Programming in Haskell: Lecture 15

S P Suresh

September 30, 2019

Suresh PRGH 2019: Lecture 15 September 30, 2019 1/22



Fibonacct numbers

® Naive recursion

fib 0 = 0
fib 1 =1
fib n = fib (n-1) + fib (n-2)

Suresh PRGH 2019: Lecture 15 September 30, 2019 2/22



Fibonacct numbers

® Naive recursion

fib 0 = 0
fib 1 =1
fib n = fib (n-1) + fib (n-2)

® fib ncalls fib (n-2) twice

Suresh PRGH 2019: Lecture 15 September 30, 2019 2/22



Fibonacct numbers

® Naive recursion

fib 0 = 0
fib 1 =1
fib n = fib (n-1) + fib (n-2)

® fib ncalls fib (n-2) twice

® Once directly and once from fib (n-1)

Suresh PRGH 2019: Lecture 15 September 30, 2019 2/22



Fibonacct numbers

® Naive recursion

fib 0 = 0
fib 1 =1
fib n = fib (n-1) + fib (n-2)

® fib ncalls fib (n-2) twice

® Once directly and once from fib (n-1)

e Similarly fib (n-2) calls fib (n-4) twice

Suresh PRGH 2019: Lecture 15 September 30, 2019 2/22



Fibonacct numbers

Naive recursion
fib 0 = 0
fib1=1
fib n = fib (n-1) + fib (n-2)

fib ncalls fib (n-2) twice

® Once directly and once from fib (n-1)
Similarly fib (n-2) calls fib (n-4) twice
So at least four calls to fib (n-4), eight calls to fib (n-6), &c.

Suresh PRGH 2019: Lecture 15 September 30, 2019

2/22



Fibonacct numbers

Naive recursion
fib 0 = 0
fib1=1
fib n = fib (n-1) + fib (n-2)

fib ncalls fib (n-2) twice
® Once directly and once from fib (n-1)

Similarly fib (n-2) calls fib (n-4) twice
So at least four calls to fib (n-4), eight calls to fib (n-6), &c.
At least 2% calls to fib (n-2*Kk)

Suresh PRGH 2019: Lecture 15 September 30, 2019

2/22



Fibonacct numbers

Naive recursion
fib 0 = 0
fib1=1
fib n = fib (n-1) + fib (n-2)

fib ncalls fib (n-2) twice
® Once directly and once from fib (n-1)

Similarly fib (n-2) calls fib (n-4) twice
So at least four calls to fib (n-4), eight calls to fib (n-6), &c.
At least 2% calls to fib (n-2*Kk)

It appears that fib n takes time exponential in n

Suresh PRGH 2019: Lecture 15 September 30, 2019

2/22



Fibonacci numbers: analysis

® [(n): value of fib n

Suresh PRGH 2019: Lecture 15 September 30, 2019 3/22



Fibonacci numbers: analysis

® F(n): valueof fib n

® G(n): number of recursive calls to fib 1 while computing fib n

Suresh PRGH 2019: Lecture 15 September 30, 2019 3/22



Fibonacci numbers: analysis

® F(n): valueof fib n
® G(n): number of recursive calls to fib 1 while computing fib n
® G(0)=0-nocallto fib 1

Suresh PRGH 2019: Lecture 15 September 30, 2019 3/22



Fibonacci numbers: analysis

® F(n): valueof fib n

® G(n): number of recursive calls to fib 1 while computing fib n
® G(0)=0-nocallto fib 1
® G(1)=1-onecalltofib 1

Suresh PRGH 2019: Lecture 15 September 30, 2019 3/22



Fibonacci numbers: analysis
® F(n): valueof fib n

® G(n): number of recursive calls to fib 1 while computing fib n
® G(0)=0-nocallto fib 1

® G(1)=1-onecalltofib 1

® G(2)=1-onecalltofib 1

Suresh PRGH 2019: Lecture 15

September 30, 2019 3/22



Fibonacci numbers: analysis

® [(n): value of fib n
® G(n): number of recursive calls to fib 1 while computing fib n

® G(0)=0-nocallto fib 1
® G(1)=1-onecalltofib 1
® G(2)=1-onecalltofib 1

® Claim: Forall » >0, G(n) = F(n)

Suresh PRGH 2019: Lecture 15 September 30, 2019

3/22



Fibonacci numbers: analysis

F(n): value of fib n
G(7): number of recursive calls to fib 1 while computing fib n

® G(0)=0-nocallto fib 1
® G(1)=1-onecalltofib 1
® G(2)=1-onecalltofib 1

Claim: For all » >0, G(n) = F(n)

True for » =0, 1.

Suresh PRGH 2019: Lecture 15 September 30, 2019

3/22



Fibonacci numbers: analysis

F(n): value of fib n
G(7): number of recursive calls to fib 1 while computing fib n

® G(0)=0-nocallto fib 1
® G(1)=1-onecalltofib 1
® G(2)=1-onecalltofib 1

Claim: For all » >0, G(n) = F(n)
True for » =0, 1.

For n > 2, there is one call to fib (n-1) and one to fib (n-2).

Suresh PRGH 2019: Lecture 15 September 30, 2019

3/22



Fibonacci numbers: analysis

F(n): value of fib n
G(7): number of recursive calls to fib 1 while computing fib n

® G(0)=0-nocallto fib 1
® G(1)=1-onecalltofib 1
® G(2)=1-onecalltofib 1

Claim: For all » >0, G(n) = F(n)

True for » =0, 1.

For n > 2, there is one call to fib (n-1) and one to fib (n-2).
SoG(n)=G(n—1)+G(n—2)=F(n—1)+F(n—2)=F(n).

Suresh PRGH 2019: Lecture 15 September 30, 2019

3/22



Fibonacci numbers: analysis

F(n): value of fib n
G(7): number of recursive calls to fib 1 while computing fib n

® G(0)=0-nocallto fib 1
® G(1)=1-onecalltofib 1
® G(2)=1-onecalltofib 1

Claim: For all » >0, G(n) = F(n)

True for » =0, 1.

For n > 2, there is one call to fib (n-1) and one to fib (n-2).
SoG(n)=G(n—1)+G(n—2)=F(n—1)+F(n—2)=F(n).
Effectively computing /() by adding up so many 1s

Suresh PRGH 2019: Lecture 15 September 30, 2019

3/22



Fibonacci numbers: analysis

e Recall: F(n)= %

Suresh PRGH 2019: Lecture 15 September 30, 2019 4/22



Fibonacci numbers: analysis

® Recall: F(n)= 9

V5
1+4/5
o= +2‘/_z1.6180339887

Suresh PRGH 2019: Lecture 15 September 30, 2019 4/22



Fibonacci numbers: analysis

n__n
® Recall: F(n)= v ¢
V5
1 5
Q= +2‘/_ ~ 1.6180339887
1—+/5
° )= 2‘/_ ~ —0.6180339887

Suresh PRGH 2019: Lecture 15 September 30, 2019 4/22



Recall: F(n)=
1445
Y=
145
2

Fibonacci numbers: analysis
Q" ="
V5

~ 1.6180339887

~ —0.6180339887

Thus G(7)= F(n) is exponential in 7

Suresh

PRGH 2019: Lecture 15 September 30, 2019

4/22



Fibonacct numbers

e What is the problem?

Suresh PRGH 2019: Lecture 15 September 30, 2019 5/22



Fibonacct numbers

e What is the problem?

® Multiple recursive calls with the same argument

Suresh PRGH 2019: Lecture 15 September 30, 2019 5/22



Fibonacct numbers

e What is the problem?
® Multiple recursive calls with the same argument

e Wasteful recomputation!

Suresh PRGH 2019: Lecture 15 September 30, 2019 5/22



Fibonacct numbers

What is the problem?
Multiple recursive calls with the same argument
Wasteful recomputation!

Suffices to keep track of two values:

fib = go (0,1)

where
go (a,b) 0 =a
go (a,b) n = go (b, a+b) (n-1)

Suresh PRGH 2019: Lecture 15 September 30, 2019

5/22



Fibonacct numbers

e A fancier solution:

fib = (I'1) fibs
fibs = @:1:zipWith (+) fibs (tail fibs)

Suresh PRGH 2019: Lecture 15 September 30, 2019 6/22



Fibonacct numbers

e A fancier solution:

fib = (I'1) fibs
fibs = @:1:zipWith (+) fibs (tail fibs)

® Letz = zipWith (+) fibs (tail fibs)

Suresh PRGH 2019: Lecture 15 September 30, 2019 6/22



Fibonacct numbers

e A fancier solution:

fib = (I'1) fibs
fibs = @:1:zipWith (+) fibs (tail fibs)

® Letz = zipWith (+) fibs (tail fibs)
e Then fibs = 0:1:z

Suresh PRGH 2019: Lecture 15 September 30, 2019 6/22



Fibonacct numbers

A fancier solution:

fib = (!!) fibs

fibs = @:1:zipWith (+) fibs (tail fibs)
Letz = zipWith (+) fibs (tail fibs)
Then fibs = 0:1:z

Substituting, we can define z without referring to fibs

Suresh PRGH 2019: Lecture 15 September 30, 2019

6/22



Fibonacct numbers

A fancier solution:
fib = (!I'!) fibs
fibs = @:1:zipWith (+) fibs (tail fibs)
Letz = zipWith (+) fibs (tail fibs)
Then fibs = 0:1:z
Substituting, we can define z without referring to fibs

z = zipWith (+) (@:1:2) (1:2)

Suresh PRGH 2019: Lecture 15 September 30, 2019

6/22



Fibonacct numbers

A fancier solution:

fib = (!I'!) fibs

fibs = @:1:zipWith (+) fibs (tail fibs)
Letz = zipWith (+) fibs (tail fibs)
Then fibs = 0:1:z
Substituting, we can define z without referring to fibs
z = zipWith (+) (@:1:2) (1:2)
Thusz = 1:zipWith (+) (1:2) z

Suresh PRGH 2019: Lecture 15 September 30, 2019

6/22



Fibonacct numbers

® A fancier solution:

fibs = 0:1:z
where
z = 1l:zipWith (+) (1:2) z

Suresh PRGH 2019: Lecture 15 September 30, 2019 7/22



Fibonacct numbers

® A fancier solution:

fibs = 0:1:z
where

z = 1l:zipWith (+) (1:2) z

® Letgo = zipWith (+) and remember the list is infinite (hence

nonempty)

Suresh PRGH 2019: Lecture 15 September 30, 2019 7/22



Fibonacct numbers

e A fancier solution:
fibs = 0:1:z
where
z = 1l:zipWith (+) (1:2) z
® Letgo = zipWith (+) and remember the list is infinite (hence
nonempty)
e Tinal code:
fib = (1) fibs
fibs = 0:1:z
where z = 1:go (1:2) z
go (x:xs) (y:ys) = x+y: go XS ysS

Suresh PRGH 2019: Lecture 15 September 30, 2019 7/22



Computing fibs

Suresh PRGH 2019: Lecture 15 September 30, 2019 8/22



Computing fibs

Suresh PRGH 2019: Lecture 15 September 30, 2019 8/22



Computing fibs

Suresh PRGH 2019: Lecture 15 September 30, 2019 8/22



Computing fibs

Suresh PRGH 2019: Lecture 15 September 30, 2019 8/22



Computing fibs

e There is always one unevaluated go

Suresh PRGH 2019: Lecture 15 September 30, 2019 9/22



Computing fibs

e There is always one unevaluated go

® Dointers to two nodes on the tree

Suresh PRGH 2019: Lecture 15 September 30, 2019 9/22



Computing fibs

e There is always one unevaluated go
® Dointers to two nodes on the tree

® 'The pointers move down as go is evaluated more and more

Suresh PRGH 2019: Lecture 15 September 30, 2019 9/22



Computing fibs

There is always one unevaluated go
Pointers to two nodes on the tree
The pointers move down as go is evaluated more and more

To compute fib n we expand the tree to n levels

Suresh PRGH 2019: Lecture 15 September 30, 2019

9/22



Dynamic programming

® Dynamic programming - technique to make recursive programs

efficient

Suresh PRGH 2019: Lecture 15 September 30, 2019 10/22



Dynamic programming

® Dynamic programming - technique to make recursive programs

efficient

® Keyidea is memoization - Keeping track of already computed values to

avoid recomputation

Suresh PRGH 2019: Lecture 15 September 30, 2019 10/22



Dynamic programming
® Dynamic programming - technique to make recursive programs

efficient

® Keyidea is memoization - Keeping track of already computed values to

avoid recomputation

® Achieved (in the case of fibs) using a list defined in terms of itself

Suresh PRGH 2019: Lecture 15 September 30, 2019 10/22



Dynamic programming

Dynamic programming - technique to make recursive programs

efficient

Key idea is memoization - Keeping track of already computed values to

avoid recomputation
Achieved (in the case of fibs) usinga list defined in terms of itself

Another example next

Suresh PRGH 2019: Lecture 15 September 30, 2019 10/22



Longest common subsequence

® Given two strings as and bs, find the length of the longest common
subsequence of as and bs

Suresh PRGH 2019: Lecture 15 September 30, 2019 /22



Longest common subsequence

® Given two strings as and bs, find the length of the longest common
subsequence of as and bs

e Haskell function 1cs:

non

lcs "agcat" "gact" = 3 -- subsequence "gat"
lcs "abracadabra" "bacarrat" = 6

-- subsequence "bacara"

Suresh PRGH 2019: Lecture 15 September 30, 2019 /22



Longest common subsequence

® Given two strings as and bs, find the length of the longest common
subsequence of as and bs

e Haskell function 1cs:

lcs "agcat" "gact" = 3 -- subsequence "gat"
lcs "abracadabra" "bacarrat" = 6
-- subsequence "bacara"
o Strategy

Suresh PRGH 2019: Lecture 15 September 30, 2019 /22



Longest common subsequence

® Given two strings as and bs, find the length of the longest common
subsequence of as and bs

e Haskell function 1cs:

lcs "agcat" "gact" = 3 -- subsequence "gat"
lcs "abracadabra" "bacarrat" = 6
-- subsequence "bacara"
o Strategy

e If first letter is same in both strings, that letter is always in the Iongest

common subsequence

Suresh PRGH 2019: Lecture 15 September 30, 2019 /22



Longest common subsequence

® Given two strings as and bs, find the length of the longest common
subsequence of as and bs

e Haskell function 1cs:

lcs "agcat" "gact" = 3 -- subsequence "gat"
lcs "abracadabra" "bacarrat" = 6
-- subsequence "bacara"
o Strategy

e If first letter is same in both strings, that letter is always in the Iongest
common subsequence

® Else we need to skip the first letter in as or bs or both

Suresh PRGH 2019: Lecture 15 September 30, 2019 /22



Longest common subsequence

® Given two strings as and bs, find the length of the longest common
subsequence of as and bs

e Haskell function 1cs:

lcs "agcat" "gact" = 3 -- subsequence "gat"
lcs "abracadabra" "bacarrat" = 6
-- subsequence "bacara"
o Strategy

e If first letter is same in both strings, that letter is always in the Iongest
common subsequence
® Else we need to skip the first letter in as or bs or both

¢ ... and compute recursively

Suresh PRGH 2019: Lecture 15 September 30, 2019 /22



Longest common subsequence

® Haskell function 1cs:

lcs
lcs

lcs

Suresh

as bs

where

0
-0

if a == b then 1 + 1cs as' bs'

else max (lcs as' bs) (lcs as bs'")
Ca, as") (head as, tail as)
(b, bs') = (head bs, tail bs)

PRGH 2019: Lecture 15 September 30, 2019

12/22



Longest common subsequence

® Haskell function 1cs:

-I_CS mn _ - 0
'Lcs _ nmn = @
lcs as bs = if a == b then 1 + 1cs as' bs'

else max (lcs as' bs) (lcs as bs'")
(head as, tail as)
(head bs, tail bs)

where (a, as')
(b, bs")

e This takes time exponential in 7

Suresh PRGH 2019: Lecture 15 September 30, 2019 12/22



Longest common subsequence

® Haskell function 1cs:

-I_CS mn _ - 0
'Lcs _ nmn = @
lcs as bs = if a == b then 1 + 1cs as' bs'

else max (lcs as' bs) (lcs as bs'")
(head as, tail as)
(head bs, tail bs)

where (a, as')
(b, bs")

e This takes time exponential in 7

® Same problem as with fibs

Suresh PRGH 2019: Lecture 15 September 30, 2019 12/22



Longest common subsequence

® Haskell function 1cs:

-I_CS mn _ - 0
'LCS _ nmn = @
lcs as bs = if a == b then 1 + 1cs as' bs'

else max (lcs as' bs) (lcs as bs'")
where (a, as') = (head as, tail as)
(b, bs') = (head bs, tail bs)

e This takes time exponential in 7
® Same problem as with fibs

® Many recursive calls repeated with same arguments

Suresh PRGH 2019: Lecture 15 September 30, 2019 12/22



Towards a smarter 1cs

® Rather than present the program and explain, we shall derive it in a

series of small steps

Suresh PRGH 2019: Lecture 15 September 30, 2019 13/22



Towards a smarter 1cs

® Rather than present the program and explain, we shall derive it in a

series of small steps

® Important exercise in reasoning about programs

Suresh PRGH 2019: Lecture 15 September 30, 2019 13/22



Towards a smarter 1cs

® Rather than present the program and explain, we shall derive it in a

series of small steps
® Important exercise in reasoning about programs

e First step: express the recursion in terms of prefixes

-I_CS mn _ —_ 0
-I_CS _ mn — 0
lcs as bs = if a == b then 1 + 1cs as' bs'

else max (lcs as' bs) (lcs as bs')
(init as, last as)
(init bs, last bs)

where (as', a)
(bs', b)

Suresh PRGH 2019: Lecture 15 September 30, 2019 13/22



Towards a smarter 1cs

® Letlength as = mand length bs = n

Suresh PRGH 2019: Lecture 15 September 30, 2019 14/22



Towards a smarter 1cs

® Letlength as = mand length bs = n
® Fori <- [0..m]and j <- [0..n],let

f i j = lcs (take i as) (take j bs)

Suresh PRGH 2019: Lecture 15 September 30, 2019 14/22



Towards a smarter 1cs

® Letlength as = mand length bs = n
® Fori <- [0..m]and j <- [0..n],let

f i j = lcs (take i as) (take j bs)

¢ Then we can define f directly as follows:

fo_=20
f_0=0
fij=g (Cas!!(i-1)) (bs!!(j-1D)
f (-1 G-, f G- 3, £ i (G-1D)
where g a b (d,u,l) =
if a == b then 1+d else max 1 u

Suresh PRGH 2019: Lecture 15 September 30, 2019 14/22



Towards a smarter 1cs

e Fori <- [0..m],let

li=[fijl j< [0..n]]

Suresh PRGH 2019: Lecture 15 September 30, 2019 15/22



Towards a smarter 1cs

e Fori <- [0..m],let
li=[fijl j< [0..n]]

® 1 0 = replicate (n+1) 0

Suresh PRGH 2019: Lecture 15 September 30, 2019 15/22



Towards a smarter 1cs

e Fori <- [0..m],let
1i=[f13]1 3j<- [0..n]]

® 1 0 = replicate (n+1) 0

® Fori > 0,

11i=0: [g Cas!!(i-1)) (bs!!(3-1))
(f (-1 G-, f G- j, £ i (G-1))
I j <- [1..n]]

Suresh PRGH 2019: Lecture 15 September 30, 2019

15/22



Towards a smarter 1cs

e We candefine 1 i directly in terms of itselfand 1 (i-1)

Suresh PRGH 2019: Lecture 15 September 30, 2019 16/ 22



Towards a smarter 1cs

e We candefine 1 i directly in terms of itselfand 1 (i-1)
e Observe that:

zip3 (1 (i-1)) (tail (1 (1-D)) (1 1) =
[CF G- G-, £ G- 3, £1G-1D) 13 < [1..n]]

Suresh PRGH 2019: Lecture 15 September 30, 2019 16/ 22



Towards a smarter 1cs
® We can define 1 i directly in terms of itselfand 1 (i-1)
e Observe that:

zip3 (1 (i-1)) (tail (1 (1-D)) (1 1) =
[CF G- G-, £ G- 3, £1G-1D) 13 < [1..n]]

e So

11=0: zipWith (g (as!!(i-1))) bs
(zip3 (1 (i-1)) (tail (1 (i-1D)) (1 1))

Suresh PRGH 2019: Lecture 15 September 30, 2019 16/ 22



Towards a smarter 1cs

e We have:

11=0: zipWith (g (as!!(i-1))) bs
(zip3 (1 (i-1)) (tail (1 (i-1))) (1 1))

Suresh PRGH 2019: Lecture 15 September 30, 2019 17/22



Towards a smarter 1cs

e We have:

11=0: zipWith (g (as!!(i-1))) bs
(zip3 (1 (i-1)) (tail (1 (i-1))) (1 1))

e Can clean it further:

1 i = nextlList Cas!!(i-1)) (1 (i-1))
where nextlList a 1 = @ : zipWith (g a) bs
(zip3 1 (tail 1) (nextList a 1))

Suresh PRGH 2019: Lecture 15 September 30, 2019

17/22



Towards a smarter 1cs

e We have:

1 i = nextlList Cas!!(i-1)) (1 (i-1))
where nextlList a 1 = @ : zipWith (g a) bs
(zip3 1 (tail 1) (nextList a 1))

Suresh PRGH 2019: Lecture 15 September 30, 2019

18/22



Towards a smarter 1cs

e We have:

1 i = nextlList Cas!!(i-1)) (1 (i-1))
where nextlList a 1 = @ : zipWith (g a) bs
(zip3 1 (tail 1) (nextList a 1))

® JetlecsTab = [1 i | 1 <= [1..m]]

Suresh PRGH 2019: Lecture 15 September 30, 2019

18/22



Towards a smarter 1cs

e We have:

1 i = nextlList Cas!!(i-1)) (1 (i-1))
where nextlList a 1 = @ : zipWith (g a) bs
(zip3 1 (tail 1) (nextList a 1))

® LetlcsTab = [T 1 | i <- [1..m]]
e Thenl i = lcsTab!!i

Suresh PRGH 2019: Lecture 15 September 30, 2019

18/22



Towards a smarter 1cs

We have:
1 1 = nextList Cas!!(i-1)) (1 (i-1))
where nextlList a 1 = @ : zipWith (g a) bs
(zip3 1 (tail 1) (nextList a 1))
LetlcsTab = [1 1 | i <- [1..m]]
Thenl i = lcsTab!!i
So we have

lcsTab = 1 @ : [nextList (Cas!!(i-1)) (lcsTab!!(i-1))
| 1 <- [1..m]]

Suresh PRGH 2019: Lecture 15 September 30, 2019

18/22



Smarter 1cs: we are there!

e We have:

lcsTab = 1 @ : [nextList (as!!(i-1)) (lcsTab!!(i-1))
| i <- [1..m]]

Suresh PRGH 2019: Lecture 15 September 30, 2019 19/22



Smarter 1cs: we are there!

e We have:

lcsTab = 1 @ : [nextList (as!!(i-1)) (lcsTab!!(i-1))
| i <- [1..m]]

e Final simplification:

lcsTab = 1 @ : zipWith nextlList as lcsTab

Suresh PRGH 2019: Lecture 15 September 30, 2019 19/22



Smarter 1cs: we are there!

e We have:

lcsTab = 1 @ : [nextList (as!!(i-1)) (lcsTab!!(i-1))
| i <- [1..m]]

e Final simplification:

lcsTab = 1 @ : zipWith nextlList as lcsTab

® Recall that1 @ 1isjustalist of 0s

Suresh PRGH 2019: Lecture 15 September 30, 2019

19/22



Smarter 1cs: we are there!

We have:

lcsTab = 1 @ : [nextList (as!!(i-1)) (lcsTab!!(i-1))
| i <- [1..m]]

Final simplification:

lcsTab = 1 @ : zipWith nextlList as lcsTab

Recall that 1 @ is just a list of 0s

The final answer we wantis f m n = last (last lcsTab)

Suresh PRGH 2019: Lecture 15 September 30, 2019

19/22



Putting it all together

lcs :: String -> String -> Int
lcs as bs = last (last 1csTab)

where
lcsTab = firstlist : zipWith nextlList as 1lcsTab
firstList = replicate (length bs + 1) 0

0: zipWith (g a) bs
(zip3 1 (tail 1) (nextList a 1))
if a == b then 1 + d else (max u 1)

nextList a 1

g ab (d,u,D)

Suresh PRGH 2019: Lecture 15 September 30, 2019 20/22



Complexity of 1cs

® Laziness ensures that 1csTab is expanded as needed

Suresh PRGH 2019: Lecture 15 September 30, 2019 21/22



Complexity of 1cs

® Laziness ensures that 1csTab is expanded as needed

¢ An analysis similar to fib can be performed

Suresh PRGH 2019: Lecture 15 September 30, 2019 21/22



Complexity of 1cs

® Laziness ensures that 1csTab is expanded as needed
¢ An analysis similar to fib can be performed

® lcsTab is computed completely in O (2 - 72) time

Suresh PRGH 2019: Lecture 15 September 30, 2019 21/22



Complexity of 1cs

Laziness ensures that 1csTab is expanded as needed
An analysis similar to fib can be performed

LesTab is computed completely in O (72 - 72) time

Sample runs on the strings
"ababababababababababababababababababab™ and
"bbbbbbbbbbbbbbbbbbbbbbbbb"

Suresh PRGH 2019: Lecture 15 September 30, 2019 21/22



Complexity of 1cs

Laziness ensures that 1csTab is expanded as needed
An analysis similar to fib can be performed

LesTab is computed completely in O (72 - 72) time

Sample runs on the strings
"ababababababababababababababababababab™ and
"bbbbbbbbbbbbbbbbbbbbbbbbb"

® Answeris 19

Suresh PRGH 2019: Lecture 15 September 30, 2019 21/22



Complexity of 1cs

Laziness ensures that 1csTab is expanded as needed
An analysis similar to fib can be performed

LesTab is computed completely in O (72 - 72) time

Sample runs on the strings
"ababababababababababababababababababab” and
"bbbbbbbbbbbbbbbbbbbbbbbbb"

® Answer is 19

® Naive recursion: (32.35 secs, 19,422,476,336 bytes)

Suresh PRGH 2019: Lecture 15 September 30, 2019 21/22



Complexity of 1cs

Laziness ensures that 1csTab is expanded as needed
An analysis similar to fib can be performed

LesTab is computed completely in O (72 - 72) time
Sample runs on the strings
"ababababababababababababababababababab” and
"bbbbbbbbbbbbbbbbbbbbbbbbb"

® Answer is 19

® Naive recursion: (32.35 secs, 19,422,476,336 bytes)

® DP version: (0.01 secs, 3,504,504 bytes)

Suresh PRGH 2019: Lecture 15 September 30, 2019 21/22



Computing the subsequence itself

lcs :: String -> String -> (Int, String)
lcs as bs = last (last 1csTab)

where
lcsTab = firstlList : zipWith nextlList as lcsTab
firstList = replicate (length bs + 1) (@, "")

@, ""): zipWith (g a) bs
(zip3 1 (tail 1) (nextlList a 1))

nextList a 1

gab (dyu,1) =1if a==>b
then (1 + fst d, snd d ++ [b])
else

if fst u > fst 1 then u else 1

Suresh PRGH 2019: Lecture 15 September 30, 2019 22/22



