
Programming in Haskell: Lecture 15

S P Suresh

September 30, 2019

Suresh PRGH 2019: Lecture 15 September 30, 2019 1 / 22



Fibonacci numbers

• Naive recursion
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

• fib n calls fib (n-2) twice

• Once directly and once from fib (n-1)

• Similarly fib (n-2) calls fib (n-4) twice
• So at least four calls to fib (n-4), eight calls to fib (n-6),&c.
• At least 2k calls to fib (n-2*k)

• It appears that fib n takes time exponential in n

Suresh PRGH 2019: Lecture 15 September 30, 2019 2 / 22



Fibonacci numbers

• Naive recursion
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

• fib n calls fib (n-2) twice

• Once directly and once from fib (n-1)

• Similarly fib (n-2) calls fib (n-4) twice
• So at least four calls to fib (n-4), eight calls to fib (n-6),&c.
• At least 2k calls to fib (n-2*k)

• It appears that fib n takes time exponential in n

Suresh PRGH 2019: Lecture 15 September 30, 2019 2 / 22



Fibonacci numbers

• Naive recursion
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

• fib n calls fib (n-2) twice
• Once directly and once from fib (n-1)

• Similarly fib (n-2) calls fib (n-4) twice
• So at least four calls to fib (n-4), eight calls to fib (n-6),&c.
• At least 2k calls to fib (n-2*k)

• It appears that fib n takes time exponential in n

Suresh PRGH 2019: Lecture 15 September 30, 2019 2 / 22



Fibonacci numbers

• Naive recursion
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

• fib n calls fib (n-2) twice
• Once directly and once from fib (n-1)

• Similarly fib (n-2) calls fib (n-4) twice

• So at least four calls to fib (n-4), eight calls to fib (n-6),&c.
• At least 2k calls to fib (n-2*k)

• It appears that fib n takes time exponential in n

Suresh PRGH 2019: Lecture 15 September 30, 2019 2 / 22



Fibonacci numbers

• Naive recursion
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

• fib n calls fib (n-2) twice
• Once directly and once from fib (n-1)

• Similarly fib (n-2) calls fib (n-4) twice
• So at least four calls to fib (n-4), eight calls to fib (n-6),&c.

• At least 2k calls to fib (n-2*k)

• It appears that fib n takes time exponential in n

Suresh PRGH 2019: Lecture 15 September 30, 2019 2 / 22



Fibonacci numbers

• Naive recursion
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

• fib n calls fib (n-2) twice
• Once directly and once from fib (n-1)

• Similarly fib (n-2) calls fib (n-4) twice
• So at least four calls to fib (n-4), eight calls to fib (n-6),&c.
• At least 2k calls to fib (n-2*k)

• It appears that fib n takes time exponential in n

Suresh PRGH 2019: Lecture 15 September 30, 2019 2 / 22



Fibonacci numbers

• Naive recursion
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

• fib n calls fib (n-2) twice
• Once directly and once from fib (n-1)

• Similarly fib (n-2) calls fib (n-4) twice
• So at least four calls to fib (n-4), eight calls to fib (n-6),&c.
• At least 2k calls to fib (n-2*k)

• It appears that fib n takes time exponential in n

Suresh PRGH 2019: Lecture 15 September 30, 2019 2 / 22



Fibonacci numbers: analysis

• F (n): value of fib n

• G(n): number of recursive calls to fib 1while computing fib n

• G(0) = 0 – no call to fib 1
• G(1) = 1 – one call to fib 1
• G(2) = 1 – one call to fib 1

• Claim: For all n ≥ 0,G(n) = F (n)

• True for n = 0,1.
• For n > 2, there is one call to fib (n-1) and one to fib (n-2).
• SoG(n) =G(n− 1)+G(n− 2) = F (n− 1)+ F (n− 2) = F (n).

• Effectively computing F (n) by adding up so many 1s

Suresh PRGH 2019: Lecture 15 September 30, 2019 3 / 22



Fibonacci numbers: analysis

• F (n): value of fib n
• G(n): number of recursive calls to fib 1while computing fib n

• G(0) = 0 – no call to fib 1
• G(1) = 1 – one call to fib 1
• G(2) = 1 – one call to fib 1

• Claim: For all n ≥ 0,G(n) = F (n)

• True for n = 0,1.
• For n > 2, there is one call to fib (n-1) and one to fib (n-2).
• SoG(n) =G(n− 1)+G(n− 2) = F (n− 1)+ F (n− 2) = F (n).

• Effectively computing F (n) by adding up so many 1s

Suresh PRGH 2019: Lecture 15 September 30, 2019 3 / 22



Fibonacci numbers: analysis

• F (n): value of fib n
• G(n): number of recursive calls to fib 1while computing fib n
• G(0) = 0 – no call to fib 1

• G(1) = 1 – one call to fib 1
• G(2) = 1 – one call to fib 1

• Claim: For all n ≥ 0,G(n) = F (n)

• True for n = 0,1.
• For n > 2, there is one call to fib (n-1) and one to fib (n-2).
• SoG(n) =G(n− 1)+G(n− 2) = F (n− 1)+ F (n− 2) = F (n).

• Effectively computing F (n) by adding up so many 1s

Suresh PRGH 2019: Lecture 15 September 30, 2019 3 / 22



Fibonacci numbers: analysis

• F (n): value of fib n
• G(n): number of recursive calls to fib 1while computing fib n
• G(0) = 0 – no call to fib 1
• G(1) = 1 – one call to fib 1

• G(2) = 1 – one call to fib 1

• Claim: For all n ≥ 0,G(n) = F (n)

• True for n = 0,1.
• For n > 2, there is one call to fib (n-1) and one to fib (n-2).
• SoG(n) =G(n− 1)+G(n− 2) = F (n− 1)+ F (n− 2) = F (n).

• Effectively computing F (n) by adding up so many 1s

Suresh PRGH 2019: Lecture 15 September 30, 2019 3 / 22



Fibonacci numbers: analysis

• F (n): value of fib n
• G(n): number of recursive calls to fib 1while computing fib n
• G(0) = 0 – no call to fib 1
• G(1) = 1 – one call to fib 1
• G(2) = 1 – one call to fib 1

• Claim: For all n ≥ 0,G(n) = F (n)

• True for n = 0,1.
• For n > 2, there is one call to fib (n-1) and one to fib (n-2).
• SoG(n) =G(n− 1)+G(n− 2) = F (n− 1)+ F (n− 2) = F (n).

• Effectively computing F (n) by adding up so many 1s

Suresh PRGH 2019: Lecture 15 September 30, 2019 3 / 22



Fibonacci numbers: analysis

• F (n): value of fib n
• G(n): number of recursive calls to fib 1while computing fib n
• G(0) = 0 – no call to fib 1
• G(1) = 1 – one call to fib 1
• G(2) = 1 – one call to fib 1

• Claim: For all n ≥ 0,G(n) = F (n)

• True for n = 0,1.
• For n > 2, there is one call to fib (n-1) and one to fib (n-2).
• SoG(n) =G(n− 1)+G(n− 2) = F (n− 1)+ F (n− 2) = F (n).

• Effectively computing F (n) by adding up so many 1s

Suresh PRGH 2019: Lecture 15 September 30, 2019 3 / 22



Fibonacci numbers: analysis

• F (n): value of fib n
• G(n): number of recursive calls to fib 1while computing fib n
• G(0) = 0 – no call to fib 1
• G(1) = 1 – one call to fib 1
• G(2) = 1 – one call to fib 1

• Claim: For all n ≥ 0,G(n) = F (n)

• True for n = 0,1.

• For n > 2, there is one call to fib (n-1) and one to fib (n-2).
• SoG(n) =G(n− 1)+G(n− 2) = F (n− 1)+ F (n− 2) = F (n).

• Effectively computing F (n) by adding up so many 1s

Suresh PRGH 2019: Lecture 15 September 30, 2019 3 / 22



Fibonacci numbers: analysis

• F (n): value of fib n
• G(n): number of recursive calls to fib 1while computing fib n
• G(0) = 0 – no call to fib 1
• G(1) = 1 – one call to fib 1
• G(2) = 1 – one call to fib 1

• Claim: For all n ≥ 0,G(n) = F (n)

• True for n = 0,1.
• For n > 2, there is one call to fib (n-1) and one to fib (n-2).

• SoG(n) =G(n− 1)+G(n− 2) = F (n− 1)+ F (n− 2) = F (n).

• Effectively computing F (n) by adding up so many 1s

Suresh PRGH 2019: Lecture 15 September 30, 2019 3 / 22



Fibonacci numbers: analysis

• F (n): value of fib n
• G(n): number of recursive calls to fib 1while computing fib n
• G(0) = 0 – no call to fib 1
• G(1) = 1 – one call to fib 1
• G(2) = 1 – one call to fib 1

• Claim: For all n ≥ 0,G(n) = F (n)

• True for n = 0,1.
• For n > 2, there is one call to fib (n-1) and one to fib (n-2).
• SoG(n) =G(n− 1)+G(n− 2) = F (n− 1)+ F (n− 2) = F (n).

• Effectively computing F (n) by adding up so many 1s

Suresh PRGH 2019: Lecture 15 September 30, 2019 3 / 22



Fibonacci numbers: analysis

• F (n): value of fib n
• G(n): number of recursive calls to fib 1while computing fib n
• G(0) = 0 – no call to fib 1
• G(1) = 1 – one call to fib 1
• G(2) = 1 – one call to fib 1

• Claim: For all n ≥ 0,G(n) = F (n)

• True for n = 0,1.
• For n > 2, there is one call to fib (n-1) and one to fib (n-2).
• SoG(n) =G(n− 1)+G(n− 2) = F (n− 1)+ F (n− 2) = F (n).

• Effectively computing F (n) by adding up so many 1s

Suresh PRGH 2019: Lecture 15 September 30, 2019 3 / 22



Fibonacci numbers: analysis

• Recall: F (n) = ϕ n −ψn
p

5

• ϕ = 1+
p

5
2
≈ 1.6180339887

• ψ= 1−p5
2
≈−0.6180339887

• ThusG(n) = F (n) is exponential in n

Suresh PRGH 2019: Lecture 15 September 30, 2019 4 / 22



Fibonacci numbers: analysis

• Recall: F (n) = ϕ n −ψn
p

5

• ϕ = 1+
p

5
2
≈ 1.6180339887

• ψ= 1−p5
2
≈−0.6180339887

• ThusG(n) = F (n) is exponential in n

Suresh PRGH 2019: Lecture 15 September 30, 2019 4 / 22



Fibonacci numbers: analysis

• Recall: F (n) = ϕ n −ψn
p

5

• ϕ = 1+
p

5
2
≈ 1.6180339887

• ψ= 1−p5
2
≈−0.6180339887

• ThusG(n) = F (n) is exponential in n

Suresh PRGH 2019: Lecture 15 September 30, 2019 4 / 22



Fibonacci numbers: analysis

• Recall: F (n) = ϕ n −ψn
p

5

• ϕ = 1+
p

5
2
≈ 1.6180339887

• ψ= 1−p5
2
≈−0.6180339887

• ThusG(n) = F (n) is exponential in n

Suresh PRGH 2019: Lecture 15 September 30, 2019 4 / 22



Fibonacci numbers

• What is the problem?

• Multiple recursive calls with the same argument
• Wasteful recomputation!
• Suffices to keep track of two values:

fib = go (0,1)
where

go (a,b) 0 = a
go (a,b) n = go (b, a+b) (n-1)

Suresh PRGH 2019: Lecture 15 September 30, 2019 5 / 22



Fibonacci numbers

• What is the problem?
• Multiple recursive calls with the same argument

• Wasteful recomputation!
• Suffices to keep track of two values:

fib = go (0,1)
where

go (a,b) 0 = a
go (a,b) n = go (b, a+b) (n-1)

Suresh PRGH 2019: Lecture 15 September 30, 2019 5 / 22



Fibonacci numbers

• What is the problem?
• Multiple recursive calls with the same argument
• Wasteful recomputation!

• Suffices to keep track of two values:
fib = go (0,1)

where
go (a,b) 0 = a
go (a,b) n = go (b, a+b) (n-1)

Suresh PRGH 2019: Lecture 15 September 30, 2019 5 / 22



Fibonacci numbers

• What is the problem?
• Multiple recursive calls with the same argument
• Wasteful recomputation!
• Suffices to keep track of two values:

fib = go (0,1)
where

go (a,b) 0 = a
go (a,b) n = go (b, a+b) (n-1)

Suresh PRGH 2019: Lecture 15 September 30, 2019 5 / 22



Fibonacci numbers

• A fancier solution:
fib = (!!) fibs
fibs = 0:1:zipWith (+) fibs (tail fibs)

• Let z = zipWith (+) fibs (tail fibs)

• Then fibs = 0:1:z

• Substituting, we can define zwithout referring to fibs
• z = zipWith (+) (0:1:z) (1:z)

• Thus z = 1:zipWith (+) (1:z) z

Suresh PRGH 2019: Lecture 15 September 30, 2019 6 / 22



Fibonacci numbers

• A fancier solution:
fib = (!!) fibs
fibs = 0:1:zipWith (+) fibs (tail fibs)

• Let z = zipWith (+) fibs (tail fibs)

• Then fibs = 0:1:z

• Substituting, we can define zwithout referring to fibs
• z = zipWith (+) (0:1:z) (1:z)

• Thus z = 1:zipWith (+) (1:z) z

Suresh PRGH 2019: Lecture 15 September 30, 2019 6 / 22



Fibonacci numbers

• A fancier solution:
fib = (!!) fibs
fibs = 0:1:zipWith (+) fibs (tail fibs)

• Let z = zipWith (+) fibs (tail fibs)

• Then fibs = 0:1:z

• Substituting, we can define zwithout referring to fibs
• z = zipWith (+) (0:1:z) (1:z)

• Thus z = 1:zipWith (+) (1:z) z

Suresh PRGH 2019: Lecture 15 September 30, 2019 6 / 22



Fibonacci numbers

• A fancier solution:
fib = (!!) fibs
fibs = 0:1:zipWith (+) fibs (tail fibs)

• Let z = zipWith (+) fibs (tail fibs)

• Then fibs = 0:1:z

• Substituting, we can define zwithout referring to fibs

• z = zipWith (+) (0:1:z) (1:z)

• Thus z = 1:zipWith (+) (1:z) z

Suresh PRGH 2019: Lecture 15 September 30, 2019 6 / 22



Fibonacci numbers

• A fancier solution:
fib = (!!) fibs
fibs = 0:1:zipWith (+) fibs (tail fibs)

• Let z = zipWith (+) fibs (tail fibs)

• Then fibs = 0:1:z

• Substituting, we can define zwithout referring to fibs
• z = zipWith (+) (0:1:z) (1:z)

• Thus z = 1:zipWith (+) (1:z) z

Suresh PRGH 2019: Lecture 15 September 30, 2019 6 / 22



Fibonacci numbers

• A fancier solution:
fib = (!!) fibs
fibs = 0:1:zipWith (+) fibs (tail fibs)

• Let z = zipWith (+) fibs (tail fibs)

• Then fibs = 0:1:z

• Substituting, we can define zwithout referring to fibs
• z = zipWith (+) (0:1:z) (1:z)

• Thus z = 1:zipWith (+) (1:z) z

Suresh PRGH 2019: Lecture 15 September 30, 2019 6 / 22



Fibonacci numbers

• A fancier solution:
fibs = 0:1:z

where
z = 1:zipWith (+) (1:z) z

• Let go = zipWith (+) and remember the list is infinite (hence
nonempty)
• Final code:

fib = (!!) fibs
fibs = 0:1:z

where z = 1:go (1:z) z
go (x:xs) (y:ys) = x+y: go xs ys

Suresh PRGH 2019: Lecture 15 September 30, 2019 7 / 22



Fibonacci numbers

• A fancier solution:
fibs = 0:1:z

where
z = 1:zipWith (+) (1:z) z

• Let go = zipWith (+) and remember the list is infinite (hence
nonempty)

• Final code:
fib = (!!) fibs
fibs = 0:1:z

where z = 1:go (1:z) z
go (x:xs) (y:ys) = x+y: go xs ys

Suresh PRGH 2019: Lecture 15 September 30, 2019 7 / 22



Fibonacci numbers

• A fancier solution:
fibs = 0:1:z

where
z = 1:zipWith (+) (1:z) z

• Let go = zipWith (+) and remember the list is infinite (hence
nonempty)
• Final code:

fib = (!!) fibs
fibs = 0:1:z

where z = 1:go (1:z) z
go (x:xs) (y:ys) = x+y: go xs ys

Suresh PRGH 2019: Lecture 15 September 30, 2019 7 / 22



Computing fibs

:

1 :

1 go

Suresh PRGH 2019: Lecture 15 September 30, 2019 8 / 22



Computing fibs

:

1 :

1 :

2 go

Suresh PRGH 2019: Lecture 15 September 30, 2019 8 / 22



Computing fibs

:

1 :

1 :

2 :

3 go

Suresh PRGH 2019: Lecture 15 September 30, 2019 8 / 22



Computing fibs
:

1 :

1 :

2 :

3 :

5 go

Suresh PRGH 2019: Lecture 15 September 30, 2019 8 / 22



Computing fibs

• There is always one unevaluated go

• Pointers to two nodes on the tree
• The pointers move down as go is evaluated more and more
• To compute fib nwe expand the tree to n levels

Suresh PRGH 2019: Lecture 15 September 30, 2019 9 / 22



Computing fibs

• There is always one unevaluated go
• Pointers to two nodes on the tree

• The pointers move down as go is evaluated more and more
• To compute fib nwe expand the tree to n levels

Suresh PRGH 2019: Lecture 15 September 30, 2019 9 / 22



Computing fibs

• There is always one unevaluated go
• Pointers to two nodes on the tree
• The pointers move down as go is evaluated more and more

• To compute fib nwe expand the tree to n levels

Suresh PRGH 2019: Lecture 15 September 30, 2019 9 / 22



Computing fibs

• There is always one unevaluated go
• Pointers to two nodes on the tree
• The pointers move down as go is evaluated more and more
• To compute fib nwe expand the tree to n levels

Suresh PRGH 2019: Lecture 15 September 30, 2019 9 / 22



Dynamic programming

• Dynamic programming – technique to make recursive programs
efficient

• Key idea is memoization – Keeping track of already computed values to
avoid recomputation
• Achieved (in the case of fibs) using a list defined in terms of itself
• Another example next

Suresh PRGH 2019: Lecture 15 September 30, 2019 10 / 22



Dynamic programming

• Dynamic programming – technique to make recursive programs
efficient
• Key idea is memoization – Keeping track of already computed values to
avoid recomputation

• Achieved (in the case of fibs) using a list defined in terms of itself
• Another example next

Suresh PRGH 2019: Lecture 15 September 30, 2019 10 / 22



Dynamic programming

• Dynamic programming – technique to make recursive programs
efficient
• Key idea is memoization – Keeping track of already computed values to
avoid recomputation
• Achieved (in the case of fibs) using a list defined in terms of itself

• Another example next

Suresh PRGH 2019: Lecture 15 September 30, 2019 10 / 22



Dynamic programming

• Dynamic programming – technique to make recursive programs
efficient
• Key idea is memoization – Keeping track of already computed values to
avoid recomputation
• Achieved (in the case of fibs) using a list defined in terms of itself
• Another example next

Suresh PRGH 2019: Lecture 15 September 30, 2019 10 / 22



Longest common subsequence

• Given two strings as and bs, find the length of the longest common
subsequence of as and bs

• Haskell function lcs:
lcs "agcat" "gact" = 3 -- subsequence "gat"
lcs "abracadabra" "bacarrat" = 6

-- subsequence "bacara"

• Strategy

• If first letter is same in both strings, that letter is always in the longest
common subsequence
• Else we need to skip the first letter in as or bs or both
• … and compute recursively

Suresh PRGH 2019: Lecture 15 September 30, 2019 11 / 22



Longest common subsequence

• Given two strings as and bs, find the length of the longest common
subsequence of as and bs
• Haskell function lcs:

lcs "agcat" "gact" = 3 -- subsequence "gat"
lcs "abracadabra" "bacarrat" = 6

-- subsequence "bacara"

• Strategy

• If first letter is same in both strings, that letter is always in the longest
common subsequence
• Else we need to skip the first letter in as or bs or both
• … and compute recursively

Suresh PRGH 2019: Lecture 15 September 30, 2019 11 / 22



Longest common subsequence

• Given two strings as and bs, find the length of the longest common
subsequence of as and bs
• Haskell function lcs:

lcs "agcat" "gact" = 3 -- subsequence "gat"
lcs "abracadabra" "bacarrat" = 6

-- subsequence "bacara"

• Strategy

• If first letter is same in both strings, that letter is always in the longest
common subsequence
• Else we need to skip the first letter in as or bs or both
• … and compute recursively

Suresh PRGH 2019: Lecture 15 September 30, 2019 11 / 22



Longest common subsequence

• Given two strings as and bs, find the length of the longest common
subsequence of as and bs
• Haskell function lcs:

lcs "agcat" "gact" = 3 -- subsequence "gat"
lcs "abracadabra" "bacarrat" = 6

-- subsequence "bacara"

• Strategy
• If first letter is same in both strings, that letter is always in the longest
common subsequence

• Else we need to skip the first letter in as or bs or both
• … and compute recursively

Suresh PRGH 2019: Lecture 15 September 30, 2019 11 / 22



Longest common subsequence

• Given two strings as and bs, find the length of the longest common
subsequence of as and bs
• Haskell function lcs:

lcs "agcat" "gact" = 3 -- subsequence "gat"
lcs "abracadabra" "bacarrat" = 6

-- subsequence "bacara"

• Strategy
• If first letter is same in both strings, that letter is always in the longest
common subsequence
• Else we need to skip the first letter in as or bs or both

• … and compute recursively

Suresh PRGH 2019: Lecture 15 September 30, 2019 11 / 22



Longest common subsequence

• Given two strings as and bs, find the length of the longest common
subsequence of as and bs
• Haskell function lcs:

lcs "agcat" "gact" = 3 -- subsequence "gat"
lcs "abracadabra" "bacarrat" = 6

-- subsequence "bacara"

• Strategy
• If first letter is same in both strings, that letter is always in the longest
common subsequence
• Else we need to skip the first letter in as or bs or both
• … and compute recursively
Suresh PRGH 2019: Lecture 15 September 30, 2019 11 / 22



Longest common subsequence

• Haskell function lcs:
lcs "" _ = 0
lcs _ "" = 0
lcs as bs = if a == b then 1 + lcs as' bs'

else max (lcs as' bs) (lcs as bs')
where (a, as') = (head as, tail as)

(b, bs') = (head bs, tail bs)

• This takes time exponential in n

• Same problem as with fibs
• Many recursive calls repeated with same arguments

Suresh PRGH 2019: Lecture 15 September 30, 2019 12 / 22



Longest common subsequence

• Haskell function lcs:
lcs "" _ = 0
lcs _ "" = 0
lcs as bs = if a == b then 1 + lcs as' bs'

else max (lcs as' bs) (lcs as bs')
where (a, as') = (head as, tail as)

(b, bs') = (head bs, tail bs)

• This takes time exponential in n

• Same problem as with fibs
• Many recursive calls repeated with same arguments

Suresh PRGH 2019: Lecture 15 September 30, 2019 12 / 22



Longest common subsequence

• Haskell function lcs:
lcs "" _ = 0
lcs _ "" = 0
lcs as bs = if a == b then 1 + lcs as' bs'

else max (lcs as' bs) (lcs as bs')
where (a, as') = (head as, tail as)

(b, bs') = (head bs, tail bs)

• This takes time exponential in n

• Same problem as with fibs

• Many recursive calls repeated with same arguments

Suresh PRGH 2019: Lecture 15 September 30, 2019 12 / 22



Longest common subsequence

• Haskell function lcs:
lcs "" _ = 0
lcs _ "" = 0
lcs as bs = if a == b then 1 + lcs as' bs'

else max (lcs as' bs) (lcs as bs')
where (a, as') = (head as, tail as)

(b, bs') = (head bs, tail bs)

• This takes time exponential in n

• Same problem as with fibs
• Many recursive calls repeated with same arguments

Suresh PRGH 2019: Lecture 15 September 30, 2019 12 / 22



Towards a smarter lcs

• Rather than present the program and explain, we shall derive it in a
series of small steps

• Important exercise in reasoning about programs
• First step: express the recursion in terms of prefixes

lcs "" _ = 0
lcs _ "" = 0
lcs as bs = if a == b then 1 + lcs as' bs'

else max (lcs as' bs) (lcs as bs')
where (as', a) = (init as, last as)

(bs', b) = (init bs, last bs)

Suresh PRGH 2019: Lecture 15 September 30, 2019 13 / 22



Towards a smarter lcs

• Rather than present the program and explain, we shall derive it in a
series of small steps
• Important exercise in reasoning about programs

• First step: express the recursion in terms of prefixes
lcs "" _ = 0
lcs _ "" = 0
lcs as bs = if a == b then 1 + lcs as' bs'

else max (lcs as' bs) (lcs as bs')
where (as', a) = (init as, last as)

(bs', b) = (init bs, last bs)

Suresh PRGH 2019: Lecture 15 September 30, 2019 13 / 22



Towards a smarter lcs

• Rather than present the program and explain, we shall derive it in a
series of small steps
• Important exercise in reasoning about programs
• First step: express the recursion in terms of prefixes

lcs "" _ = 0
lcs _ "" = 0
lcs as bs = if a == b then 1 + lcs as' bs'

else max (lcs as' bs) (lcs as bs')
where (as', a) = (init as, last as)

(bs', b) = (init bs, last bs)

Suresh PRGH 2019: Lecture 15 September 30, 2019 13 / 22



Towards a smarter lcs

• Let length as = m and length bs = n

• For i <- [0..m] and j <- [0..n], let

f i j = lcs (take i as) (take j bs)

• Thenwe can define f directly as follows:
f 0 _ = 0
f _ 0 = 0
f i j = g (as!!(i-1)) (bs!!(j-1))

(f (i-1) (j-1), f (i-1) j, f i (j-1))
where g a b (d,u,l) =

if a == b then 1+d else max l u

Suresh PRGH 2019: Lecture 15 September 30, 2019 14 / 22



Towards a smarter lcs

• Let length as = m and length bs = n

• For i <- [0..m] and j <- [0..n], let

f i j = lcs (take i as) (take j bs)

• Thenwe can define f directly as follows:
f 0 _ = 0
f _ 0 = 0
f i j = g (as!!(i-1)) (bs!!(j-1))

(f (i-1) (j-1), f (i-1) j, f i (j-1))
where g a b (d,u,l) =

if a == b then 1+d else max l u

Suresh PRGH 2019: Lecture 15 September 30, 2019 14 / 22



Towards a smarter lcs

• Let length as = m and length bs = n

• For i <- [0..m] and j <- [0..n], let

f i j = lcs (take i as) (take j bs)

• Thenwe can define f directly as follows:
f 0 _ = 0
f _ 0 = 0
f i j = g (as!!(i-1)) (bs!!(j-1))

(f (i-1) (j-1), f (i-1) j, f i (j-1))
where g a b (d,u,l) =

if a == b then 1+d else max l u

Suresh PRGH 2019: Lecture 15 September 30, 2019 14 / 22



Towards a smarter lcs

• For i <- [0..m], let

l i = [f i j | j <- [0..n]]

• l 0 = replicate (n+1) 0

• For i > 0,

l i = 0: [g (as!!(i-1)) (bs!!(j-1))
(f (i-1) (j-1), f (i-1) j, f i (j-1))

| j <- [1..n]]

Suresh PRGH 2019: Lecture 15 September 30, 2019 15 / 22



Towards a smarter lcs

• For i <- [0..m], let

l i = [f i j | j <- [0..n]]

• l 0 = replicate (n+1) 0

• For i > 0,

l i = 0: [g (as!!(i-1)) (bs!!(j-1))
(f (i-1) (j-1), f (i-1) j, f i (j-1))

| j <- [1..n]]

Suresh PRGH 2019: Lecture 15 September 30, 2019 15 / 22



Towards a smarter lcs

• For i <- [0..m], let

l i = [f i j | j <- [0..n]]

• l 0 = replicate (n+1) 0

• For i > 0,

l i = 0: [g (as!!(i-1)) (bs!!(j-1))
(f (i-1) (j-1), f (i-1) j, f i (j-1))

| j <- [1..n]]

Suresh PRGH 2019: Lecture 15 September 30, 2019 15 / 22



Towards a smarter lcs

• We can define l i directly in terms of itself and l (i-1)

• Observe that:
zip3 (l (i-1)) (tail (l (i-1))) (l i) =

[(f (i-1) (j-1), f (i-1) j, f i (j-1)) | j <- [1..n]]

• So
l i = 0 : zipWith (g (as!!(i-1))) bs

(zip3 (l (i-1)) (tail (l (i-1))) (l i))

Suresh PRGH 2019: Lecture 15 September 30, 2019 16 / 22



Towards a smarter lcs

• We can define l i directly in terms of itself and l (i-1)

• Observe that:
zip3 (l (i-1)) (tail (l (i-1))) (l i) =

[(f (i-1) (j-1), f (i-1) j, f i (j-1)) | j <- [1..n]]

• So
l i = 0 : zipWith (g (as!!(i-1))) bs

(zip3 (l (i-1)) (tail (l (i-1))) (l i))

Suresh PRGH 2019: Lecture 15 September 30, 2019 16 / 22



Towards a smarter lcs

• We can define l i directly in terms of itself and l (i-1)

• Observe that:
zip3 (l (i-1)) (tail (l (i-1))) (l i) =

[(f (i-1) (j-1), f (i-1) j, f i (j-1)) | j <- [1..n]]

• So
l i = 0 : zipWith (g (as!!(i-1))) bs

(zip3 (l (i-1)) (tail (l (i-1))) (l i))

Suresh PRGH 2019: Lecture 15 September 30, 2019 16 / 22



Towards a smarter lcs

• We have:
l i = 0 : zipWith (g (as!!(i-1))) bs

(zip3 (l (i-1)) (tail (l (i-1))) (l i))

• Can clean it further:
l i = nextList (as!!(i-1)) (l (i-1))

where nextList a l = 0 : zipWith (g a) bs
(zip3 l (tail l) (nextList a l))

Suresh PRGH 2019: Lecture 15 September 30, 2019 17 / 22



Towards a smarter lcs

• We have:
l i = 0 : zipWith (g (as!!(i-1))) bs

(zip3 (l (i-1)) (tail (l (i-1))) (l i))

• Can clean it further:
l i = nextList (as!!(i-1)) (l (i-1))

where nextList a l = 0 : zipWith (g a) bs
(zip3 l (tail l) (nextList a l))

Suresh PRGH 2019: Lecture 15 September 30, 2019 17 / 22



Towards a smarter lcs

• We have:
l i = nextList (as!!(i-1)) (l (i-1))

where nextList a l = 0 : zipWith (g a) bs
(zip3 l (tail l) (nextList a l))

• Let lcsTab = [l i | i <- [1..m]]

• Then l i = lcsTab!!i

• So we have
lcsTab = l 0 : [nextList (as!!(i-1)) (lcsTab!!(i-1))

| i <- [1..m]]

Suresh PRGH 2019: Lecture 15 September 30, 2019 18 / 22



Towards a smarter lcs

• We have:
l i = nextList (as!!(i-1)) (l (i-1))

where nextList a l = 0 : zipWith (g a) bs
(zip3 l (tail l) (nextList a l))

• Let lcsTab = [l i | i <- [1..m]]

• Then l i = lcsTab!!i

• So we have
lcsTab = l 0 : [nextList (as!!(i-1)) (lcsTab!!(i-1))

| i <- [1..m]]

Suresh PRGH 2019: Lecture 15 September 30, 2019 18 / 22



Towards a smarter lcs

• We have:
l i = nextList (as!!(i-1)) (l (i-1))

where nextList a l = 0 : zipWith (g a) bs
(zip3 l (tail l) (nextList a l))

• Let lcsTab = [l i | i <- [1..m]]

• Then l i = lcsTab!!i

• So we have
lcsTab = l 0 : [nextList (as!!(i-1)) (lcsTab!!(i-1))

| i <- [1..m]]

Suresh PRGH 2019: Lecture 15 September 30, 2019 18 / 22



Towards a smarter lcs

• We have:
l i = nextList (as!!(i-1)) (l (i-1))

where nextList a l = 0 : zipWith (g a) bs
(zip3 l (tail l) (nextList a l))

• Let lcsTab = [l i | i <- [1..m]]

• Then l i = lcsTab!!i

• So we have
lcsTab = l 0 : [nextList (as!!(i-1)) (lcsTab!!(i-1))

| i <- [1..m]]

Suresh PRGH 2019: Lecture 15 September 30, 2019 18 / 22



Smarter lcs: we are there!

• We have:
lcsTab = l 0 : [nextList (as!!(i-1)) (lcsTab!!(i-1))

| i <- [1..m]]

• Final simplification:
lcsTab = l 0 : zipWith nextList as lcsTab

• Recall that l 0 is just a list of 0s
• The final answer we want is f m n = last (last lcsTab)

Suresh PRGH 2019: Lecture 15 September 30, 2019 19 / 22



Smarter lcs: we are there!

• We have:
lcsTab = l 0 : [nextList (as!!(i-1)) (lcsTab!!(i-1))

| i <- [1..m]]

• Final simplification:
lcsTab = l 0 : zipWith nextList as lcsTab

• Recall that l 0 is just a list of 0s
• The final answer we want is f m n = last (last lcsTab)

Suresh PRGH 2019: Lecture 15 September 30, 2019 19 / 22



Smarter lcs: we are there!

• We have:
lcsTab = l 0 : [nextList (as!!(i-1)) (lcsTab!!(i-1))

| i <- [1..m]]

• Final simplification:
lcsTab = l 0 : zipWith nextList as lcsTab

• Recall that l 0 is just a list of 0s

• The final answer we want is f m n = last (last lcsTab)

Suresh PRGH 2019: Lecture 15 September 30, 2019 19 / 22



Smarter lcs: we are there!

• We have:
lcsTab = l 0 : [nextList (as!!(i-1)) (lcsTab!!(i-1))

| i <- [1..m]]

• Final simplification:
lcsTab = l 0 : zipWith nextList as lcsTab

• Recall that l 0 is just a list of 0s
• The final answer we want is f m n = last (last lcsTab)

Suresh PRGH 2019: Lecture 15 September 30, 2019 19 / 22



Putting it all together

lcs :: String -> String -> Int
lcs as bs = last (last lcsTab)

where
lcsTab = firstList : zipWith nextList as lcsTab
firstList = replicate (length bs + 1) 0
nextList a l = 0: zipWith (g a) bs

(zip3 l (tail l) (nextList a l))
g a b (d,u,l) = if a == b then 1 + d else (max u l)

Suresh PRGH 2019: Lecture 15 September 30, 2019 20 / 22



Complexity of lcs

• Laziness ensures that lcsTab is expanded as needed

• An analysis similar to fib can be performed
• lcsTab is computed completely inO(m · n) time
• Sample runs on the strings

"ababababababababababababababababababab" and
"bbbbbbbbbbbbbbbbbbbbbbbbb"

• Answer is 19
• Naive recursion: (32.35 secs, 19,422,476,336 bytes)
• DP version: (0.01 secs, 3,504,504 bytes)

Suresh PRGH 2019: Lecture 15 September 30, 2019 21 / 22



Complexity of lcs

• Laziness ensures that lcsTab is expanded as needed
• An analysis similar to fib can be performed

• lcsTab is computed completely inO(m · n) time
• Sample runs on the strings

"ababababababababababababababababababab" and
"bbbbbbbbbbbbbbbbbbbbbbbbb"

• Answer is 19
• Naive recursion: (32.35 secs, 19,422,476,336 bytes)
• DP version: (0.01 secs, 3,504,504 bytes)

Suresh PRGH 2019: Lecture 15 September 30, 2019 21 / 22



Complexity of lcs

• Laziness ensures that lcsTab is expanded as needed
• An analysis similar to fib can be performed
• lcsTab is computed completely inO(m · n) time

• Sample runs on the strings
"ababababababababababababababababababab" and
"bbbbbbbbbbbbbbbbbbbbbbbbb"

• Answer is 19
• Naive recursion: (32.35 secs, 19,422,476,336 bytes)
• DP version: (0.01 secs, 3,504,504 bytes)

Suresh PRGH 2019: Lecture 15 September 30, 2019 21 / 22



Complexity of lcs

• Laziness ensures that lcsTab is expanded as needed
• An analysis similar to fib can be performed
• lcsTab is computed completely inO(m · n) time
• Sample runs on the strings

"ababababababababababababababababababab" and
"bbbbbbbbbbbbbbbbbbbbbbbbb"

• Answer is 19
• Naive recursion: (32.35 secs, 19,422,476,336 bytes)
• DP version: (0.01 secs, 3,504,504 bytes)

Suresh PRGH 2019: Lecture 15 September 30, 2019 21 / 22



Complexity of lcs

• Laziness ensures that lcsTab is expanded as needed
• An analysis similar to fib can be performed
• lcsTab is computed completely inO(m · n) time
• Sample runs on the strings

"ababababababababababababababababababab" and
"bbbbbbbbbbbbbbbbbbbbbbbbb"
• Answer is 19

• Naive recursion: (32.35 secs, 19,422,476,336 bytes)
• DP version: (0.01 secs, 3,504,504 bytes)

Suresh PRGH 2019: Lecture 15 September 30, 2019 21 / 22



Complexity of lcs

• Laziness ensures that lcsTab is expanded as needed
• An analysis similar to fib can be performed
• lcsTab is computed completely inO(m · n) time
• Sample runs on the strings

"ababababababababababababababababababab" and
"bbbbbbbbbbbbbbbbbbbbbbbbb"
• Answer is 19
• Naive recursion: (32.35 secs, 19,422,476,336 bytes)

• DP version: (0.01 secs, 3,504,504 bytes)

Suresh PRGH 2019: Lecture 15 September 30, 2019 21 / 22



Complexity of lcs

• Laziness ensures that lcsTab is expanded as needed
• An analysis similar to fib can be performed
• lcsTab is computed completely inO(m · n) time
• Sample runs on the strings

"ababababababababababababababababababab" and
"bbbbbbbbbbbbbbbbbbbbbbbbb"
• Answer is 19
• Naive recursion: (32.35 secs, 19,422,476,336 bytes)
• DP version: (0.01 secs, 3,504,504 bytes)

Suresh PRGH 2019: Lecture 15 September 30, 2019 21 / 22



Computing the subsequence itself

lcs :: String -> String -> (Int, String)
lcs as bs = last (last lcsTab)

where
lcsTab = firstList : zipWith nextList as lcsTab
firstList = replicate (length bs + 1) (0, "")
nextList a l = (0, ""): zipWith (g a) bs

(zip3 l (tail l) (nextList a l))
g a b (d,u,l) = if a == b

then (1 + fst d, snd d ++ [b])
else

if fst u > fst l then u else l

Suresh PRGH 2019: Lecture 15 September 30, 2019 22 / 22


