Programming in Haskell: Lecture I5

S P Suresh

September 30, 2019

Fibonacci numbers

- Naive recursion

$$
\begin{aligned}
& \text { fib } 0=0 \\
& \text { fib } 1=1 \\
& \text { fib } n=\text { fib }(n-1)+\text { fib }(n-2)
\end{aligned}
$$

Fibonacci numbers

- Naive recursion

$$
\begin{aligned}
& \text { fib } 0=0 \\
& \text { fib } 1=1 \\
& \text { fib } n=\text { fib }(n-1)+\text { fib }(n-2)
\end{aligned}
$$

- fib n calls fib ($n-2$) twice

Fibonacci numbers

- Naive recursion

$$
\begin{aligned}
& \text { fib } 0=0 \\
& \text { fib } 1=1 \\
& \text { fib } n=\text { fib }(n-1)+\text { fib }(n-2)
\end{aligned}
$$

- fib n calls fib ($n-2$) twice
- Once directly and once from fib ($\mathrm{n}-1$)

Fibonacci numbers

- Naive recursion

$$
\begin{aligned}
& \text { fib } 0=0 \\
& \text { fib } 1=1 \\
& \text { fib } n=\text { fib }(n-1)+\text { fib }(n-2)
\end{aligned}
$$

- fib n calls fib ($n-2$) twice
- Once directly and once from fib ($\mathrm{n}-1$)
- Similarly fib (n-2) calls fib (n-4) twice

Fibonacci numbers

- Naive recursion

$$
\begin{aligned}
& \text { fib } 0=0 \\
& \text { fib } 1=1 \\
& \text { fib } n=\text { fib }(n-1)+\text { fib }(n-2)
\end{aligned}
$$

- fib n calls fib ($n-2$) twice
- Once directly and once from fib ($\mathrm{n}-1$)
- Similarly fib ($n-2$) calls fib ($n-4$) twice
- So at least four calls to fib ($n-4$), eight calls to fib ($n-6$), s-c.

Fibonacci numbers

- Naive recursion

$$
\begin{aligned}
& \text { fib } 0=0 \\
& \text { fib } 1=1 \\
& \text { fib } n=\text { fib }(n-1)+\text { fib }(n-2)
\end{aligned}
$$

- fib n calls fib ($n-2$) twice
- Once directly and once from fib ($\mathrm{n}-1$)
- Similarly fib ($n-2$) calls fib ($n-4$) twice
- So at least four calls to fib ($n-4$), eight calls to fib ($n-6$), $\mathbb{f}-\mathrm{c}$.
- At least 2^{k} calls to fib ($n-2^{*} k$)

Fibonacci numbers

- Naive recursion

$$
\begin{aligned}
& \text { fib } 0=0 \\
& \text { fib } 1=1 \\
& \text { fib } n=\text { fib }(n-1)+\text { fib }(n-2)
\end{aligned}
$$

- fib n calls fib ($n-2$) twice
- Once directly and once from fib ($\mathrm{n}-1$)
- Similarly fib ($n-2$) calls fib ($n-4$) twice
- So at least four calls to fib ($n-4$), eight calls to fib ($n-6$), $\mathbb{f}-\mathrm{c}$.
- At least 2^{k} calls to fib ($n-2^{*} \mathrm{k}$)
- It appears that fib n takes time exponential in n

Fibonacci numbers: analysis

- $F(n)$: value of fib n

Fibonacci numbers: analysis

- $F(n)$: value of fib n
- $G(n)$: number of recursive calls to fib 1 while computing fib n

Fibonacci numbers: analysis

- $F(n)$: value of fib n
- $G(n)$: number of recursive calls to fib 1 while computing fib n - $G(0)=0$ - no call to fib 1

Fibonacci numbers: analysis

- $F(n)$: value of fib n
- $G(n)$: number of recursive calls to fib 1 while computing fib n
- $G(0)=0$ - no call to fib 1
- $G(1)=1$ - one call to fib 1

Fibonacci numbers: analysis

- $F(n)$: value of fib n
- $G(n)$: number of recursive calls to fib 1 while computing fib n
- $G(0)=0$ - no call to fib 1
- $G(1)=1$ - one call to fib 1
- $G(2)=1$ - one call to fib 1

Fibonacci numbers: analysis

- $F(n)$: value of fib n
- $G(n)$: number of recursive calls to fib 1 while computing fib n
- $G(0)=0$ - no call to fib 1
- $G(1)=1$ - one call to fib 1
- $G(2)=1$ - one call to fib 1
- Claim: For all $n \geq 0, G(n)=F(n)$

Fibonacci numbers: analysis

- $F(n)$: value of fib n
- $G(n)$: number of recursive calls to fib 1 while computing fib n
- $G(0)=0$ - no call to fib 1
- $G(1)=1$ - one call to fib 1
- $G(2)=1$ - one call to fib 1
- Claim: For all $n \geq 0, G(n)=F(n)$
- True for $n=0,1$.

Fibonacci numbers: analysis

- $F(n)$: value of fib n
- $G(n)$: number of recursive calls to fib 1 while computing fib n
- $G(0)=0$ - no call to fib 1
- $G(1)=1$ - one call to fib 1
- $G(2)=1$ - one call to fib 1
- Claim: For all $n \geq 0, G(n)=F(n)$
- True for $n=0,1$.
- For $n>2$, there is one call to fib ($n-1$) and one to fib ($n-2$).

Fibonacci numbers: analysis

- $F(n)$: value of fib n
- $G(n)$: number of recursive calls to fib 1 while computing fib n
- $G(0)=0$ - no call to fib 1
- $G(1)=1$ - one call to fib 1
- $G(2)=1$ - one call to fib 1
- Claim: For all $n \geq 0, G(n)=F(n)$
- True for $n=0,1$.
- For $n>2$, there is one call to fib ($n-1$) and one to fib ($n-2$).
- So $G(n)=G(n-1)+G(n-2)=F(n-1)+F(n-2)=F(n)$.

Fibonacci numbers: analysis

- $F(n)$: value of fib n
- $G(n)$: number of recursive calls to fib 1 while computing fib n
- $G(0)=0$ - no call to fib 1
- $G(1)=1$ - one call to fib 1
- $G(2)=1$ - one call to fib 1
- Claim: For all $n \geq 0, G(n)=F(n)$
- True for $n=0,1$.
- For $n>2$, there is one call to fib ($n-1$) and one to fib ($n-2$).
- So $G(n)=G(n-1)+G(n-2)=F(n-1)+F(n-2)=F(n)$.
- Effectively computing $F(n)$ by adding up so many 1s

Fibonacci numbers: analysis

- Recall: $F(n)=\frac{\varphi^{n}-\psi^{n}}{\sqrt{5}}$

Fibonacci numbers: analysis

- Recall: $F(n)=\frac{\varphi^{n}-\psi^{n}}{\sqrt{5}}$
- $\varphi=\frac{1+\sqrt{5}}{2} \approx 1.6180339887$

Fibonacci numbers: analysis

- Recall: $F(n)=\frac{\varphi^{n}-\psi^{n}}{\sqrt{5}}$
- $\varphi=\frac{1+\sqrt{5}}{2} \approx 1.6180339887$
- $\psi=\frac{1-\sqrt{5}}{2} \approx-0.6180339887$

Fibonacci numbers: analysis

- Recall: $F(n)=\frac{\varphi^{n}-\psi^{n}}{\sqrt{5}}$
- $\varphi=\frac{1+\sqrt{5}}{2} \approx 1.6180339887$
- $\psi=\frac{1-\sqrt{5}}{2} \approx-0.6180339887$
- Thus $G(n)=F(n)$ is exponential in n

Fibonacci numbers

- What is the problem?

Fibonacci numbers

- What is the problem?
- Multiple recursive calls with the same argument

Fibonacci numbers

- What is the problem?
- Multiple recursive calls with the same argument
- Wasteful recomputation!

Fibonacci numbers

- What is the problem?
- Multiple recursive calls with the same argument
- Wasteful recomputation!
- Suffices to keep track of two values:

$$
\begin{gathered}
\text { fib }=\text { go }(0,1) \\
\text { where }
\end{gathered}
$$

$$
\begin{aligned}
& \text { go }(a, b) 0=a \\
& \text { go }(a, b) n=g o(b, a+b)(n-1)
\end{aligned}
$$

Fibonacci numbers

- A fancier solution:

$$
\begin{aligned}
& \text { fib }=(!!) \text { fibs } \\
& \text { fibs }=0: 1: \text { zipWith (+) fibs (tail fibs) }
\end{aligned}
$$

Fibonacci numbers

- A fancier solution:

$$
\begin{aligned}
& \text { fib }=(!!) \text { fibs } \\
& \text { fibs }=0: 1: \text { zipWith (+) fibs (tail fibs) }
\end{aligned}
$$

- Let $z=z i p W i t h(+)$ fibs (tail fibs)

Fibonacci numbers

- A fancier solution:

```
fib = (!!) fibs
fibs = 0:1:zipWith (+) fibs (tail fibs)
```

- Let $z=z i p W i t h(+)$ fibs (tail fibs)
- Then fibs = 0:1:z

Fibonacci numbers

- A fancier solution:

```
fib = (!!) fibs
fibs = 0:1:zipWith (+) fibs (tail fibs)
```

- Let $z=z i p W i t h(+)$ fibs (tail fibs)
- Then fibs = 0:1:z
- Substituting, we can define z without referring to fibs

Fibonacci numbers

- A fancier solution:

```
fib = (!!) fibs
fibs = 0:1:zipWith (+) fibs (tail fibs)
```

- Let $z=z i p W i t h(+)$ fibs (tail fibs)
- Then fibs = 0:1:z
- Substituting, we can define z without referring to fibs
- z = zipWith (+) (0:1:z) (1:z)

Fibonacci numbers

- A fancier solution:

```
fib = (!!) fibs
fibs = 0:1:zipWith (+) fibs (tail fibs)
```

- Let $z=z i p W i t h(+)$ fibs (tail fibs)
- Then fibs $=0: 1: z$
- Substituting, we can define z without referring to fibs
- z = zipWith (+) (0:1:z) (1:z)
- Thus z = 1:zipWith (+) (1:z) z

Fibonacci numbers

- A fancier solution:
fibs $=0: 1: z$
where
z = 1:zipWith (+) (1:z) z

Fibonacci numbers

- A fancier solution:
fibs = 0:1:z
where
z = 1:zipWith (+) (1:z) z
- Let go = zipWith (+) and remember the list is infinite (hence nonempty)

Fibonacci numbers

- A fancier solution:
fibs = 0:1:z
where
z = 1:zipWith (+) (1:z) z
- Let go = zipWith (+) and remember the list is infinite (hence nonempty)
- Final code:

```
fib = (!!) fibs
fibs = 0:1:z
    where z = 1:go (1:z) z
    go (x:xs) (y:ys) = x+y: go xs ys
```


Computing fibs

Computing fibs

Computing fibs

Computing fibs

Computing fibs

- There is always one unevaluated go

Computing fibs

- There is always one unevaluated go
- Pointers to two nodes on the tree

Computing fibs

- There is always one unevaluated go
- Pointers to two nodes on the tree
- The pointers move down as go is evaluated more and more

Computing fibs

- There is always one unevaluated go
- Pointers to two nodes on the tree
- The pointers move down as go is evaluated more and more
- To compute fib n we expand the tree to n levels

Dynamic programming

- Dynamic programming - technique to make recursive programs efficient

Dynamic programming

- Dynamic programming - technique to make recursive programs efficient
- Key idea is memoization - Keeping track of already computed values to avoid recomputation

Dynamic programming

- Dynamic programming - technique to make recursive programs efficient
- Key idea is memoization - Keeping track of already computed values to avoid recomputation
- Achieved (in the case of fibs) using a list defined in terms of itself

Dynamic programming

- Dynamic programming - technique to make recursive programs efficient
- Key idea is memoization - Keeping track of already computed values to avoid recomputation
- Achieved (in the case of fibs) using a list defined in terms of itself
- Another example next

Longest common subsequence

- Given two strings as and bs, find the length of the longest common subsequence of as and bs

Longest common subsequence

- Given two strings as and bs, find the length of the longest common subsequence of as and bs
- Haskell function lcs:

$$
\begin{array}{r}
\text { lcs "agcat" "gact" }=3 \text {-- subsequence "gat" } \\
\text { lcs "abracadabra" "bacarrat" }=6 \\
\text {-- subsequence "bacara" }
\end{array}
$$

Longest common subsequence

- Given two strings as and bs, find the length of the longest common subsequence of as and bs
- Haskell function lcs:

$$
\begin{aligned}
& \text { lcs "agcat" "gact" = } 3 \text {-- subsequence "gat" } \\
& \text { lcs "abracadabra" "bacarrat" }=6 \\
& \text {-- subsequence "bacara" }
\end{aligned}
$$

- Strategy

Longest common subsequence

- Given two strings as and bs, find the length of the longest common subsequence of as and bs
- Haskell function lcs:

$$
\begin{array}{r}
\text { lcs "agcat" "gact" }=3 \text {-- subsequence "gat" } \\
\text { lcs "abracadabra" "bacarrat" }=6 \\
\text {-- subsequence "bacara" }
\end{array}
$$

- Strategy
- If first letter is same in both strings, that letter is always in the longest common subsequence

Longest common subsequence

- Given two strings as and bs, find the length of the longest common subsequence of as and bs
- Haskell function lcs:

$$
\begin{aligned}
& \text { lcs "agcat" "gact" }=3 \text {-- subsequence "gat" } \\
& \text { lcs "abracadabra" "bacarrat" }=6 \\
& \text {-- subsequence "bacara" }
\end{aligned}
$$

- Strategy
- If first letter is same in both strings, that letter is always in the longest common subsequence
- Else we need to skip the first letter in as or bs or both

Longest common subsequence

- Given two strings as and bs, find the length of the longest common subsequence of as and bs
- Haskell function lcs:

$$
\begin{array}{r}
\text { lcs "agcat" "gact" }=3 \text {-- subsequence "gat" } \\
\text { lcs "abracadabra" "bacarrat" }=6 \\
\text {-- subsequence "bacara" }
\end{array}
$$

- Strategy
- If first letter is same in both strings, that letter is always in the longest common subsequence
- Else we need to skip the first letter in as or bs or both
- ... and compute recursively

Longest common subsequence

- Haskell function lcs:

$$
\begin{aligned}
\text { lcs "" }- & =0 \\
\text { lcs }-" "= & 0 \\
\text { lcs as bs }= & \text { if } a==b \text { then } 1+\text { lcs as' bs' } \\
& \text { else max (lcs as' bs) (lcs as bs') } \\
\text { where }(a, \text { as') }= & \text { (head as, tail as) } \\
\left(b, b s^{\prime}\right)= & \text { (head bs, tail bs) }
\end{aligned}
$$

Longest common subsequence

- Haskell function lcs:

$$
\begin{aligned}
& \text { lcs " " }-=0 \\
& \text { lcs }-" "= 0 \\
& \text { lcs as bs }= \text { if } a==b \text { then } 1+\text { lcs as' bs' } \\
& \text { else max (lcs as' bs) (lcs as bs') } \\
& \text { where }(a, \text { as') }=(\text { head as, tail as) } \\
&\left(b, b s^{\prime}\right)= \text { (head bs, tail bs) }
\end{aligned}
$$

- This takes time exponential in n

Longest common subsequence

- Haskell function lcs:

$$
\begin{aligned}
\text { lcs "" }- & =0 \\
\text { lcs }-" " & =0 \\
\text { lcs as bs }= & \text { if } a==b \text { then } 1+\text { lcs as' bs' } \\
& \text { else max (lcs as' bs) (lcs as bs') } \\
\text { where }(a, \text { as') } & =\text { (head as, tail as) } \\
\left(b, b s^{\prime}\right)= & \text { (head bs, tail bs) }
\end{aligned}
$$

- This takes time exponential in n
- Same problem as with fibs

Longest common subsequence

- Haskell function lcs:

$$
\begin{aligned}
& \text { lcs " " }-=0 \\
& \text { lcs }-" "= 0 \\
& \text { lcs as bs }= \text { if } a=b \text { then } 1+\text { lcs as' bs' } \\
& \text { else max (lcs as' bs) (lcs as bs') } \\
& \text { where }(a, \text { as') }=(\text { head as, tail as) } \\
&\left(b, b s^{\prime}\right)=(\text { head bs, tail bs) }
\end{aligned}
$$

- This takes time exponential in n
- Same problem as with fibs
- Many recursive calls repeated with same arguments

Towards a smarter lcs

- Rather than present the program and explain, we shall derive it in a series of small steps

Towards a smarter lcs

- Rather than present the program and explain, we shall derive it in a series of small steps
- Important exercise in reasoning about programs

Towards a smarter lcs

- Rather than present the program and explain, we shall derive it in a series of small steps
- Important exercise in reasoning about programs
- First step: express the recursion in terms of prefixes

$$
\begin{aligned}
& \text { lcs "" }= 0 \\
& \text { lcs }-\quad "= 0 \\
& \text { lcs as bs }= \text { if } a==b \text { then } 1+\text { lcs as' bs' } \\
& \text { else max (lcs as' bs) (lcs as bs') } \\
& \text { where (as', a) }=\text { (init as, last as) } \\
&\left(b s^{\prime}, b\right)=(\text { init bs, last bs) }
\end{aligned}
$$

Towards a smarter lcs

- Let length as $=m$ and length $b s=n$

Towards a smarter lcs

- Let length as $=m$ and length $b s=n$
- For i <- [0..m] and $\mathrm{j}<-$ [0..n], let
f i j = lcs (take i as) (take j bs)

Towards a smarter lcs

- Let length as $=m$ and length $b s=n$
- For i <- [0..m] and j <- [0..n], let

$$
\text { f i j }=\text { lcs (take i as) (take } j \text { bs) }
$$

- Then we can define f directly as follows:

$$
\begin{aligned}
f 0 _=0 \\
f-0=0
\end{aligned} \quad \begin{aligned}
& f \text { f } j=g(a s!!(i-1))(b s!!(j-1)) \\
&(f(i-1)(j-1), f(i-1) j, f i(j-1)) \\
& \text { where } g a b(d, u, l)= \\
& i f a==b \text { then } 1+d \text { else max } l u
\end{aligned}
$$

Towards a smarter lcs

- For i <- [0..m], let

$$
\text { l i }=[f \text { i j } \mid \text { j <- [0..n] }]
$$

Towards a smarter lcs

- For i <- [0..m], let

$$
\text { l i }=[f \text { i j } \mid \text { j <- [0..n] }]
$$

- l $0=$ replicate $(n+1) 0$

Towards a smarter lcs

- For i <- [0..m], let

$$
\mathrm{l} i=[f \text { i j } \mid \text { j <- [0..n] }]
$$

- l $0=$ replicate $(n+1) 0$
- For i > 0,

$$
\begin{aligned}
& \mathrm{l} i=0:[g(\operatorname{as}!!(i-1))(b s!!(j-1)) \\
& \quad(f(i-1)(j-1), f(i-1) j, f i(j-1)) \\
& \quad \mid j<-[1 . . n]]
\end{aligned}
$$

Towards a smarter lcs

- We can define l i directly in terms of itself and $l(i-1)$

Towards a smarter lcs

- We can define l i directly in terms of itself and l (i-1)
- Observe that:

$$
\begin{aligned}
& \text { zip3 }(l(i-1))(\text { tail }(l(i-1)))(l i)= \\
& \quad[(f(i-1)(j-1), f(i-1) j, f i(j-1)) \mid j<-[1 . . n]]
\end{aligned}
$$

Towards a smarter lcs

- We can define l i directly in terms of itself and l (i-1)
- Observe that:

$$
\begin{aligned}
& \text { zip3 }(l(i-1))(\text { tail }(l(i-1)))(l i)= \\
& \quad[(f(i-1)(j-1), f(i-1) j, f i(j-1)) \mid j<-[1 . . n]]
\end{aligned}
$$

- So

$$
\begin{aligned}
l \mathrm{i}=0: & \text { zipWith }(\mathrm{g} \mathrm{(as!!(i-1)))} \mathrm{bs} \\
& (z i p 3(l(i-1))(\text { tail }(l(i-1)))(l i))
\end{aligned}
$$

Towards a smarter lcs

- We have:

$$
\begin{aligned}
l \mathrm{i}=0: & \text { zipWith }(\mathrm{g} \mathrm{(as!!(i-1)))} \mathrm{bs} \\
& (z i p 3(l(i-1))(\text { tail }(l(i-1)))(l i))
\end{aligned}
$$

Towards a smarter lcs

- We have:

$$
\begin{aligned}
l \mathrm{i}=0: & \text { zipWith }(\mathrm{g} \mathrm{(as!!(i-1)))} \mathrm{bs} \\
& (z i p 3(l(i-1))(\text { tail }(l(i-1)))(l i))
\end{aligned}
$$

- Can clean it further:

$$
\begin{aligned}
& \mathrm{l} \mathrm{i}=\text { nextList (as!! }(\mathrm{i}-1))(\mathrm{l}(\mathrm{i}-1)) \\
& \text { where nextList } a l=0: \text { zipWith }(\mathrm{g} \text { a) bs } \\
& \quad(\text { zip3 } \mathrm{l}(\text { tail } \mathrm{l})(\text { nextList } a \mathrm{l}))
\end{aligned}
$$

Towards a smarter lcs

- We have:

$$
\begin{aligned}
& \mathrm{l} \mathrm{i}=\text { nextList }(\text { as! }!(i-1))(l(i-1)) \\
& \text { where nextList } a l=0: \text { zipWith }(g \text { a) bs } \\
& \quad(\text { zip3 } l(\text { tail } l)(\text { nextList } a l))
\end{aligned}
$$

Towards a smarter lcs

- We have:

$$
\begin{aligned}
& \mathrm{l} \mathrm{i}=\text { nextList }(\text { as! }!(i-1))(l(i-1)) \\
& \text { where nextList } a l=0: \text { zipWith }(g \text { a) bs } \\
& \quad(\text { zip3 } l(\text { tail } l)(\text { nextList } a l))
\end{aligned}
$$

- Let lcsTab $=[$ i i i <- [1..m]]

Towards a smarter lcs

- We have:

$$
\begin{aligned}
& \mathrm{l} \mathrm{i}=\text { nextList }(\text { as! }!(i-1))(l(i-1)) \\
& \text { where nextList } a l=0: \text { zipWith }(g \text { a) bs } \\
& \quad(\text { zip3 } l(\text { tail } l)(\text { nextList } a l))
\end{aligned}
$$

- Let lcsTab $=[$ i i i <- [1..m]]
- Then l i $=$ lcsTab!!i

Towards a smarter lcs

- We have:

$$
\begin{aligned}
& \mathrm{l} i=\text { nextList }(\text { as! ! }(i-1))(l(i-1)) \\
& \text { where nextList } a l=0: \text { zipWith }(g \text { a) bs } \\
& \quad(z i p 3 \quad(\text { tail l) }(\text { nextList } a l))
\end{aligned}
$$

- Let lcsTab $=[$ i i i <- [1..m] $]$
- Then l i $=$ lcsTab!!i
- So we have

$$
\begin{gathered}
\text { lcsTab }=10:[\text { nextList (as!!(i-1)) (lcsTab!!(i-1)) } \\
\mid \text { i <- }[1 . . \mathrm{m}]]
\end{gathered}
$$

Smarter lcs: we are there!

- We have:

$$
\begin{gathered}
\text { lcsTab }=10:[\text { nextList (as!!(i-1)) (lcsTab!!(i-1)) } \\
\text { | i <- }[1 . . \mathrm{m}]]
\end{gathered}
$$

Smarter lcs: we are there!

- We have:

$$
\begin{gathered}
\text { lcsTab }=10:[\text { nextList (as!!(i-1)) (lcsTab!!(i-1)) } \\
\text { | i <- }[1 . . \mathrm{m}]]
\end{gathered}
$$

- Final simplification:

$$
\text { lcsTab }=10: \text { zipWith nextList as lcsTab }
$$

Smarter lcs: we are there!

- We have:

$$
\begin{gathered}
\text { lcsTab }=10:[\text { nextList (as!!(i-1)) (lcsTab!!(i-1)) } \\
\text { | i <- }[1 . . \mathrm{m}]]
\end{gathered}
$$

- Final simplification:

$$
\text { lcsTab }=10: \text { zipWith nextList as lcsTab }
$$

- Recall that l 0 is just a list of 0s

Smarter lcs: we are there!

- We have:

$$
\begin{gathered}
\text { lcsTab }=10:[\text { nextList (as!!(i-1)) (lcsTab!!(i-1)) } \\
\text { | i <- }[1 . . \mathrm{m}]]
\end{gathered}
$$

- Final simplification:

$$
\text { lcsTab }=10 \text { : zipWith nextList as lcsTab }
$$

- Recall that l 0 is just a list of 0s
- The final answer we want is $\mathrm{f} \mathrm{m} \mathrm{n}=$ last (last lcsTab)

Putting it all together

```
lcs :: String -> String -> Int
lcs as bs = last (last lcsTab)
    where
    lcsTab = firstList : zipWith nextList as lcsTab
    firstList = replicate (length bs + 1) 0
    nextList a l = 0: zipWith (g a) bs
    (zip3 l (tail l) (nextList a l))
    g a b (d,u,l) = if a == b then 1 + d else (max u l)
```


Complexity of lcs

- Laziness ensures that lcsTab is expanded as needed

Complexity of lcs

- Laziness ensures that lcsTab is expanded as needed
- An analysis similar to fib can be performed

Complexity of lcs

- Laziness ensures that lcsTab is expanded as needed
- An analysis similar to fib can be performed
- lcsTab is computed completely in $O(m \cdot n)$ time

Complexity of lcs

- Laziness ensures that lcsTab is expanded as needed
- An analysis similar to fib can be performed
- lcsTab is computed completely in $O(m \cdot n)$ time
- Sample runs on the strings
"ababababababababababababababababababab" and
"bbbbbbbbbbbbbbbbbbbbbbbbb"

Complexity of lcs

- Laziness ensures that lcsTab is expanded as needed
- An analysis similar to fib can be performed
- lcsTab is computed completely in $O(m \cdot n)$ time
- Sample runs on the strings
"ababababababababababababababababababab" and
"bbbbbbbbbbbbbbbbbbbbbbbbb"
- Answer is 19

Complexity of lcs

- Laziness ensures that lcsTab is expanded as needed
- An analysis similar to fib can be performed
- lcsTab is computed completely in $O(m \cdot n)$ time
- Sample runs on the strings
"ababababababababababababababababababab" and
"bbbbbbbbbbbbbbbbbbbbbbbbb"
- Answer is 19
- Naive recursion: (32.35 secs, 19,422,476,336 bytes)

Complexity of lcs

- Laziness ensures that lcsTab is expanded as needed
- An analysis similar to fib can be performed
- lcsTab is computed completely in $O(m \cdot n)$ time
- Sample runs on the strings
"ababababababababababababababababababab" and
"bbbbbbbbbbbbbbbbbbbbbbbbb"
- Answer is 19
- Naive recursion: (32.35 secs, 19,422,476,336 bytes)
- DP version: (0.01 secs, 3,504,504 bytes)

Computing the subsequence itself

```
lcs :: String -> String -> (Int, String)
lcs as bs = last (last lcsTab)
    where
    lcsTab = firstList : zipWith nextList as lcsTab
    firstList = replicate (length bs + 1) (0, "")
    nextList a l = (0, ""): zipWith (g a) bs
        (zip3 l (tail l) (nextList a l))
    gab (d,u,l) = if a == b
    then (1 + fst d, snd d ++ [b])
    else
    if fst u > fst l then u else l
```

