
putStrLn ("Hello, " ++ n);

}

Suresh PRGH 2019: Lecture 16 October 9, 2019 19 / 21



Binding

• getLine is of type IO String

• Is there a way to use the return value?
• We need to bind the return value to an object of type String and use it
elsewhere
• The syntax for binding is <-

main = do {
putStrLn "Please type your name!";
n <- getLine;
putStrLn ("Hello, " ++ n);

}

Suresh PRGH 2019: Lecture 16 October 9, 2019 19 / 21



Binding

• The syntax for binding is <-
main = do {

putStrLn "Please type your name!";
n <- getLine;
putStrLn ("Hello, " ++ n);

}

• Wrong usage – putStrLn ("Hello" ++ getLine)

• getLine is not a string
• It is an action that has a return value of type String
• The return value has to be extracted before use

Suresh PRGH 2019: Lecture 16 October 9, 2019 20 / 21



Binding

• The syntax for binding is <-
main = do {

putStrLn "Please type your name!";
n <- getLine;
putStrLn ("Hello, " ++ n);

}

• Wrong usage – putStrLn ("Hello" ++ getLine)

• getLine is not a string
• It is an action that has a return value of type String
• The return value has to be extracted before use

Suresh PRGH 2019: Lecture 16 October 9, 2019 20 / 21



Binding

• The syntax for binding is <-
main = do {

putStrLn "Please type your name!";
n <- getLine;
putStrLn ("Hello, " ++ n);

}

• Wrong usage – putStrLn ("Hello" ++ getLine)

• getLine is not a string

• It is an action that has a return value of type String
• The return value has to be extracted before use

Suresh PRGH 2019: Lecture 16 October 9, 2019 20 / 21



Binding

• The syntax for binding is <-
main = do {

putStrLn "Please type your name!";
n <- getLine;
putStrLn ("Hello, " ++ n);

}

• Wrong usage – putStrLn ("Hello" ++ getLine)

• getLine is not a string
• It is an action that has a return value of type String

• The return value has to be extracted before use

Suresh PRGH 2019: Lecture 16 October 9, 2019 20 / 21



Binding

• The syntax for binding is <-
main = do {

putStrLn "Please type your name!";
n <- getLine;
putStrLn ("Hello, " ++ n);

}

• Wrong usage – putStrLn ("Hello" ++ getLine)

• getLine is not a string
• It is an action that has a return value of type String
• The return value has to be extracted before use

Suresh PRGH 2019: Lecture 16 October 9, 2019 20 / 21



Summary

• Haskell has a clean separation of pure functions and actions with side
effects

• Actions are used to interact with the real world and perform
input/output
• main is an action where computation begins
• ghc can be used to compile and run programs

Suresh PRGH 2019: Lecture 16 October 9, 2019 21 / 21



Summary

• Haskell has a clean separation of pure functions and actions with side
effects
• Actions are used to interact with the real world and perform
input/output

• main is an action where computation begins
• ghc can be used to compile and run programs

Suresh PRGH 2019: Lecture 16 October 9, 2019 21 / 21



Summary

• Haskell has a clean separation of pure functions and actions with side
effects
• Actions are used to interact with the real world and perform
input/output
• main is an action where computation begins

• ghc can be used to compile and run programs

Suresh PRGH 2019: Lecture 16 October 9, 2019 21 / 21



Summary

• Haskell has a clean separation of pure functions and actions with side
effects
• Actions are used to interact with the real world and perform
input/output
• main is an action where computation begins
• ghc can be used to compile and run programs

Suresh PRGH 2019: Lecture 16 October 9, 2019 21 / 21


