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Measuring efficiency

• Computation is reduction

• Application of definitions as rewriting rules
• Count the number of reduction steps
• Running time is T (n) for input size n
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Variations across inputs

• Worst case complexity

• Maximum running time over all inputs of size n

• Pessimistic: may be rare
• Average case complexity: more realistic, but difficult/impossible to
compute
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Asymptotic complexity

• Interested in T (n) in terms of orders of magnitude

• f (n) =O(g (n)) if there is a constant k and numberN > 0 such that

• f (n)≤ k · g (n) for all n ≥N

• an2+ b n+ c =O(n2) (take k = |a|+ |b |+ |c |)
• Ignore constant factors, lower-order terms
• Typical complexities: O(n),O(n log n),O(nk ),O(2n), …
• Complexity of ++ isO(n), where n is the length of the first list
• Complexity of elem isO(n) (worst case!)
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Complexity of reverse

• Naive reverse
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

• Write a recurrence for T (n)

T (0) = 1

T (n) = T (n− 1)+ n

• Solve by expanding the recurrence
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Complexity of reverse

• Solving the recurrence
T (n) = T (n− 1)+ n

= (T (n− 2)+ (n− 1))+ n

= ((T (n− 3)+ (n− 2))+ (n− 1))+ n

= . . .

= ((· · · (T (0)+ 1)+ · · · (n− 2))+ (n− 1))+ n

= 1+ 1+ 2+ · · ·+(n− 2)+ (n− 1)+ n

= 1+
n(n+ 1)

2
=O(n2)
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Speeding up reverse

• Reverse into the empty list
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs

• Complexity of revInto a xs

• Let n be length xs
• T (n) = T (n− 1)+ 1
• Expanding, T (n) =O(n)

• Thus reverse has complexityO(n)
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Insertion sort: insert

• Insert an element into a sorted list:
insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x (y:ys)

| x <= y = x:y:ys
| otherwise = y:insert x ys

• T (n) =O(n)
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Insertion sort: isort

• The sorting procedure:
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)

• Alternatively:
isort = foldr insert []

• Recurrence: T (n) = T (n− 1)+O(n)

• Expanding, T (n) =O(n2)
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Merge Sort: merge

• Merging two sorted lists:
merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)

| x <= y = x: merge xs (y:ys)
| otherwise = y: merge (x:xs) ys

• Each comparison adds at least one element to the output list
• Number of steps in merge xs ys isO(n)

• n is length xs + length ys
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Merge Sort

• Sorting a list:
sort :: [Int] -> [Int]
sort [] = []
sort [x] = [x]
sort xs = merge (sort front) (sort back)

where
n = (length xs) `div` 2
(front, back) = splitAt n xs
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Merge Sort: analysis

• T (n): time taken by sort on input of length n

• Assume, for simplicity, that n is a power of 2
• Then the lengths of front and back are n

2

• There are two recursive sorts
• Overall time taken by length, splitAt and merge isO(n)

• Let us assume it is cn, for some constant c

• Recurrence: T (n) = 2T (n/2)+ cn
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Merge Sort: analysis

• Recurrence: T (n) = 2T (n/2)+ cn

• Expanding…
T (1) = 1

T (n) = 2T (n/2)+ cn

= 2(2T (n/4)+ cn/2)+ cn

= 22T (n/22)+ 2cn

= 22(2T (n/23)+ cn/22)+ 2cn

= 23T (n/23)+ 3cn

= . . .

= 2 j T (n/2 j )+ j cn
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T (n) = 2T (n/2)+ cn

= . . .

= 2 j T (n/2 j )+ j cn

• When j = log n, 2 j = n and n/2 j = 1

• Thus T (n) = 2log nT (1)+ cn log n = n+ cn log n =O(n log n)
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Avoiding merge

• Merge is needed because some elements in front are greater than some
elements in back

• Can we ensure that everything in front is smaller than everything in
back?
• Suppose the median value in list is m
• Move all values <= m to front
• back has values > m

• Recursively sort front and back
• List is now sorted! No need to merge
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Avoiding merge

• How do we find the median?

• Sort and pick up middle element
• But our aim is to sort!
• Instead, pick up some value in list – pivot
• Split list with respect to the pivot
• Usually we pick the first element as pivot
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Quicksort

sort :: [Int] -> [Int]
sort [] = []
sort (x:xs) = sort front ++ [pivot] ++ sort back

where
pivot = x
front = [y <- xs, y <= x]
back = [y <- xs, y > x]
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Quicksort: analysis

• Worst case: pivot is maximum or minimum

• One partition is empty while the other is of size n− 1

• Partitioning takes timeO(n), say cn

• T (n) = T (n− 1)+ cn

• Expanding, T (n) =O(n2)

• But average case complexity isO(n log n)

• Quicksort is one of the few examples amenable to average case analysis
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Average case analysis

• Assume input is a permutation of 1,2, . . . , n

• Actual values not important
• Only relative order matters
• Each permutation is equally likely as input (uniform probability)
• Calculate running time across all inputs
• Expected running time can be shown to beO(n log n)
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