Programming in Haskell: Lecture 14

S P Suresh

September 18, 2019

Suresh PRGH 2019: Lecture 14 September 18, 2019 1/19

Measuring efficiency

¢ Computation is reduction

Suresh PRGH 2019: Lecture 14 September 18, 2019 2/19

Measuring efficiency

¢ Computation is reduction

¢ Application of definitions as rewriting rules

Suresh PRGH 2019: Lecture 14 September 18, 2019 2/19

Measuring efficiency

¢ Computation is reduction
¢ Application of definitions as rewriting rules

¢ Count the number of reduction steps

Suresh PRGH 2019: Lecture 14 September 18, 2019 2/19

Measuring efficiency

Computation is reduction
Application of definitions as rewriting rules
Count the number of reduction steps

Running time is 7'(7) for input size 7

Suresh PRGH 2019: Lecture 14

September 18, 2019

2/19

Vartations across inputs

e Worst case complexity

Suresh PRGH 2019: Lecture 14 September 18, 2019 3/19

Vartations across inputs

e Worst case complexity

¢ Maximum running time over all inputs of size »

Suresh PRGH 2019: Lecture 14 September 18, 2019 3/19

Vartations across inputs

e Worst case complexity
¢ Maximum running time over all inputs of size »

® Dessimistic: may be rare

Suresh PRGH 2019: Lecture 14 September 18, 2019 3/19

Vartations across inputs

Worst case complexity
Maximum running time over all inputs of size 7
Pessimistic: may be rare

Average case complexity: more realistic, but difficult/impossible to

compute

Suresh PRGH 2019: Lecture 14 September 18, 2019

3/19

Asymptotic complexity

® Interested in 7(72) in terms of orders of magnitude

Suresh PRGH 2019: Lecture 14 September 18, 2019 4/19

Asymptotic complexity

® Interested in 7(72) in terms of orders of magnitude

® f(n)=0(g(n))if there is a constant £ and number N > 0 such that

Suresh PRGH 2019: Lecture 14 September 18, 2019 4/19

Asymptotic complexity

® Interested in 7(72) in terms of orders of magnitude
® f(n)=0(g(n))if there is a constant £ and number N > 0 such that
* f(n <k g(n)foralln >N

Suresh PRGH 2019: Lecture 14 September 18, 2019 4/19

Asymptotic complexity

® Interested in 7(72) in terms of orders of magnitude
® f(n (n)) if there is a constant k£ and number N > 0 such that
Of </e g(n)foralln >N

® an’+bn+c=0(n?) (take b = |a|+|b| +|c|)

Suresh PRGH 2019: Lecture 14 September 18, 2019 4/19

Asymptotic complexity

Interested in 7'() in terms of orders of magnitude
f(n)=0(g(n))if there is a constant k£ and number N > 0 such that
® f(n)<k-g(n)foralln>N

an®*+bn+c=0(n?) (take k = |a| +|b| +|c|)

Ignore constant factors, lower-order terms

Suresh PRGH 2019: Lecture 14 September 18, 2019

4/19

Asymptotic complexity

Interested in 7'() in terms of orders of magnitude
f(n)=0(g(n))if there is a constant k£ and number N > 0 such that
® f(n)<k-g(n)foralln>N

an®*+bn+c=0(n?) (take k = |a| +|b| +|c|)
Ignore constant factors, lower-order terms

Typical complexities: O(z), O(n log n), O(n*), O(2"), ...

Suresh PRGH 2019: Lecture 14 September 18, 2019

4/19

Asymptotic complexity

Interested in 7'() in terms of orders of magnitude

f(n)=0(g(n))if there is a constant k£ and number N > 0 such that
® f(n)<k-g(n)foralln>N

an®*+bn+c=0(n?) (take k = |a| +|b| +|c|)

Ignore constant factors, lower-order terms

Typical complexities: O(z), O(n log n), O(n*), O(2"), ...
Complexity of ++is O(7), where 7 is the length of the first list

Suresh PRGH 2019: Lecture 14 September 18, 2019

4/19

Asymptotic complexity

Interested in 7'() in terms of orders of magnitude

f(n)=0(g(n))if there is a constant k£ and number N > 0 such that
® f(n)<k-g(n)foralln>N

an®*+bn+c=0(n?) (take k = |a| +|b| +|c|)

Ignore constant factors, lower-order terms

Typical complexities: O(z), O(n log n), O(n*), O(2"), ...
Complexity of ++is O(7), where 7 is the length of the first list
Complexity of elemis O(7) (worst case!)

Suresh PRGH 2019: Lecture 14 September 18, 2019

4/19

Complexity of reverse

® Naive reverse

reverse []

[l

reverse (X:Xxs) = reverse Xs ++ [x]

Suresh PRGH 2019: Lecture 14 September 18, 2019 5/19

Complexity of reverse

® Naive reverse

reverse []

[l

reverse (X:Xxs) = reverse Xs ++ [x]

e Write a recurrence for 7'(7)

Suresh PRGH 2019: Lecture 14 September 18, 2019

5/19

Complexity of reverse

® Naive reverse

reverse []

1

reverse (X:Xxs) = reverse Xs ++ [x]

e Write a recurrence for 7'(7)

® Solve by expanding the recurrence

Suresh PRGH 2019: Lecture 14 September 18, 2019

5/19

Complexity of reverse

® Solving the recurrence
Tn)=T(n—1)+n
=(T(n—2)+(n—1))+n
=(T(n=3)+(n—2)+(n—1)+n
=((--(TO)+1)+--(n=2)+(n—1))+n
=14+ 14244(n=2)+(n—1)+n
n(n+1)

Suresh PRGH 2019: Lecture 14 September 18, 2019 6/19

Speeding up reverse

® Reverse into the empty list

reverse

revinto []

revinto a []

a

revinto a (x:xs) revinto (x:a) xs

Suresh PRGH 2019: Lecture 14 September 18, 2019 7/19

Speeding up reverse

® Reverse into the empty list

reverse

revinto []

revinto a []

a

revinto a (x:xs) revinto (x:a) xs

¢ Complexity of revInto a xs

Suresh PRGH 2019: Lecture 14 September 18, 2019 7/19

Speeding up reverse

® Reverse into the empty list

reverse

revinto []

revinto a []

a

revinto a (x:xs) revinto (x:a) xs

¢ Complexity of revInto a xs

® Letn belength xs

Suresh PRGH 2019: Lecture 14 September 18, 2019 7/19

Speeding up reverse

® Reverse into the empty list

reverse

revinto []

revinto a []

a

revinto a (x:xs) revinto (x:a) xs

¢ Complexity of revInto a xs

® Letn belength xs
® T(n)=T(n—1)+1

Suresh PRGH 2019: Lecture 14 September 18, 2019 7/19

Speeding up reverse

® Reverse into the empty list

reverse

revinto []

revinto a []

a

revinto a (x:xs) revinto (x:a) xs

¢ Complexity of revInto a xs
® Letn belength xs
®* Tn)=T(n—1)+1
¢ Expanding, 7'(n)= O(n)

Suresh PRGH 2019: Lecture 14 September 18, 2019 7/19

Speeding up reverse

® Reverse into the empty list

reverse

revinto []

revinto a []

a

revinto a (x:xs) revinto (x:a) xs

¢ Complexity of revInto a xs

® Letn belength xs
®* T(n)=T(n—1)+1
¢ Expanding, 7'(n)= O(n)

® Thus reverse has complexity O(7)

Suresh PRGH 2019: Lecture 14 September 18, 2019 7/19

Insertion sort: insert

® Insert an element into a sorted list:

insert ::

insert x []

insert x (y:ys)

Suresh

| x <=y

| otherwise

Int -> [Int] -> [Int]

[x]

X:1y:ys
y:insert x ys

PRGH 2019: Lecture 14

September 18, 2019

8/19

Insertion sort: insert

® Insert an element into a sorted list:

insert :: Int -> [Int] -> [Int]

insert x []

insert x (y:ys)

| x <=y
| otherwise
e T(n)=0(n)

Suresh

[x]

X:1y:ys
y:insert x ys

PRGH 2019: Lecture 14

September 18, 2019

8/19

Insertion sort: isort
® The sorting procedure:

isort :: [Int] -> [Int]
isort [] |

insert x (isort xs)

isort (x:xs)

Suresh PRGH 2019: Lecture 14 September 18, 2019 9/19

Insertion sort: isort
® The sorting procedure:

isort :: [Int] -> [Int]
isort [] |

insert x (isort xs)

isort (x:xs)

® Alternatively:

isort = foldr insert []

Suresh PRGH 2019: Lecture 14 September 18, 2019 9/19

Insertion sort: isort
® The sorting procedure:

isort :: [Int] -> [Int]
isort [] |

insert x (isort xs)

isort (x:xs)

® Alternatively:

isort = foldr insert []

® Recurrence: 7(n)=1(n—1)+O(n)

Suresh PRGH 2019: Lecture 14 September 18, 2019 9/19

Insertion sort: isort

® The sorting procedure:

isort :: [Int] -> [Int]
isort [] |

isort (x:xs) insert x (isort xs)

® Alternatively:

isort = foldr insert []

® Recurrence: 7(n)=1(n—1)+O(n)
® Expanding, 7(n) = O(n?)

Suresh PRGH 2019: Lecture 14

September 18, 2019

9/19

Merge Sort: merge

® Merging two sorted lists:

merge :: [Int] -> [Int] -> [Int]

merge [] ys = ys

merge Xs [1 = XS

merge (x:xs) (y:ys)
| x <=y = x: merge xs (y:ys)
| otherwise = y: merge (Xx:Xs) ys

Suresh PRGH 2019: Lecture 14 September 18, 2019 10/ 19

Merge Sort: merge

® Merging two sorted lists:

merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge Xs [1 = XS
merge (x:xs) (y:ys)
| x <=y = x: merge xs (y:ys)

| otherwise = y: merge (Xx:Xs) ys

® Each comparison adds at least one element to the output list

Suresh PRGH 2019: Lecture 14 September 18, 2019 10/ 19

Merge Sort: merge

® Merging two sorted lists:
merge :: [Int] -> [Int] -> [Int]
merge [] ys =Yys
merge Xs [1 = XS
merge (x:xs) (y:ys)
| x <=y = x: merge xs (y:ys)

| otherwise = y: merge (Xx:Xs) ys

® Each comparison adds at least one element to the output list

® Number of steps in merge xs ysis O(n)

Suresh PRGH 2019: Lecture 14 September 18, 2019 10/ 19

Merge Sort: merge

® Merging two sorted lists:

merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge Xs [1 = XS
merge (x:xs) (y:ys)
| x <=y = x: merge xs (y:ys)

| otherwise = y: merge (Xx:Xs) ys

® Each comparison adds at least one element to the output list

® Number of steps in merge xs ysis O(n)

® nislength xs + length ys

Suresh PRGH 2019: Lecture 14 September 18, 2019 10/ 19

Merge Sort

® Sorting a list:

sort :: [Int] -> [Int]

sort [] =[]

sort [x] = [x]

sort xs = merge (sort front) (sort back)
where

n = (length xs) “div™ 2
(front, back) = splitAt n xs

Suresh PRGH 2019: Lecture 14 September 18, 2019 /19

Merge Sort: analysis

® 7 (n): time taken by sort on input of length 7

Suresh PRGH 2019: Lecture 14 September 18, 2019 12/19

Merge Sort: analysis

® 7 (n): time taken by sort on input of length 7

e Assume, for simplicity, that » is a power of 2

Suresh PRGH 2019: Lecture 14 September 18, 2019 12/19

Merge Sort: analysis

® 7 (n): time taken by sort on input of length 7
e Assume, for simplicity, that » is a power of 2

¢ Then the lengths of front and back are %

Suresh PRGH 2019: Lecture 14 September 18, 2019 12/19

Merge Sort: analysis

T'(n): time taken by sort on input of length 7
Assume, for simplicity, that » is a power of 2
Then the lengths of front and back are 5

There are two recursive sorts

Suresh PRGH 2019: Lecture 14

September 18, 2019

12/19

Merge Sort: analysis

T'(n): time taken by sort on input of length 7
Assume, for simplicity, that » is a power of 2
Then the lengths of front and back are 5
There are two recursive sorts

Opverall time taken by length, splitAt and merge is O(7)

Suresh PRGH 2019: Lecture 14 September 18, 2019

12/19

Merge Sort: analysis

T'(n): time taken by sort on input of length 7

Assume, for simplicity, that » is a power of 2

Then the lengths of front and back are 5

There are two recursive sorts

Opverall time taken by length, splitAt and merge is O(7)

Let us assume it is c 7, for some constant ¢

Suresh PRGH 2019: Lecture 14 September 18, 2019

12/19

Merge Sort: analysis

T'(n): time taken by sort on input of length 7

Assume, for simplicity, that » is a power of 2

Then the lengths of front and back are %

There are two recursive sorts

Opverall time taken by length, splitAt and merge is O(7)
Let us assume it is c 7, for some constant ¢

Recurrence: T(n)=2T(n/2)+cn

Suresh PRGH 2019: Lecture 14 September 18, 2019

12/19

Merge Sort: analysis

® Recurrence: 7(n)=2T(n/2)+cn

Suresh PRGH 2019: Lecture 14 September 18, 2019 13/19

Merge Sort: analysis
® Recurrence: 7(n)=2T(n/2)+cn
® Expanding ...
T(1)=1
T(n)=2T(n/2)+cn
=22T(n/4)+cn/2)+cn
=22T(n/2%)+ 2cn
=222T(n/2°) 4 cn/2*)+ 2cn
=2T(n/2°)+3cn

=2T(n/2)+jcn

Suresh PRGH 2019: Lecture 14 September 18, 2019 13/19

Merge Sort: analysis

® Recurrence: T(n)=2T(n/2)+cn

Suresh PRGH 2019: Lecture 14 September 18, 2019 14/19

Merge Sort: analysis
® Recurrence: T(n)=2T(n/2)+cn

® Expanding ...

T(1)=1
T(n)=2T(n/2)+cn

=2 T(n/2))+jcn

Suresh PRGH 2019: Lecture 14 September 18, 2019 14/19

Merge Sort: analysis

® Recurrence: T(n)=2T(n/2)+cn
® Expanding ...

T(1)=1
T(n)=2T(n/2)+cn

=2T(n/2)+jcn
® When j =logn,2/ =nand /2 =1

Suresh PRGH 2019: Lecture 14 September 18, 2019 14/19

Merge Sort: analysis
® Recurrence: T(n)=2T(n/2)+cn

® Expanding ...

T(1)=1
T(n)=2T(n/2)+cn

=2 T(n/2))+jcn

® When j =logn,2/ =nand /2 =1
e Thus 7(n) =2'"T(1)+ cnlogn =n+ cnlogn = O(nlogn)

Suresh PRGH 2019: Lecture 14 September 18, 2019 14/19

Avoiding merge

® Merge is needed because some elements in front are greater than some

elements in back

Suresh PRGH 2019: Lecture 14 September 18, 2019 15/19

Avoiding merge

® Merge is needed because some elements in front are greater than some
elements in back

® Can we ensure that everything in front is smaller than everything in
back?

Suresh PRGH 2019: Lecture 14 September 18, 2019 15/19

Avoiding merge
® Merge is needed because some elements in front are greater than some
elements in back

® Can we ensure that everything in front is smaller than everything in
back?

¢ Suppose the median value in list is m

Suresh PRGH 2019: Lecture 14 September 18, 2019 15/19

Avoiding merge
Merge is needed because some elements in front are greater than some

elements in back

Can we ensure that everything in front is smaller than everything in
back?

Suppose the median value in list is m

Move all values <= mto front

Suresh PRGH 2019: Lecture 14 September 18, 2019 15/19

Avoiding merge
Merge is needed because some elements in front are greater than some

elements in back

Can we ensure that everything in front is smaller than everything in
back?

Suppose the median value in list is m
Move all values <= mto front

back has values > m

Suresh PRGH 2019: Lecture 14 September 18, 2019 15/19

Avoiding merge

Merge is needed because some elements in front are greater than some

elements in back

Can we ensure that everything in front is smaller than everything in
back?

Suppose the median value in list is m
Move all values <= mto front
back has values > m

Recursively sort front and back

Suresh PRGH 2019: Lecture 14 September 18, 2019 15/19

Avoiding merge

Merge is needed because some elements in front are greater than some

elements in back

Can we ensure that everything in front is smaller than everything in
back?

Suppose the median value in list is m
Move all values <= mto front

back has values > m

Recursively sort front and back

List is now sorted! No need to merge

Suresh PRGH 2019: Lecture 14 September 18, 2019 15/19

Avoiding merge

e How do we find the median?

Suresh PRGH 2019: Lecture 14 September 18, 2019 16 /19

Avoiding merge

e How do we find the median?

e Sort and pick up middle element

Suresh PRGH 2019: Lecture 14 September 18, 2019 16 /19

Avoiding merge

¢ How do we find the median?
e Sort and pick up middle element

® But our aim is to sort!

Suresh PRGH 2019: Lecture 14 September 18, 2019 16 /19

Avoiding merge

¢ How do we find the median?
e Sort and pick up middle element

® But our aim is to sort!

Instead, pick up some value in list - pivot

Suresh PRGH 2019: Lecture 14 September 18, 2019

16 /19

How do we find the median?

Sort and pick up middle element

But our aim is to sort!

Instead, pick up some value in list - pivot

Split list with respect to the pivot

Suresh PRGH 2019: Lecture 14

Avoiding merge

September 18, 2019

16/ 19

How do we find the median?

Sort and pick up middle element

But our aim is to sort!

Instead, pick up some value in list - pivot
Split list with respect to the pivot

Usually we pick the first element as pivot

Suresh PRGH 2019: Lecture 14

Avoiding merge

September 18, 2019

16/ 19

sort :: [Int]

sort [] =

sort (x:xs) =
where

pivot

front

back

Suresh

Quicksort
-> [Int]
]

sort front ++ [pivot] ++ sort back

=

[y <- xs, y <= x]
[y <- xs, y > x]

PRGH 2019: Lecture 14 September 18, 2019

17/19

Quicksort: analysis

e Worst case: pivot is maximum or minimum

Suresh PRGH 2019: Lecture 14 September 18, 2019 18/19

Quicksort: analysis

e Worst case: pivot is maximum or minimum

® One partition is empty while the other is of size 7 — 1

Suresh PRGH 2019: Lecture 14 September 18, 2019 18/19

Quicksort: analysis

e Worst case: pivot is maximum or minimum
® One partition is empty while the other is of size 7 — 1

e Dartitioning takes time O(1), say ¢

Suresh PRGH 2019: Lecture 14 September 18, 2019 18/19

Quicksort: analysis

Worst case: pivot is maximum or minimum
One partition is empty while the other is of size 7 — 1
Partitioning takes time O(7), say c¢7

T(n)=T(n—1)+cn

Suresh PRGH 2019: Lecture 14

September 18, 2019

18/19

Quicksort: analysis

Worst case: pivot is maximum or minimum

One partition is empty while the other is of size 7 — 1
Partitioning takes time O(7), say c¢7
T(n)=T(n—1)+cn

Expanding, 7'(n) = O(n?)

Suresh PRGH 2019: Lecture 14

September 18, 2019

18/19

Quicksort: analysis

Worst case: pivot is maximum or minimum

One partition is empty while the other is of size 7 — 1
Partitioning takes time O(7), say c¢7
T(n)=T(n—1)+cn

Expanding, 7'(n) = O(n?)

But average case complexity is O(n logn)

Suresh PRGH 2019: Lecture 14

September 18, 2019

18/19

Quicksort: analysis

Worst case: pivot is maximum or minimum

One partition is empty while the other is of size 7 — 1
Partitioning takes time O(7), say c¢7
T(n)=T(n—1)+cn

Expanding, 7'(n) = O(n?)

But average case complexity is O(n logn)

Quicksort is one of the few examples amenable to average case analysis

Suresh PRGH 2019: Lecture 14 September 18, 2019 18/19

Average case analysis

¢ Assume input is a permutation of 1,2,...,7

Suresh PRGH 2019: Lecture 14 September 18, 2019 19/19

Average case analysis

¢ Assume input is a permutation of 1,2,...,7

® Actual values not important

Suresh PRGH 2019: Lecture 14 September 18, 2019 19/19

Average case analysis

¢ Assume input is a permutation of 1,2,...,7
® Actual values not important

® Only relative order matters

Suresh PRGH 2019: Lecture 14 September 18, 2019 19/19

Average case analysis

Assume input is a permutation of 1,2,...,7
Actual values not important
Only relative order matters

Each permutation is equally likely as input (uniform probability)

Suresh PRGH 2019: Lecture 14 September 18, 2019

19/19

Average case analysis

Assume input is a permutation of 1,2,...,7

Actual values not important

Only relative order matters

Each permutation is equally likely as input (uniform probability)

Calculate running time across all inputs

Suresh PRGH 2019: Lecture 14 September 18, 2019

19/19

Average case analysis

Assume input is a permutation of 1,2,...,7

Actual values not important

Only relative order matters

Each permutation is equally likely as input (uniform probability)
Calculate running time across all inputs

Expected running time can be shown to be O(7 log)

Suresh PRGH 2019: Lecture 14 September 18, 2019

19/19

