Programming in Haskell: Lecture 14

S P Suresh

September 18, 2019

Measuring efficiency

- Computation is reduction

Measuring efficiency

- Computation is reduction
- Application of definitions as rewriting rules

Measuring efficiency

- Computation is reduction
- Application of definitions as rewriting rules
- Count the number of reduction steps

Measuring efficiency

- Computation is reduction
- Application of definitions as rewriting rules
- Count the number of reduction steps
- Running time is $T(n)$ for input size n

Variations across inputs

- Worst case complexity

Variations across inputs

- Worst case complexity
- Maximum running time over all inputs of size n

Variations across inputs

- Worst case complexity
- Maximum running time over all inputs of size n
- Pessimistic: may be rare

Variations across inputs

- Worst case complexity
- Maximum running time over all inputs of size n
- Pessimistic: may be rare
- Average case complexity: more realistic, but difficult/impossible to compute

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude
- $f(n)=O(g(n))$ if there is a constant k and number $N>0$ such that

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude
- $f(n)=O(g(n))$ if there is a constant k and number $N>0$ such that
- $f(n) \leq k \cdot g(n)$ for all $n \geq N$

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude
- $f(n)=O(g(n))$ if there is a constant k and number $N>0$ such that
- $f(n) \leq k \cdot g(n)$ for all $n \geq N$
- $a n^{2}+b n+c=O\left(n^{2}\right)($ take $k=|a|+|b|+|c|)$

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude
- $f(n)=O(g(n))$ if there is a constant k and number $N>0$ such that
- $f(n) \leq k \cdot g(n)$ for all $n \geq N$
- $a n^{2}+b n+c=O\left(n^{2}\right)($ take $k=|a|+|b|+|c|)$
- Ignore constant factors, lower-order terms

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude
- $f(n)=O(g(n))$ if there is a constant k and number $N>0$ such that
- $f(n) \leq k \cdot g(n)$ for all $n \geq N$
- $a n^{2}+b n+c=O\left(n^{2}\right)($ take $k=|a|+|b|+|c|)$
- Ignore constant factors, lower-order terms
- Typical complexities: $O(n), O(n \log n), O\left(n^{k}\right), O\left(2^{n}\right), \ldots$

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude
- $f(n)=O(g(n))$ if there is a constant k and number $N>0$ such that
- $f(n) \leq k \cdot g(n)$ for all $n \geq N$
- $a n^{2}+b n+c=O\left(n^{2}\right)($ take $k=|a|+|b|+|c|)$
- Ignore constant factors, lower-order terms
- Typical complexities: $O(n), O(n \log n), O\left(n^{k}\right), O\left(2^{n}\right), \ldots$
- Complexity of ++ is $O(n)$, where n is the length of the first list

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude
- $f(n)=O(g(n))$ if there is a constant k and number $N>0$ such that
- $f(n) \leq k \cdot g(n)$ for all $n \geq N$
- $a n^{2}+b n+c=O\left(n^{2}\right)($ take $k=|a|+|b|+|c|)$
- Ignore constant factors, lower-order terms
- Typical complexities: $O(n), O(n \log n), O\left(n^{k}\right), O\left(2^{n}\right), \ldots$
- Complexity of ++ is $O(n)$, where n is the length of the first list
- Complexity of elem is $O(n)$ (worst case!)

Complexity of reverse

- Naive reverse

$$
\begin{array}{ll}
\operatorname{reverse}[] & =[] \\
\operatorname{reverse}(x: x s) & =\text { reverse } x s++[x]
\end{array}
$$

Complexity of reverse

- Naive reverse

$$
\begin{array}{ll}
\operatorname{reverse}[] & =[] \\
\operatorname{reverse}(x: x s) & =\text { reverse } x s++[x]
\end{array}
$$

- Write a recurrence for $T(n)$

$$
\begin{aligned}
& T(0)=1 \\
& T(n)=T(n-1)+n
\end{aligned}
$$

Complexity of reverse

- Naive reverse

$$
\begin{array}{ll}
\text { reverse }[] & =[] \\
\text { reverse }(x: x s) & =\text { reverse } x s++[x]
\end{array}
$$

- Write a recurrence for $T(n)$

$$
\begin{aligned}
& T(0)=1 \\
& T(n)=T(n-1)+n
\end{aligned}
$$

- Solve by expanding the recurrence

Complexity of reverse

- Solving the recurrence

$$
\begin{aligned}
T(n) & =T(n-1)+n \\
& =(T(n-2)+(n-1))+n \\
& =((T(n-3)+(n-2))+(n-1))+n \\
& =\cdots \\
& =((\cdots(T(0)+1)+\cdots(n-2))+(n-1))+n \\
& =1+1+2+\cdots+(n-2)+(n-1)+n \\
& =1+\frac{n(n+1)}{2} \\
& =O\left(n^{2}\right)
\end{aligned}
$$

Speeding up reverse

- Reverse into the empty list

```
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs
```


Speeding up reverse

- Reverse into the empty list

```
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs
```

- Complexity of revInto a xs

Speeding up reverse

- Reverse into the empty list

```
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs
```

- Complexity of revInto a xs
- Let n be length xs

Speeding up reverse

- Reverse into the empty list

```
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs
```

- Complexity of revInto a xs
- Let n be length xs
- $T(n)=T(n-1)+1$

Speeding up reverse

- Reverse into the empty list

```
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs
```

- Complexity of revInto a xs
- Let n be length xs
- $T(n)=T(n-1)+1$
- Expanding, $T(n)=O(n)$

Speeding up reverse

- Reverse into the empty list

```
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs
```

- Complexity of revInto a xs
- Let n be length xs
- $T(n)=T(n-1)+1$
- Expanding, $T(n)=O(n)$
- Thus reverse has complexity $O(n)$

Insertion sort: insert

- Insert an element into a sorted list:

```
insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x (y:ys)
    | x <= y = x:y:ys
    | otherwise = y:insert x ys
```


Insertion sort: insert

- Insert an element into a sorted list:

```
insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x (y:ys)
    | x <= y = x:y:ys
    | otherwise = y:insert x ys
```

- $T(n)=O(n)$

Insertion sort: isort

- The sorting procedure:

```
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)
```


Insertion sort: isort

- The sorting procedure:

```
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)
```

- Alternatively:
isort = foldr insert []

Insertion sort: isort

- The sorting procedure:

```
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)
```

- Alternatively:
isort = foldr insert []
- Recurrence: $T(n)=T(n-1)+O(n)$

Insertion sort: isort

- The sorting procedure:

```
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)
```

- Alternatively:
isort = foldr insert []
- Recurrence: $T(n)=T(n-1)+O(n)$
- Expanding, $T(n)=O\left(n^{2}\right)$

Merge Sort: merge

- Merging two sorted lists:

```
merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)
    | x <= y = x: merge xs (y:ys)
    | otherwise = y: merge (x:xs) ys
```


Merge Sort: merge

- Merging two sorted lists:

```
merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)
    | x <= y = x: merge xs (y:ys)
    | otherwise = y: merge (x:xs) ys
```

- Each comparison adds at least one element to the output list

Merge Sort: merge

- Merging two sorted lists:

```
merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)
    | x <= y = x: merge xs (y:ys)
    | otherwise = y: merge (x:xs) ys
```

- Each comparison adds at least one element to the output list
- Number of steps in merge xs ys is $O(n)$

Merge Sort: merge

- Merging two sorted lists:

```
merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)
    | x <= y = x: merge xs (y:ys)
    | otherwise = y: merge (x:xs) ys
```

- Each comparison adds at least one element to the output list
- Number of steps in merge xs ys is $O(n)$
- n is length xs + length ys

Merge Sort

- Sorting a list:

```
sort :: [Int] -> [Int]
sort [] = []
sort [x] = [x]
sort xs = merge (sort front) (sort back)
    where
```

```
n = (length xs) `div` 2
(front, back) = splitAt n xs
```


Merge Sort: analysis

- $T(n)$: time taken by sort on input of length n

Merge Sort: analysis

- $T(n)$: time taken by sort on input of length n
- Assume, for simplicity, that n is a power of 2

Merge Sort: analysis

- $T(n)$: time taken by sort on input of length n
- Assume, for simplicity, that n is a power of 2
- Then the lengths of front and back are $\frac{n}{2}$

Merge Sort: analysis

- $T(n)$: time taken by sort on input of length n
- Assume, for simplicity, that n is a power of 2
- Then the lengths of front and back are $\frac{n}{2}$
- There are two recursive sorts

Merge Sort: analysis

- $T(n)$: time taken by sort on input of length n
- Assume, for simplicity, that n is a power of 2
- Then the lengths of front and back are $\frac{n}{2}$
- There are two recursive sorts
- Overall time taken by length, splitAt and merge is $O(n)$

Merge Sort: analysis

- $T(n)$: time taken by sort on input of length n
- Assume, for simplicity, that n is a power of 2
- Then the lengths of front and back are $\frac{n}{2}$
- There are two recursive sorts
- Overall time taken by length, splitAt and merge is $O(n)$
- Let us assume it is $c n$, for some constant c

Merge Sort: analysis

- $T(n)$: time taken by sort on input of length n
- Assume, for simplicity, that n is a power of 2
- Then the lengths of front and back are $\frac{n}{2}$
- There are two recursive sorts
- Overall time taken by length, splitAt and merge is $O(n)$
- Let us assume it is $c n$, for some constant c
- Recurrence: $T(n)=2 T(n / 2)+c n$

Merge Sort: analysis

- Recurrence: $T(n)=2 T(n / 2)+c n$

Merge Sort: analysis

- Recurrence: $T(n)=2 T(n / 2)+c n$
- Expanding ...

$$
\begin{aligned}
T(1) & =1 \\
T(n) & =2 T(n / 2)+c n \\
& =2(2 T(n / 4)+c n / 2)+c n \\
& =2^{2} T\left(n / 2^{2}\right)+2 c n \\
& =2^{2}\left(2 T\left(n / 2^{3}\right)+c n / 2^{2}\right)+2 c n \\
& =2^{3} T\left(n / 2^{3}\right)+3 c n \\
& =\cdots \\
& =2^{j} T\left(n / 2^{j}\right)+j c n
\end{aligned}
$$

Merge Sort: analysis

- Recurrence: $T(n)=2 T(n / 2)+c n$

Merge Sort: analysis

- Recurrence: $T(n)=2 T(n / 2)+c n$
- Expanding ...

$$
\begin{aligned}
T(1) & =1 \\
T(n) & =2 T(n / 2)+c n \\
& =\ldots \\
& =2^{j} T\left(n / 2^{j}\right)+j c n
\end{aligned}
$$

Merge Sort: analysis

- Recurrence: $T(n)=2 T(n / 2)+c n$
- Expanding ...

$$
\begin{aligned}
T(1) & =1 \\
T(n) & =2 T(n / 2)+c n \\
& =\ldots \\
& =2^{j} T\left(n / 2^{j}\right)+j c n
\end{aligned}
$$

- When $j=\log n, 2^{j}=n$ and $n / 2^{j}=1$

Merge Sort: analysis

- Recurrence: $T(n)=2 T(n / 2)+c n$
- Expanding ...

$$
\begin{aligned}
T(1) & =1 \\
T(n) & =2 T(n / 2)+c n \\
& =\ldots \\
& =2^{j} T\left(n / 2^{j}\right)+j c n
\end{aligned}
$$

- When $j=\log n, 2^{j}=n$ and $n / 2^{j}=1$
- Thus $T(n)=2^{\log n} T(1)+c n \log n=n+c n \log n=O(n \log n)$

Avoiding merge

- Merge is needed because some elements in front are greater than some elements in back

Avoiding merge

- Merge is needed because some elements in front are greater than some elements in back
- Can we ensure that everything in front is smaller than everything in back?

Avoiding merge

- Merge is needed because some elements in front are greater than some elements in back
- Can we ensure that everything in front is smaller than everything in back?
- Suppose the median value in list is m

Avoiding merge

- Merge is needed because some elements in front are greater than some elements in back
- Can we ensure that everything in front is smaller than everything in back?
- Suppose the median value in list is m
- Move all values <= m to front

Avoiding merge

- Merge is needed because some elements in front are greater than some elements in back
- Can we ensure that everything in front is smaller than everything in back?
- Suppose the median value in list is m
- Move all values $<=m$ to front
- back has values > m

Avoiding merge

- Merge is needed because some elements in front are greater than some elements in back
- Can we ensure that everything in front is smaller than everything in back?
- Suppose the median value in list is m
- Move all values <= m to front
- back has values > m
- Recursively sort front and back

Avoiding merge

- Merge is needed because some elements in front are greater than some elements in back
- Can we ensure that everything in front is smaller than everything in back?
- Suppose the median value in list is m
- Move all values $<=m$ to front
- back has values > m
- Recursively sort front and back
- List is now sorted! No need to merge

Avoiding merge

- How do we find the median?

Avoiding merge

- How do we find the median?
- Sort and pick up middle element

Avoiding merge

- How do we find the median?
- Sort and pick up middle element
- But our aim is to sort!

Avoiding merge

- How do we find the median?
- Sort and pick up middle element
- But our aim is to sort!
- Instead, pick up some value in list - pivot

Avoiding merge

- How do we find the median?
- Sort and pick up middle element
- But our aim is to sort!
- Instead, pick up some value in list - pivot
- Split list with respect to the pivot

Avoiding merge

- How do we find the median?
- Sort and pick up middle element
- But our aim is to sort!
- Instead, pick up some value in list - pivot
- Split list with respect to the pivot
- Usually we pick the first element as pivot

Quicksort

sort :: [Int] -> [Int]
sort [] = []
sort (x:xs) = sort front ++ [pivot] ++ sort back where

$$
\begin{aligned}
& \text { pivot }=x \\
& \text { front }=[y<-x s, y<=x] \\
& \text { back }=[y<-x s, y>x]
\end{aligned}
$$

Quicksort: analysis

- Worst case: pivot is maximum or minimum

Quicksort: analysis

- Worst case: pivot is maximum or minimum
- One partition is empty while the other is of size $n-1$

Quicksort: analysis

- Worst case: pivot is maximum or minimum
- One partition is empty while the other is of size $n-1$
- Partitioning takes time $O(n)$, say $c n$

Quicksort: analysis

- Worst case: pivot is maximum or minimum
- One partition is empty while the other is of size $n-1$
- Partitioning takes time $O(n)$, say $c n$
- $T(n)=T(n-1)+c n$

Quicksort: analysis

- Worst case: pivot is maximum or minimum
- One partition is empty while the other is of size $n-1$
- Partitioning takes time $O(n)$, say cn
- $T(n)=T(n-1)+c n$
- Expanding, $T(n)=O\left(n^{2}\right)$

Quicksort: analysis

- Worst case: pivot is maximum or minimum
- One partition is empty while the other is of size $n-1$
- Partitioning takes time $O(n)$, say c n
- $T(n)=T(n-1)+c n$
- Expanding, $T(n)=O\left(n^{2}\right)$
- But average case complexity is $O(n \log n)$

Quicksort: analysis

- Worst case: pivot is maximum or minimum
- One partition is empty while the other is of size $n-1$
- Partitioning takes time $O(n)$, say c n
- $T(n)=T(n-1)+c n$
- Expanding, $T(n)=O\left(n^{2}\right)$
- But average case complexity is $O(n \log n)$
- Quicksort is one of the few examples amenable to average case analysis

Average case analysis

- Assume input is a permutation of $1,2, \ldots, n$

Average case analysis

- Assume input is a permutation of $1,2, \ldots, n$
- Actual values not important

Average case analysis

- Assume input is a permutation of $1,2, \ldots, n$
- Actual values not important
- Only relative order matters

Average case analysis

- Assume input is a permutation of $1,2, \ldots, n$
- Actual values not important
- Only relative order matters
- Each permutation is equally likely as input (uniform probability)

Average case analysis

- Assume input is a permutation of $1,2, \ldots, n$
- Actual values not important
- Only relative order matters
- Each permutation is equally likely as input (uniform probability)
- Calculate running time across all inputs

Average case analysis

- Assume input is a permutation of $1,2, \ldots, n$
- Actual values not important
- Only relative order matters
- Each permutation is equally likely as input (uniform probability)
- Calculate running time across all inputs
- Expected running time can be shown to be $O(n \log n)$

