Programming in Haskell: Lecture 14
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¢ Computation is reduction
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Measuring efficiency

Computation is reduction
Application of definitions as rewriting rules
Count the number of reduction steps

Running time is 7'(7) for input size 7
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Vartations across inputs

e Worst case complexity
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Vartations across inputs

e Worst case complexity
¢ Maximum running time over all inputs of size »

® Dessimistic: may be rare
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Vartations across inputs

Worst case complexity
Maximum running time over all inputs of size 7
Pessimistic: may be rare

Average case complexity: more realistic, but difficult/impossible to

compute
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Asymptotic complexity

® Interested in 7(72) in terms of orders of magnitude
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Asymptotic complexity

® Interested in 7(72) in terms of orders of magnitude
® f(n (n)) if there is a constant k£ and number N > 0 such that
Of </e g(n)foralln >N

® an’+bn+c=0(n?) (take b = |a|+|b| +|c|)
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Asymptotic complexity

Interested in 7'() in terms of orders of magnitude
f(n)=0(g(n))if there is a constant k£ and number N > 0 such that
® f(n)<k-g(n)foralln>N

an®*+bn+c=0(n?) (take k = |a| +|b| +|c|)

Ignore constant factors, lower-order terms
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® f(n)<k-g(n)foralln>N

an®*+bn+c=0(n?) (take k = |a| +|b| +|c|)
Ignore constant factors, lower-order terms

Typical complexities: O(z), O(n log n), O(n*), O(2"), ...
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Asymptotic complexity

Interested in 7'() in terms of orders of magnitude

f(n)=0(g(n))if there is a constant k£ and number N > 0 such that
® f(n)<k-g(n)foralln>N

an®*+bn+c=0(n?) (take k = |a| +|b| +|c|)

Ignore constant factors, lower-order terms

Typical complexities: O(z), O(n log n), O(n*), O(2"), ...
Complexity of ++is O(7), where 7 is the length of the first list
Complexity of elemis O(7) (worst case!)
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Complexity of reverse

® Naive reverse

reverse []

[l

reverse (X:Xxs) = reverse Xs ++ [x]
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reverse []

[l

reverse (X:Xxs) = reverse Xs ++ [x]

e Write a recurrence for 7'(7)
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Complexity of reverse

® Naive reverse

reverse []

1

reverse (X:Xxs) = reverse Xs ++ [x]

e Write a recurrence for 7'(7)

® Solve by expanding the recurrence
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Complexity of reverse

® Solving the recurrence
Tn)=T(n—1)+n
=(T(n—2)+(n—1))+n
=(T(n=3)+(n—2)+(n—1)+n
=((--(TO)+1)+--(n=2)+(n—1))+n
=14+ 14244(n=2)+(n—1)+n
n(n+1)
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Speeding up reverse

® Reverse into the empty list

reverse

revinto []

revinto a []

a

revinto a (x:xs) revinto (x:a) xs
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Speeding up reverse

® Reverse into the empty list

reverse

revinto []

revinto a []

a

revinto a (x:xs) revinto (x:a) xs

¢ Complexity of revInto a xs
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Speeding up reverse
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reverse
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revinto a []
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revinto a []

a
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Speeding up reverse

® Reverse into the empty list

reverse

revinto []

revinto a []

a

revinto a (x:xs) revinto (x:a) xs

¢ Complexity of revInto a xs
® Letn belength xs
®* Tn)=T(n—1)+1
¢ Expanding, 7'(n)= O(n)
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Speeding up reverse

® Reverse into the empty list

reverse

revinto []

revinto a []

a

revinto a (x:xs) revinto (x:a) xs

¢ Complexity of revInto a xs

® Letn belength xs
®* T(n)=T(n—1)+1
¢ Expanding, 7'(n)= O(n)

® Thus reverse has complexity O(7)
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Insertion sort: insert

® Insert an element into a sorted list:

insert ::

insert x []

insert x (y:ys)

Suresh

| x <=y

| otherwise

Int -> [Int] -> [Int]

[x]

X:1y:ys
y:insert x ys
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Insertion sort: insert

® Insert an element into a sorted list:

insert :: Int -> [Int] -> [Int]

insert x []

insert x (y:ys)

| x <=y
| otherwise
e T(n)=0(n)

Suresh

[x]

X:1y:ys
y:insert x ys
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Insertion sort: isort
® The sorting procedure:

isort :: [Int] -> [Int]
isort [] |

insert x (isort xs)

isort (x:xs)
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Insertion sort: isort
® The sorting procedure:

isort :: [Int] -> [Int]
isort [] |

insert x (isort xs)
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Insertion sort: isort
® The sorting procedure:

isort :: [Int] -> [Int]
isort [] |

insert x (isort xs)

isort (x:xs)

® Alternatively:

isort = foldr insert []

® Recurrence: 7(n)=1(n—1)+O(n)
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Insertion sort: isort

® The sorting procedure:

isort :: [Int] -> [Int]
isort [] |

isort (x:xs) insert x (isort xs)

® Alternatively:

isort = foldr insert []

® Recurrence: 7(n)=1(n—1)+O(n)
® Expanding, 7(n) = O(n?)
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Merge Sort: merge

® Merging two sorted lists:

merge :: [Int] -> [Int] -> [Int]

merge [] ys = ys

merge Xs [1 = XS

merge (x:xs) (y:ys)
| x <=y = x: merge xs (y:ys)
| otherwise = y: merge (Xx:Xs) ys
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Merge Sort: merge

® Merging two sorted lists:

merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge Xs [1 = XS
merge (x:xs) (y:ys)
| x <=y = x: merge xs (y:ys)

| otherwise = y: merge (Xx:Xs) ys

® Each comparison adds at least one element to the output list
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Merge Sort: merge

® Merging two sorted lists:
merge :: [Int] -> [Int] -> [Int]
merge [] ys =Yys
merge Xs [1 = XS
merge (x:xs) (y:ys)
| x <=y = x: merge xs (y:ys)

| otherwise = y: merge (Xx:Xs) ys

® Each comparison adds at least one element to the output list

® Number of steps in merge xs ysis O(n)
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Merge Sort: merge

® Merging two sorted lists:

merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge Xs [1 = XS
merge (x:xs) (y:ys)
| x <=y = x: merge xs (y:ys)

| otherwise = y: merge (Xx:Xs) ys

® Each comparison adds at least one element to the output list

® Number of steps in merge xs ysis O(n)

® nislength xs + length ys
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Merge Sort

® Sorting a list:

sort :: [Int] -> [Int]

sort [] =[]

sort [x] = [x]

sort xs = merge (sort front) (sort back)
where

n = (length xs) “div™ 2
(front, back) = splitAt n xs
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Merge Sort: analysis

® 7 (n): time taken by sort on input of length 7
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Merge Sort: analysis

® 7 (n): time taken by sort on input of length 7
e Assume, for simplicity, that » is a power of 2

¢ Then the lengths of front and back are %
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Merge Sort: analysis

T'(n): time taken by sort on input of length 7
Assume, for simplicity, that » is a power of 2
Then the lengths of front and back are 5

There are two recursive sorts
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Merge Sort: analysis

T'(n): time taken by sort on input of length 7
Assume, for simplicity, that » is a power of 2
Then the lengths of front and back are 5
There are two recursive sorts

Opverall time taken by length, splitAt and merge is O(7)
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Merge Sort: analysis

T'(n): time taken by sort on input of length 7

Assume, for simplicity, that » is a power of 2

Then the lengths of front and back are 5

There are two recursive sorts

Opverall time taken by length, splitAt and merge is O(7)

Let us assume it is c 7, for some constant ¢

Suresh PRGH 2019: Lecture 14 September 18, 2019

12/19



Merge Sort: analysis

T'(n): time taken by sort on input of length 7

Assume, for simplicity, that » is a power of 2

Then the lengths of front and back are %

There are two recursive sorts

Opverall time taken by length, splitAt and merge is O(7)
Let us assume it is c 7, for some constant ¢

Recurrence: T(n)=2T(n/2)+cn
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Merge Sort: analysis

® Recurrence: 7(n)=2T(n/2)+cn
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Merge Sort: analysis
® Recurrence: 7(n)=2T(n/2)+cn
® Expanding ...
T(1)=1
T(n)=2T(n/2)+cn
=22T(n/4)+cn/2)+cn
=22T(n/2%)+ 2cn
=222T(n/2°) 4 cn/2*)+ 2cn
=2T(n/2°)+3cn

=2T(n/2)+jcn
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Merge Sort: analysis
® Recurrence: T(n)=2T(n/2)+cn

® Expanding ...

T(1)=1
T(n)=2T(n/2)+cn

=2 T(n/2))+jcn
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Merge Sort: analysis

® Recurrence: T(n)=2T(n/2)+cn
® Expanding ...

T(1)=1
T(n)=2T(n/2)+cn

=2T(n/2)+jcn
® When j =logn,2/ =nand /2 =1
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Merge Sort: analysis
® Recurrence: T(n)=2T(n/2)+cn

® Expanding ...

T(1)=1
T(n)=2T(n/2)+cn

=2 T(n/2))+jcn

® When j =logn,2/ =nand /2 =1
e Thus 7(n) =2'"T(1)+ cnlogn =n+ cnlogn = O(nlogn)
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Avoiding merge

® Merge is needed because some elements in front are greater than some

elements in back
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Avoiding merge
Merge is needed because some elements in front are greater than some

elements in back

Can we ensure that everything in front is smaller than everything in
back?

Suppose the median value in list is m

Move all values <= mto front
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Avoiding merge
Merge is needed because some elements in front are greater than some

elements in back

Can we ensure that everything in front is smaller than everything in
back?

Suppose the median value in list is m
Move all values <= mto front

back has values > m
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Avoiding merge

Merge is needed because some elements in front are greater than some

elements in back

Can we ensure that everything in front is smaller than everything in
back?

Suppose the median value in list is m
Move all values <= mto front
back has values > m

Recursively sort front and back
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Avoiding merge

Merge is needed because some elements in front are greater than some

elements in back

Can we ensure that everything in front is smaller than everything in
back?

Suppose the median value in list is m
Move all values <= mto front

back has values > m

Recursively sort front and back

List is now sorted! No need to merge
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Avoiding merge

e How do we find the median?

Suresh PRGH 2019: Lecture 14 September 18, 2019 16 /19
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But our aim is to sort!

Instead, pick up some value in list - pivot
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How do we find the median?

Sort and pick up middle element

But our aim is to sort!

Instead, pick up some value in list - pivot
Split list with respect to the pivot

Usually we pick the first element as pivot
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sort :: [Int]

sort [] =

sort (x:xs) =
where

pivot

front

back

Suresh

Quicksort
-> [Int]
]

sort front ++ [pivot] ++ sort back

=

[y <- xs, y <= x]
[y <- xs, y > x]
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Quicksort: analysis

e Worst case: pivot is maximum or minimum

Suresh PRGH 2019: Lecture 14 September 18, 2019 18/19



Quicksort: analysis

e Worst case: pivot is maximum or minimum

® One partition is empty while the other is of size 7 — 1
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Quicksort: analysis

e Worst case: pivot is maximum or minimum
® One partition is empty while the other is of size 7 — 1

e Dartitioning takes time O(1), say ¢
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Quicksort: analysis

Worst case: pivot is maximum or minimum
One partition is empty while the other is of size 7 — 1
Partitioning takes time O(7), say c¢7

T(n)=T(n—1)+cn
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Quicksort: analysis

Worst case: pivot is maximum or minimum

One partition is empty while the other is of size 7 — 1
Partitioning takes time O(7), say c¢7
T(n)=T(n—1)+cn

Expanding, 7'(n) = O(n?)
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Quicksort: analysis

Worst case: pivot is maximum or minimum

One partition is empty while the other is of size 7 — 1
Partitioning takes time O(7), say c¢7
T(n)=T(n—1)+cn

Expanding, 7'(n) = O(n?)

But average case complexity is O(n logn)
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Quicksort: analysis

Worst case: pivot is maximum or minimum

One partition is empty while the other is of size 7 — 1
Partitioning takes time O(7), say c¢7
T(n)=T(n—1)+cn

Expanding, 7'(n) = O(n?)

But average case complexity is O(n logn)

Quicksort is one of the few examples amenable to average case analysis
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Average case analysis

¢ Assume input is a permutation of 1,2,...,7
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Average case analysis

¢ Assume input is a permutation of 1,2,...,7
® Actual values not important

® Only relative order matters
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Average case analysis

Assume input is a permutation of 1,2,...,7
Actual values not important
Only relative order matters

Each permutation is equally likely as input (uniform probability)
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Average case analysis

Assume input is a permutation of 1,2,...,7

Actual values not important

Only relative order matters

Each permutation is equally likely as input (uniform probability)

Calculate running time across all inputs
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Average case analysis

Assume input is a permutation of 1,2,...,7

Actual values not important

Only relative order matters

Each permutation is equally likely as input (uniform probability)
Calculate running time across all inputs

Expected running time can be shown to be O(7 log )
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